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OPTIMAL INTEGRATED ATTITUDE AND STATE ESTIMATION
FOR LUNAR DESCENT TO LANDING NAVIGATION

Renato Zanetti∗ and Robert H. Bishop†

Conditions on the optimality of the introduction of preprocessed attitude estimates in
the Kalman filter are developed. The results are applied to lunar descent to landing
navigation. The attitude estimate is obtained with the Davenport q-method and a
modified measurement model. Together with the attitude estimate, the preprocessor
passes to the Kalman filter the estimation error covariance.

INTRODUCTION

The optimal approach to estimate the spacecraft state (position, velocity, and attitude) is an in-
tegrated single estimator, such as the Kalman filter,1, 2 or its nonlinear (non-optimal) extension, the
extended Kalman filter (EKF).3 Modern sensor technologies often provide “smart” measurements,
that are estimates derived from the raw data. Examples of such sensors are GPS receivers, quater-
nion star cameras, and terrain cameras that provide relative position. The advantage of these sensors
is that they relieve the central filter from some of the computational load. However they can intro-
duce correlations that need to be accounted for to produce a correct implementation. This work will
focus on the introduction of an attitude estimate into the Kalman filter, but equivalent conclusions
can be drawn for position estimates obtained by GPS or a terrain camera.

An integrated attitude and translation (position and velocity) estimator requires that we consider
the nature of the group of rotations in three dimensions, SO(3). Being that SO(3) is not a vector
space adds complexity to the process of estimating attitude in a Kalman filter. The fact that no
three-dimensional representation of attitude can be globally continuous and non-singular4 makes it
desirable to introduce a higher dimensional representation that results in a constrained state. If the
attitude is represented through the quaternion-of-rotation5 the constraint is given by the unitary norm
of the quaternion. However, the Kalman filter algorithm does not naturally permit the introduction of
constraints. So, during the update stage of the estimate process, the attitude quaternion estimate can
violate the unitary norm constraint. To avoid poor performance, the constraint should be included
in the filter.6, 7 Modifications to the EKF to estimate the quaternion include the additive EKF,8 the
multiplicative EKF,9 and the rotational EKF.10 These three approaches retain the basic structure of
the EKF, relying on linearization to estimate the quaternion.

Other classes of attitude estimation algorithms operate directly on the nonlinear structure of the
problem. The Davenport q-method11 is a nonlinear least-squares solution and was shown to be a
maximum likelihood solution under specific assumptions on the distribution of the measurements.12

Other nonlinear approaches exist, such as TRIAD,13 that determines the rotation matrix directly.
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Also, nonlinear observers have been investigated.14, 15 These nonlinear attitude determination al-
gorithms are not easily augmented to include position and velocity states (one such example is
Extended QUEST16).

The designer is therefore left to choose between estimating the attitude through a linearized ap-
proach using a single filter that optimally accounts for the correlation between attitude and other
states, or to employ a nonlinear attitude determination algorithm that will decentralized the estima-
tion effort, and by doing so possibly lose optimality.

The Kalman filter is the recursive solution to the linear weighted least squares problem.17 The
Kalman estimate is the minimum variance estimate when the errors are zero mean and the least
squares weights are chosen as the inverse of the error covariances.17 These additional assumptions
(zero mean white noises and knowledge of the covariances) are not overly restrictive and allow for
easy determination of the weight matrices, which correspond to the Kalman filter tuning parameters.
Making further additional assumptions (the conditional distribution is symmetric and unimodal) the
Kalman filter solution can also be interpreted as the maximum likelihood estimate.18 Gaussian dis-
tributions of the noises satisfy these additional assumptions. The optimality of the Kalman filter (in
a minimum variance sense) is distribution independent, and generally there is no reason to assume
a particular distribution. In this work all derivations are from an “engineering” approach without
assuming knowledge of the distribution but only knowledge of the first two moments.

