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Precision Entry Navigation Dead-Reckoning Error Analysis:

Theoretical Foundations of the Discrete-Time Case

Renato Zanetti∗ and Robert H. Bishop†

A linear covariance analysis strategy is developed for application to hypersonic

atmospheric planetary entry where the only available navigation data is provided

by strapdown inertial measurement units. The navigation scenario considered

encompasses the so-called dead-reckoning navigation, wherein the inertial mea-

surement unit provides measures of the change in velocity and the change in

attitude at discrete times. These measurements are used to propagate an initial

state estimate forward in time. The question that is addressed is quantifying

the accuracy of the state estimate using dead-reckoning during a typical Mars

atmospheric entry. The inertial measurement data is assumed to be corrupted

with random noise, random constant biases, misalignment errors, and scale fac-

tor errors. The location of the inertial measurement unit with respect to the

spacecraft’s center of mass is also considered to contain uncertainty.

INTRODUCTION

The work presented here is a significant expansion of the work presented by Crain and Bishop [1].
In [1], the authors considered continuous-time inertial measurement unit (IMU) measurements and
modeled the attitude errors using additive quaternion errors. In this paper, the more realistic
situation of discrete-time IMU measurements are considered and the attitude errors are modeled
using multiplicative quaternion error methods.

During precision entry, descent, and landing (EDL) at Mars, various classes of measurements
become available. Strapdown IMU data (measurements of non-gravitational acceleration and angular
velocity) are always available during EDL. Other measurements typically become available after heat
shield jettison. External measurements include radar altimetry, LIDAR, and optical and radiometric
observations. The lack of external measurements in the upper atmosphere is the main difficulty in
achieving precision landing on Mars. In the upper atmosphere, the guidance depends on IMU
dead-reckoning navigation. Once the heat shield is jettisoned and external measurements become
available, the navigation uncertainty is greatly reduced, but the the maneuverability of the vehicle
is compromised by the hypersonic parachute. After the parachutes are jettisoned, the altimeter and
LIDAR become available, and guidance can actively maneuver the vehicle. However, there may not
be enough time to make large corrections and achieve pinpoint landing.

The goal of this investigation is to provide the navigated state and an accurate representation of
its uncertainty during the entry phase in which IMU measurements are the only data available. The
navigation architecture uses the conventional approach of propagating the estimated state using the
IMU data, known as dead-reckoning. This work addresses the problems of correctly incorporating
various sources of IMU errors into the estimated error covariance. Correct knowledge of estimated
state uncertainty is important to GNC because active guidance acts on the navigated state.

The IMU unit contains both a gyro and an accelerometer package. The gyros provide measure-
ments of the integral of the relative angular velocity of the IMU case reference frame relative to the
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inertial reference frame, denoted by ∆θc. The IMU is installed at a location offset from the center
of mass. This relative position is not known perfectly and is subject to change as the spacecraft’s
center of mass changes due to fuel consumption, heat shield jettison, and parachute deployment and
jettison. The offset of the IMU from the center of mass is accounted for in this investigation, and
its uncertainty is included in the estimation error covariance. The navigation state is comprised of
position and velocity of the IMU. This approach gives better performance than estimating position
and velocity of the vehicle center of mass since the gravitational acceleration is less sensitive to small
errors in position than is the non-gravitational acceleration.

The effects of IMU biases are included in the covariance analysis. The most straightforward
technique to include biases in the Kalman filter is to augment the state vector and estimate the
biases. In an attempt to decouple the bias estimation from the state estimation, Friedland estimated
the state as though the bias was not present, and then added the contribution of the bias. Friedland
showed [2] that this approach is equivalent to augmenting the state vector. This technique, known
as two-stage Kalman filter or separate-bias Kalman estimation, was then extended to incorporate a
walk in the bias forced by white noise [3]. To account for the bias walk, the process noise covariance
was increased heuristically, and optimality conditions were derived [4, 5]. During the Mars entry
phase, the lack of external measurements prevents the use of these techniques.

In this work, a completely different approach is taken. The effects of the constant random bias
in the Kalman filter are considered as an error and not as a state. This is important, for example,
when the bias is not observable, or when there is not enough information to discern the bias from the
measurements. When this situation arises, the classical approach is to tune the filter such that the
sample covariance obtained through Monte Carlo analysis matches the predicted covariance. The
technique presented here is useful in quantifying the uncertainty due to a random bias in a single
run, which would aid in tuning the filter.

The approach taken is different from that of the consider filter [6, 7]. The consider filter can be
designed to solve the same problem, and the two algorithms, although different, are equivalent. The
next section will introduce the general algorithm to be applied to Mars EDL navigation.

DISCRETE KALMAN FILTER WITH UNCOMPENSATED BIAS

Consider the stochastic system of difference equations

xk+1 = Φkxk + Υkbν + νk,

where νk is process noise assumed to be a zero-mean, white noise sequence with

E {νk} = 0 ∀ k, E
{
νj νT

k

}
= Qk δjk,

where δjk = 1 if j = k, and δjk = 0 otherwise. Unlike the traditional Kalman filter, a random bias
is also considered to be present. The bias has the assumed properties that

E {bν} = 0, E
{
bν bT

ν

}
= Bν > O, E

{
νkb

T
ν

}
= O ∀k.