Ref. 19 draws the conclusion that the estimate obtained qith the q-method is a sufficient statis-
tics20 of the vector observations, therefore it can be used as a preprocessor of the Kalman filter.
The derivation assumes that both the Davenport q-method and the Kalman filter are maximum like-
lihood estimators. This assumptions requires specific distributions of the measurement errors and
the absence of non-attitude states in the vector observations used by the q-method. In this work
that conclusion will be extended not to require any particular distribution. The case when the vector
measurements used by the Davenport q-method are a function of non-attitude states will also be con-
sidered. Our approach extends the result by removing those assumptions. Assuming a distribution
is an additional requirement that normally the navigation engineer does not make.

The contributions of this work are:

1. Optimal fusion of attitude estimates of the Davenport q-method with a standard (translational)
navigation algorithm for Lunar descent to landing navigation.

2. A modified estimation error covariance and measurement model for the Davenport q-method
are derived.

3. Treatment of measurement vectors that depend on states other than the attitude itself.

DAVENPORT Q-METHOD

The Wahba problem21 consists in determining the orthogonal matrix T that minimizes the per-
formance index

J (q̄ q̄) =
1
2

n∑

i=1

wi‖ŷi −Tn̂i‖2, (1)

where ŷi are vector observations and n̂i are their representation in the reference frame. This mini-
mization problem can be reformulated for the quaternion q̄, substituting the rotation matrix T with

T(q̄) = I− 2q[q×] + 2[q×]2,



where q and q are the scalar and vector components, respectively. The orthogonality requirement is
replaced with a unitary norm constrain on q̄. An elegant solution to this problem is due to Davenport
and is given by Keat.11 The minimization of Wahba performance index in Eq. (1) is equivalent to
maximization of

J ?(q̄) = q̄TKq̄,

where matrix K is given by

K =
[
S− σI3×3 z

zT σ

]
, (2)

and

B ,
n∑

i=1

wiŷin̂T
i σ , trace(B)

S , B + BT z ,
n∑

i=1

wi (ŷi × n̂i) .

Adjoining the constraint ||q̄||2 = 1 to the performance index with a Lagrange multiplier, denoted
by λ, the first-order optimal condition is given by the eigenvalue problem

Kq̄ = λq̄. (3)

The performance index can be shown to be

J ? = λ.

Since the performance index is to be maximized, the optimal Lagrange multiplier is given by the
maximum eigenvalue of K defined in Eq. (2), and the optimal quaternion is given by the corre-
sponding unit eigenvector. There is no need to calculate the eigenvector. The vector of Rodrigues
parameters is given by

% = q/q.

The first three rows of Eq. (3) can be expanded to be

(S− σI3×3)q + zq = λq,

from which the estimated Gibbs vector is found to be

%̂ = [(σ + λ)I3×3 − S]−1z. (4)

The optimal quaternion is given by

ˆ̄q =
1√

1 + %̂T%̂

[
%̂
1

]
. (5)

Ref. 22 shows how to handle Eq. (4) when matrix (σ + λ)I3×3 − S is singular. The same paper
shows a numerically efficient algorithm to compute the eigenvalue referred to as QUEST. Covari-
ance analysis is also performed in Ref. 22 under the assumption of a simplified measurement model,
known as the QUEST measurement model. The ith measurement is modeled as

ŷi = T(q̄)ni + ỹi = T(q̄) (n̂i − ñi) + ỹi,



where ni are the true reference vectors while ñi and ỹi are errors. Vectors yi and ni are assumed to
be unitary, and the measurement error covariances are given by

E
{
ñi ñT

i

}
= σ2

n,i

(
I3×3 − ni nT

i

)
,

and
E

{
ỹi ỹT

i

}
= σ2

y,i

(
I3×3 − yi yT

i

)
,

where yi are the true values of the measurements yi = T(q̄)ni. Since ni and yi are unknown, they
have to be replaced by n̂i and ŷi when calculating the two covariances.

Covariance Analysis

The matrix associated with the true observations is defined as

Btrue ,
n∑

i=1

wiyinT
i ,

and the matrix associated with the measurement error

δB ,
n∑

i=1

wiỹinT
i +

n∑

i=1

wiyiñT
i .

Therefore to first-order in the errors

B = Btrue + δB.