The shape matrix Υk is deterministic. Since νk and bν are zero-mean, an unbiased estimation of
the state x̂k−1 can be propagated forward in time to obtain an unbiased estimate at time tk

x̂−

k = Φkx̂
+

k .

The estimation error at tk before the measurement update is defined as

e−k , xk − x̂−

k .

At tk, it is assumed that a measurement is available in the form

yk = Hkxk + Λkbη + ηk,
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where

E {ηk} = 0 ∀ k, E
{
ηj ηT

k

}
= Rk δjk, E

{
ηkb

T
η

}
= O,

E {bη} = 0, E
{
bη bT

η

}
= Bη > O E

{
bνb

T
η

}
= O,

E
{
ηjνk

}
= O, E

{
νkb

T
η

}
= O E

{
bηηT

k

}
= O,

for all k, j. The state update is assumed to be the linear update

x̂+

k = x̂−

k + Kk(yk − ŷk), (1)

where
ŷk , Hkx̂k.

The update in Eq. (1) provides an unbiased a posteriori estimate when the a priori estimate is
unbiased. After the update, the estimation error is

e+

k = xk − x̂+

k = xk − x̂−

k − Kk

(
Hkxk + Λkbη + ηk − Hkx̂

−

k

)

= (I − KkHk)e−k − KkΛkbη − Kkηk. (2)

The covariance update is given by

P+

k = (I − KkHk)P−

k (I − KkHk)T + KkΛkBηΛ
T
k KT

k + KkRkK
T
k + (3)

− (I − KkHk) E
{
e−k bT

η

}
ΛT

k KT
k − KkΛk E

{
bη(e−k )T

}
(I − KkHk)T.

assuming ηk and bη are uncorrelated to the initial estimation error (generally a good assumption).
After propagation to the next measurement at time tk+1, the estimation error is

e−k+1
= xk+1 − x̂−

k+1
= Φkxk + Υkbν + νk − Φkx̂

+

k = Φke
+

k + Υkbν + νk. (4)

The covariance propagation is given by

P−

k+1
= ΦkP

+

k ΦT
k + ΥkBΥT

k + Qk + Φk E
{
e+

k bT
ν

}
ΥT

k + Υk E
{
bν(e+

k )T
}
ΦT

k ,

assuming νk and bν are uncorrelated to the initial estimation error (generally a good assumption).

Estimation Error

Substituting Eq. (2) into Eq. (4) yields to the recurrence relation

e−k+1
= Φk

[
(I − Kk Hk) e−k − Kk ηk − Kk Λk bη

]
+ Υkbν + νk.

Forming e−k+1
bT

η and taking the expectation, it follows that

E
{
e−k+1

bT
η

}
= Φk (I − Kk Hk) E

{
e−k bT

η

}
− ΦkKk ΛkBη. (5)

Defining
E

{
e−k bT

η

}
, Mk Bη, (6)

and using Eq. (5), the matrix Mk can be found recursively as

Mk+1 = Φk [(I − KkHk)Mk − KkΛk] .

If, at the initial time, a propagation occurs such that

e−1 = Φ0e0 + Υ0bν + ν0,
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then from Eq. (6)

E
{
e−1 bT

η

}
= O implies that M1 = O, since Bη > O.

Similarly, using Eqs. (2) and (4), it follows that

e+

k+1
= (I − Kk+1Hk+1)

(
Φke

+

k + Υkbν + νk

)
− Kk+1Λk+1bη − Kk+1ηk+1.

Forming e+

k+1
bT

ν and taking the expectation yields

E
{
e+

k+1
bT

ν

}
= (I − Kk+1Hk+1)

[
Φk E

{
e+

k bT
ν

}
+ ΥkBν

]
.

Define
E

{
e+

k bT
ν

}
= LkBν .

Then
E

{
e+

k+1
bT

ν

}
= (I − Kk+1Hk+1) [ΦkLk + Υk]Bν = Lk+1Bν ,

where
Lk+1 = (I − Kk+1Hk+1)(ΦkLk + Υk). (7)

After the first update, we have

e+
1 = (I − K1H1) (Φ0e0 + Υ0bν + ν0) − K1Λ1bη − K1η1.

Computing e+
1 bT

ν and taking the expectation yields

E
{
e+
1 bT

ν

}
= (I − K1H1) Υ0Bν ,

since E
{
e0b

T
ν

}
= O. Therefore, we find that

L1 = (I − K1H1)Υ0,

which can be obtained using the recursion of Eq. (7) for k = 0 with L0 = O.