Similar quantities can be defined for z, σ, and S

z = ztrue + δz, S = Strue + δS, σ = σtrue + δσ,

obtaining

ztrue =
n∑

i=1

wi(yi × ni) δz =
n∑

i=1

wi(yi × ñi + ỹi × ni)

Strue = Btrue + BT
true δS = δB + δBT

σtrue = traceBtrue δσ = trace δB.

Provided that at least two independent vector measurements are available, the estimate obtained
from Btrue using Davenport’s algorithm is the true quaternion. Define

M , (σ + λ)I3×3 − S,

the true Gibbs vector is
% = M−1

trueztrue,

where

Mtrue = (σtrue + λtrue)I3×3 −
n∑

i=1

wiyinT
i −

n∑

i=1

winiyT
i . (6)



The estimated Gibbs vector is

%̂ = (Mtrue + δM)−1 (ztrue + δz) ' (
M−1

true −M−1
trueδMM−1

true

)
(ztrue + δz)

' % + M−1
trueδz−M−1

trueδM% = %− %̃,

where a first-order approximation was used. Defining a rotational estimation error such that T(q̄) =
T(δq̄)T(ˆ̄q), and using the composition rule for the Rodrigues parameters

δq ' δ% =
I3×3 − [%×]

1 + %T%− %T%̃
%̃, (7)

using Mac-Laurin series

(1 + %T%− %T%̃)−1 ' (1 + %T%)−1 + (1 + %T%)−2%T%̃,

substituting in Eq. (7), the following first order approximation results

δq ' I3×3 − [%×]
1 + %T%

%̃ = q (qI3×3 − [q×]) %̃,

finally
δq = (qI3×3 − [q×]) M−1

true (δMq− qδz) . (8)

In Ref. 22 the authors notice that the covariance should be approximately independent from the true
state, therefore Eq. (8) is evaluated at a convenient true state, the identity quaternion, resulting in

δq = −M−1
trueδz.

Assuming the covariance is independent from the true attitude, i.e. is independent from the body
frame, the body frame can be rotated to coincide with the reference frame for covariance calculation
purposes. If that was the case reference vectors ni would stay the same, but new measurements ŷ∗i
would occur

ŷ∗i = T(q̄)Tŷi = ni + T(q̄)Tỹi.

Hence
T(q̄)Tyi → yi, T(q̄)Tỹi → ỹi

it follows that

δθ ' 2δq = −2M−1
true

n∑

i=1

wi(T(q̄)Tyi × ñi + T(q̄)Tỹi × ni), (9)

and the following covariance formulation is obtained

Pi
θθ = 4(Mi

true)
−1

n∑

i=1

w2
i

{
[ni×]

(
Rn,i + T(q̄)TRy,iT(q̄)

)
[ni×]T

}
(Mi

true)
−T,

where the symmetric matrix Mi
true is given by

Mi
true = −2

n∑

i=1

wi[ni×]2.



The errors ñi and ỹi are assumed to be uncorrelated from each other, and

E
{
ỹiỹT

j

}
= Ry,i δij , E

{
ñiñT

j

}
= Rn,i δij , i, j = 1..n.

The matrix Pi
θθ is the error covariance expressed in the inertial frame. Rotating it into the body

frame, we obtain

Pb
θθ = 4(Mb

true)
−1

n∑

i=1

w2
i

{
[yi×]

(
T(q̄)Rn,iT(q̄)T + Ry,i

)
[yi×]T

}
(Mb

true)
−T, (10)

where Mb
true is given by

Mb
true = −2

n∑

i=1

wi[yi×]2. (11)

If the measurements covariances follow the QUEST measurement model, and if the weights are
chosen such that

wi =
1

σ2
n + σ2

y

,

then the QUEST error covariance formulation is obtained

PQUEST
θθ =

(
n∑

i=1

wi[yi×]2
)−1

=
{

trace
[
T(q̄)BT

true

]
I3×3 −T(q̄)BT

true

}−1
. (12)

Since T(q̄) and Btrue are unknown they need to be substituted by T(ˆ̄q) and B.

Often times the reference vectors n̂i are functions of the spacecraft position, for example in the
case of a Earth horizon sensor. In those cases the position estimate needs to be provided by another
system, and is useful to derive the cross covariance.

n̂i = n̂i(r̂) ' ni + ñi + Aier, er , r− r̂, Ai , dn̂i

dr

∣∣∣∣
r=r̂

therefore it follows immediately that

Pθr = 2(Mb
true)

−1
n∑

i=1

wi[yi×]AiPrr, (13)

assuming ñi, ỹi, and er are all uncorrelated to each other, Prr = E
{
ereT

r

}
is provided externally,

and the attitude error is in the body frame.

MEASUREMENT MODEL

The QUEST measurement model assumes that the measurement error lays on a plane tangent to
the unit sphere on which the vector measurements lay. It also requires that the two components
of the error have the same variance and are uncorrelated. Both these assumptions were relaxed
in Ref. 23, where a model valid for large field-of-view sensors was developed. The unit vector
measurements are given by:

yi =
1√

1 + a2
i + b2

i



−ai

−bi

1






assuming the focal length is one. The partial derivative of yi with respect to ai ,
[
ai bi

]T is

Ji =
1√

1 + a2
i + b2

i



−1 0
0 −1
0 0


− 1

1 + a2
i + b2

i

yiaT
i .

Hence, the measurement covariance is given by

Ri = JiRFOCAL
i JT

i

where RFOCAL
i is the error covariance associated with ai.

Often the camera measurement can be more conveniently modeled based on the measurement
of two angles α and β along two perpendicular directions12 rather than being based on a and b.
Figure 1 shows the angles α and β. The reconstructed unit vector measurement for each star is

x

z

y

z

Figure 1 Star camera measured angles.

y =
1√

1 + tan2 α + tan2 β




tanα
tanβ

1


 .

Perturbing the angles, it follows that

ŷ =
1√

1 + tan2(α + δα) + tan2(β + δβ)




tan(α + δα)
tan(β + δβ)

1


 .

The vector ŷ can be approximated to first-order as

ŷ ' y + ỹ,



where

ỹ =




1+tan2 β
(1+tan2 α+tan2 β)3/2 − tan α tan β

(1+tan2 α+tan2 β)3/2

− tan α tan β
(1+tan2 α+tan2 β)3/2

1+tan2 α
(1+tan2 α+tan2 β)3/2

− tan α
(1+tan2 α+tan2 β)3/2 − tan β

(1+tan2 α+tan2 β)3/2




[
(1 + tan2 α)δα
(1 + tan2 β)δβ

]
.

It turns out that yz 6= 0 since the field of view is necessary less than 180 degrees. Therefore, it
follows that

ỹ =
1
yz




y2
z + y2

y −yxyy

−yxyy y2
z + y2

x

−yxyz −yyyz




[
(y2

z + y2
x)δα

(y2
z + y2

y)δβ

]

=




y2
z + y2

y −yxyy −yxyz

−yxyy y2
z + y2

x −yyyz

−yxyz −yyyz y2
y + y2

x







y2
z+y2

x
yz

δα
y2

z+y2
y

yz
δβ

0




= −[y×]2




y2
z+y2

x
yz

δα
y2

z+y2
y

yz
δβ

0


 = −[y×]2 U δα,

where

U =




y2
z+y2

x
yz

0

0 y2
z+y2

y

yz

0 0


 , δα =

[
δα
δβ

]
.

Therefore
Ry = [y×]2U E

{
δαδαT

}
UT[y×]2.

Star catalogs usually provide the right ascension ζ and the declination ξ of the star. Therefore the
inertial unit vector pointing to the star is given by

n =
[
cos ζ cos ξ sin ζ cos ξ sin ξ

]T
.

The true azimuth and elevation are unknown, the quantities in the catalog are estimates and contain
errors. The estimate of the inertial vector pointing to the star is given by

n̂ = n + ñ.

To first order, the error ñ is given by

ñ =
∂n
∂ζ

∣∣∣∣
ζ̂

δζ,

where ζ =
[
ζ ξ

]T, and δζ are the star catalog errors. Hence

ñ =



− sin ζ̂ cos ξ̂ − cos ζ̂ sin ξ̂

cos ζ̂ cos ξ̂ sin ζ̂ sin ξ̂

0 cos ξ̂


 δζ = Wδζ,

and
Rn = W E

{
δζ δζT

}
WT.



INTRODUCTION OF A PREPROCESSOR IN THE KALMAN FILTER

In this section two approaches to the decentralized attitude navigation problem will be analyzed.
The architectures investigated here are filter/sub-filter as shown in Figure 2. In this work we are
concerned with a decentralized scheme fin which the sub-filter passes only its estimates of the state
end of the uncertainty. Optimal decentralized schemes exist for which the sub-filter needs also to
provide additional quantities, see for example Refs. 24 and 25.

Figure 2 Main filter with raw measurements and a filtered state as inputs.

Uncorrelated Sub-filter

Assume the state vector is partitioned into two components as

xT =
[
xT

1 xT
2

]
.

Consider that the entire vector measurement can be also partitioned into two components. Vector
y2 is independent of x1, and y1 is a function of the entire state x. With the measurement partitioned
as

yT =
[
yT

1 yT
2

]

y1 = H1 x + ν1, y2 = H2 x2 + ν2.

At each time tk when the measurement is available, we have the measurement model

yk = Hkxk + νk

Hk =
[
H1,k

H̃2,k

]
,

where
H̃2,k =

[
O H2,k

]
.

Vector νk is zero mean white noise with

E
{
νk νT

j

}
= Rk δkj ∀k, j.



Superscript − denotes the a priori value, i.e. the value before the measurement is processed. Su-
perscript + denotes the a posteriori value, i.e. the value after the measurement is processed.

The derivation is similar to that used to obtain the recursive Kalman filter from batch estimation.
The optimal global information filter update is25

(P+)−1 = (P−)−1 + HTR−1H (14)

x̂+ = P+
[
(P−)−1x̂− + HTR−1y

]
, (15)

matrix P being the estimation error covariance. Assuming ν1 and ν2 are uncorrelated from each
other, i.e.

R =
[
R1 O
O R2

]
,

Eqs. (14)-(15) become

(P+)−1 = (P−)−1 + HT
1 R−1

1 H1 + H̃T
2 R−1

2 H̃2 (16)

x̂+ = P+
[
(P−)−1x̂− + HT

1 R−1
1 y1 + H̃T

2 R−1
2 y2

]
. (17)

We consider the case in which the sub-filter provides estimates based only on the current measure-
ment and not on previous ones, i.e. P−

sf = ∞. Then the sub-filter update is given by

P−1
sf = HT

2 R−1
2 H2 (18)

x̂sf = Psf HT
2 R−1

2 y2. (19)

Using Eqs. (18)–(19), the update of the central filter given by Eqs. (16)–(17), can be rewritten as

(P+)−1 = (P−)−1 + HT
1 R−1

1 H1 +
[
O I

]T P−1
sf

[
O I

]

x̂+ = P+
{

(P−)−1x̂− + HT
1 R−1

1 y1 +
[
O I

]T P−1
sf x̂sf

}
.

Therefore, treating the sub-filter as a sensor that measures x2 with covariance P2 will lead to an
optimal linear estimate.

A star-tracker, for example will satisfy all the above assumptions. The stars are practically in-
finitely far, and therefore the unit vector pointing to them is independent of the spacecraft position.
Also star-trackers rely only on the current star measurements to formulate an estimate. Other exam-
ples of sensors that satisfy the above hypothesis are some GPS receivers, and more precisely those
that use a least square solution of at least four pseudo-ranges to estimate position and clock error.
The GPS receivers that contain an IMU and a Kalman filter do not satisfy the above hypothesis.

Like for any Kalman filter application, the optimality does not hold strictly but conditionally to
the linearization assumption. The optimality of the previous section was shown for the linear model.
Because of the absence of a priori information, Eqs. (18) and (19) are the linear least-squares so-
lution. For the nonlinear star-tracker algorithm two solutions are possible. The first is to linearize
the problem, by doing so the decentralization of the extended Kalman filter holds strictly. Our pre-
ferred solution is to substitute the linearized least-squares formulation with the Davenport-q method,
since it is the optimal least-squares solution without any linearization assumptions. Therefore the
single Kalman filter and the decentralized filter implementations are not identical. A similar situa-
tion arises in Ref 19 when the optimality criteria is maximum likelihood. The Kalman filter is the
maximum likelihood estimator under the linearization assumption.



Correlated Sub-Filter and Attitude Sub-Filter Implementation

Generally the measurements processed by a sub-filter may not only depend on its own states. A
magnetometer, for example, measures the local magnetic field. Such a measurement is a function
of the spacecraft position. If the magnetometer measurement was to be processed in a sub-filter im-
plementing Davenport-q algorithm, the estimated quaternion would be a function of the estimated
spacecraft position. If the quaternion estimate obtained through Davenport-q algorithm was pro-
cessed by the navigation filter as a measurement, this measurement would be correlated to the filter
state, and such correlation should be taken into account. Figure 3 shows the architecture of this
filter/sub-filter case.

Figure 3 Main filter with raw measurements and a filtered state as inputs.

Using the previous notation, y2 is now a function of the entire state vector, not of just x2. This
scheme will not be optimal because y2 contains information on x1 that will not be used by the sub-
filter. However, it can be made sub-optimal by correctly taking into consideration the correlation.
Sub-optimal implies that x̂2 is globally optimal and x̂1 is optimal only given y1 and x̂2. The
measurement y2 is modeled as

y2 = H2x + ν2 = H2,1x1 + H2,2x2 + ν2.

The sub-filter only estimates x2, therefore part of the information is ignored, leading to the non-
optimality of the estimation of x1. The component of the state vector x1 is modeled by the estimate
of x1 from the central filter. The uncertainty associated with the estimate x̂1 needs to be added to
the measurement noise in order for the sub-filter to be optimal. The estimated measurement is given
by

ŷ2 = H2,1x̂1 + H2,2x̂2.

The sub-filter only estimates xsf = x2. The residual is given by

ε = y2 − ŷ2 = H2,2esf + H2,1e1 + ν2.

Effectively then, the measurement noise of the sub-filter is not only ν2, but H2,1e1 + ν2, where e1

is the estimation error of the central filter associated with x1. It is assumed that the sub-filter does



not use an a priori estimate, i.e. P−
sf = ∞. Using the information formulation , we find that

Psf =
[
HT

2,2

(
H2,1P11HT

2,1 + R2

)−1
H2,2

]−1
(20)

Ksf = Psf HT
2,2

(
H2,1P11HT

2,1 + R2

)−1
(21)

x̂sf = Kε, (22)

where P11 is the central filter error covariance associated with x̂1. Since the central filter estimation
error of x1 affects the estimate of the sub-filter, there will be a correlation between the sub-filter
estimate x̂sf and the central filter estimate x̂1. The central filter is not going to recover optimality,
however sub-optimality can be achieved through the use of the correlation

Ck = E
{
e−k (esf ,k)T

}
=

[
E

{
e−1,k (esf ,k)T

}

O

]
.

The central filter update equations are

P+
k = (I−KkHk)P−

k (I−KkHk)
T + KkRkKT

k − (I−KkHk) CkKT
k

−KkCT
k (I−KkHk)

T (23)

Kk =
(
HkP−

k + CT
k

) (
HkP−

k HT
k + Rk + HkCk + CT

k HT
k

)−1
(24)

x̂+
k = x̂−k + Kk

(
x̂sf ,k −Hkx̂−k

)
(25)

Hk =
[
O I

]
. (26)

A spacecraft implementing an attitude sub-filter would use this algorithm when some of the in-
ertial reference vectors ni are functions of position, such as the magnetometer and horizon sensor.
In this attitude sub-filter example, the sub-filter implements Davenport’s algorithm to estimate the
attitude from the vector measurements. Therefore Eqs. (20)–(22) are not used, but instead are re-
placed by Eqs. (5) and (10). To compute the inertial reference vectors ni, the main filter passes to
the sub-filter the position estimate and the position covariance. The sub-filter outputs the quaternion
estimate, together with its covariance and the cross-covariance between the sub-filter quaternion
estimate and position. The cross-covariance Prθ is calculated with Eq. (13). The state vector of the
central filter is given by

xT =
[
rT vT δαT

]
,

the measurement is given by the sub-filter’s quaternion estimate

ȳ = ˆ̄qsf .

The central filter uses Eqs. (23)–(26) to update the state, the only difference is that replaces the
additive residual x̂sf −Hx̂− with twice the vector part of the multiplicative residual δȳ

δȳ = ˆ̄qsf ⊗ (ˆ̄q−)−1.

The correlation C between the measurement and the state is given by

C =
[

Prθ

O6×3

]
.



LUNAR DESCENT TO LANDING NAVIGATION

The technique previously developed will be applied to a problem of much current interest: lunar
descent to landing navigation. The scenario considered here begins after the conclusion of the
orbital phase when the descent trajectory begins. The descent trajectory is thrust-coast-thrust. The
propulsion system initiates the descent, followed be a no thrust phase. When a predeterminate
altitude is reached, the propulsion system will be employed to land the spacecraft. The available
sensors are an altimeter, a velocimeter, together with a star camera and a strapdown IMU. The
altimeter provides a measurement of altitude along the local vertical, and the velocimter measures
relative velocity with respect to Moon surface. The models for these sensors, together with the true
trajectory, are those used in Ref. 26. Figures 4 and 5 show the true trajectory. Figure 6 shows the
measurement times for each external sensor. The IMU is providing measurements at 40 Hertz.

Figure 4 Groundtrack of lunar descent to landing trajectory. Green dot is the starting
point, red dot the end point.
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Figure 5 Altitude of lunar descent to landing trajectory..
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Figure 6 Times for external measurements.

Extended Kalman Filter

This section introduces the Kalman filter used to process the altimeter, velocimeter, and gyro
measurements, together with the quaternion “measurement” provided by the star camera. The ac-
celerometer is dead-reckoned and used to propagate the state vector.

The state propagation consists of numerically integrating the model

d

dt



r̂
v̂
ˆ̄q


 =




v̂
g(r̂) + T(ˆ̄q)Tam

1
2 ω̄m ⊗ ˆ̄q




where ω̄m is a pure quaternion with vector component ωm, vectors ωm and am are the IMU mea-
surements. The components of the estimation error are defined as

er , r− r̂, ev , v − v̂, eθ , 2δq,

where δq is the vector component of δq̄ , q̄⊗ ˆ̄q−1. The first-order approximation of the evolution
of the velocity and attitude components of the error is

ėv = G(r̂)er + T(ˆ̄q)T[eθ×]am −T(ˆ̄q)Tηa + νg

ėθ = −[ωm×]eθ + ηω,

where ηa and ηω are the IMU errors, and νg is the difference between the true and the modeled
gravitational acceleration. The evolution of the estimation error can then be written in compact
matrix form

ė = Fe + ν,

where

F ,



O3×3 I3×3 O3×3

G(r̂) O3×3 −T(ˆ̄q)T[am×]
O3×3 O3×3 −[ωm×]


 ,



and

ν =




0
−T(ˆ̄q)Tηa + νg

ηω


 E {ν(t)} = 0 E

{
ν(t) νT(τ)

}
= Q(t)δ(t− τ).

Between measurements, the covariance propagation is given by the continuous-time Riccati equa-
tion

Ṗ(t) = F(x̂)P(t) + P(t)F(x̂)T + Q(t).

where P(t) = E
{
e eT

}
, and assuming the initial estimation error is zero-mean.

The state is updated using altimeter, velocimeter and the quaternion star camera as measurements.
The star tracker provides an estimate of the quaternion ˆ̄qst and the associated estimation uncertainty
given by the small angle covariance Pst. Since the star tracker formulates its estimates based only
on the current measurements, it was shown that is optimal to treat the star tracker as a measurement
and its covariance as measurement noise. However, deviations rather than quaternions are used. The
processed measurement is twice the vector part of the deviation between the “measured” quaternion
ˆ̄qst and the nominal quaternion ˆ̄q− at time tk. The deviation is given by

ȳst,k = ˆ̄qst,k ⊗ (ˆ̄q−k )−1.

The estimated measurement is zero, therefore the star tracker residual εst,k

εst,k = 2yst,k.

The state vector for update purposes is given by

xT
k =

[
r̂T
k v̂T

k δθ̂
T

k

]
, δθ̂

−
k = 0.

The star tracker measurement mapping matrix is,

Hst,k =
[
O3×6 I3×3

]
.

If other measurements are available at time tk, they would be included as

εk =
[

εst,k

εothers,k

]
Hk =

[
Hst,k

Hothers,k

]
Rk =

[
Pst,k O
O Rothers,k

]
,

assuming the other measurements are uncorrelated to the star camera’s.

The residuals covariance is given by

Wk = HkP−
k HT

k + Rk,

the standard Kalman filter update is

Kk = PkHT
k W−1

k , x̂+
k = x̂−k + Kkεk, P+

k = P−
k −KkWkKT

k .

The quaternion update is

ˆ̄q+ =

[
1
2δθ̂

+

1

]
⊗ ˆ̄q−,

followed by the normalization to restore the unit norm constraint.



Simulation Results

In this section the results of one hundred runs will be presented. The analysis shows that statistical
properties of the estimation error are appropriately represented by the filter covariance. Table 1
shows the standard deviations of the measurement errors generated in the simulation.

Accelerometer Noise 10 [µg
√

s]
Accelerometer Bias 1 [µg]
Accelerometer Scale Factor 175 [ppm]
Accelerometer Misalignment 5 [arcsec]
Gyro Noise 0.01 [deg/

√
hr]

Gyro Bias 0.001 [deg/hr]
Gyro Scale Factor 5 [ppm]
Gyro Misalignment 5 [arcsec]
Altimeter Noise 10 [m]
Altimeter Bias 0.5 [m]
Velocimeter Noise 0.5 [m/s]
Velocimeter Bias 0.05 [m/s]
Star Camera Noise 50 [arcsec]

Table 1 Random error standard deviation values

Figures 7–9 plot the filter covariance (black line) and the sample covariance from the runs (blue
line). Each run implements different initial estimation error and measurement errors. Figure 10
shows the Monte Carlo analysis of the star camera estimate and covariance. The filter covariance
clearly shows the time at which the altimeter starts providing measurements (approximately 3200
seconds), and the time at which the velocimeter start providing measurements (approximately 3800
seconds). It can be also noticed that the y component of position is not very observable. This fact is
due to its orientation perpendicular to the trajectory. In order to make the y component of position
more observable, it is necessary to introduce an additional measurement related to position, like a
range measurement (in an appropriate direction) or a full three dimensional position measurement
deduced from a terrain camera.

CONCLUSIONS

A study of precision navigation to support landing on the Moon was performed. Particular at-
tention was given to the inclusion of the attitude estimation into the Kalman filter. The processing
of attitude estimates as if they were raw measurements was analyzed, circumstances in which this
approach leads to optimal versus sub-optimal estimates were presented. It was found that a star
camera can be optimally fused into a Kalman filter without requiring any particular distribution of
the measurement noise. As in all extended Kalman filter applications, the optimality holds for the
linearized system. The classical Davenport q-algorithm was discussed. This algorithm is to be used
by the star camera to produce its estimate. In order to be optimally coupled with the Kalman filter,
the star camera needs to provide together with the estimate of the quaternion, an error covariance.
A new covariance formulation was introduced and utilized in the study.



0 500 1000 1500 2000 2500 3000 3500 4000
−1

−0.5

0

0.5

1
x 10

4

0 500 1000 1500 2000 2500 3000 3500 4000
−1000

−500

0

500

1000

in
er

ti
al

 p
o

st
it

io
n

 e
rr

o
r 

(m
)

0 500 1000 1500 2000 2500 3000 3500 4000
−4000

−2000

0

2000

4000

time (s)

Figure 7 Monte Carlo analysis of position estimation error.
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Figure 8 Monte Carlo analysis of velocity estimation error.
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