Optimal Kalman Gain

Substituting Eq. (6) into Eq. (3), after some rearrangement, we obtain

P+

k = P−

k − Kk

(
HkP

−

k + ΛkBηM
T
k

)
−

(
P−

k HT
k + Mk BηΛ

T
k

)
KT

k +

+ Kk

(
HkP

−

k HT
k + Rk + ΛkBηΛ

T
k + HkMk BηΛ

T
k + ΛkBηM

T
k HT

k

)
KT

k .

Taking the derivative of the trace of P+

k with respect to Kk yields

J ′ =
d

dKk

trace(P+

k ) = −
(
HkP

−

k + ΛkBηM
T
k

)T
−

(
P−

k HT
k + Mk BηΛ

T
k

)
+

+ 2Kk

(
HkP

−

k HT
k + Rk + ΛkBηΛ

T
k + HkMk BηΛ

T
k + ΛkBηM

T
k HT

k

)
.

Setting J ′ = O and solving for Kk yields the optimal gain,

Kk =
(
P−

k HT
k + Mk BηΛ

T
k

)
W−1

k .

The matrix Wk is the covariance of the residuals, as is found to be

Wk , E
{
ǫk ǫT

k

}
= E

{
(y − ŷ) (y − ŷ)T

}
=

= HkP
−

k HT
k + Rk + ΛkBηΛ

T
k + HkMk BηΛ

T
k + ΛkBηM

T
k HT

k .

Notice that when the biases are absent, the filter reduces to the standard Kalman filter. It was
assumed that at the initial time a propagation will occur first, and the first update will follow. If
an update occurs at time t0 before the first propagation, the same algorithm can be used by setting

M0 = O, L0 = O.
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MARS ENTRY DYNAMICS MODELING

The dynamic equations in the inertial frame are given by

ṙi = vi

v̇i = g(ri + Ti
cd

c) + Ti
ca

c

q̇ c
i =

1

2

[
ωc

0

]
⊗ qc

i .

The superscript ‘c’ denotes the IMU case frame. The quaternion is defined with the vector component
q first, and scalar component q last

q = [qT q]T.

The quaternion multiplication ⊗ is defined such that quaternions multiply in the same order as
rotation matrices. All superscripts indicating the inertial or case frame will be dropped since no
confusion can arise because each quantity is consistently expressed in the same frame. The vector r

is the position of the IMU in the inertial frame, v is the velocity of the IMU in the inertial frame, q

is the quaternion expressing the rotation from inertial to case, therefore the rotation matrix from the
inertial frame to the case frame is T , Tc

i = T(q). The vector g is the acceleration due to gravity,
d is the offset between the IMU and the center of mass which is expressed in the case frame. The
vector a is the true non-gravitational acceleration represented in the IMU case frame, and ω is the
relative angular velocity vector of the IMU case frame with respect to the inertial frame expressed
in the case frame.

SENSOR ERROR MODELS

Only the strapdown implementation of the IMU is considered. The IMU’s accelerometers and
gyros produce measurements corrupted by random errors (noise and biases), systematic biases, and
other errors. The simplified dynamics model used for dead-reckoning navigation, minimizes the
contribution of process noise. The two main sources of error are the IMU errors and the accuracy
of the initial state estimate.

Accelerometers

The accelerometer package produces a measure of the spacecraft change in velocity due to non-
gravitational accelerations in the IMU case frame, denoted by ∆v. This measurement is corrupted by
errors due to nonorthogonality and misalignment of the axes, errors due to scale factor uncertainties,
random biases, and noise. The accelerometer error model can be formulated as

∆vtrue,k =

∫ tk

tk−1

a dt

∆vk = (I3×3 + Γa)(I3×3 + Sa)(∆vtrue,k + ba + ξk), (8)

where

Γa ,




0 γaxz

−γaxy

−γayz
0 γayx

γazy
−γazx

0



 , Sa ,




sax

0 0
0 say

0
0 0 saz



 ,

and (γayz
, γazy

, γazx
, γaxz

, γaxy
, γayx

) are nonorthogonality and axes misalignment errors, ba ∈ ℜ3 is
the bias in the accelerometer, (sax

, say
, saz

) are scale factor errors, and ξk ∈ ℜ3 is a white sequence
stochastic process. The nonorthogonality and axes misalignment errors, scale factor errors, and bias
parameters are all modeled as zero-mean random constants. The noise ξk is modeled as zero-mean,
random sequence. If we assume that the various errors are “small,” then to first-order we have

(I3×3 + Γa)(I3×3 + Sa) ≈ I3×3 + Γa + Sa.
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Defining
∆a , Γa + Sa (9)

yields the accelerometer measurement model

∆vk = (I + ∆a)(∆vtrue,k + ba + ξk). (10)

Gyros

The gyro package produces a measure of the spacecraft attitude change, denoted by ∆θk. The
measurement of the angular velocity vector is corrupted by random biases, errors due to scale factor
uncertainties, errors due to nonorthogonality and axes misalignments, and random noise. The gyro
error model can be formulated as

∆θtrue,k =

∫ tk

tk−1

ω dt

∆θk = (I3×3 + Γg)(I3×3 + Sg)(∆θtrue,k + bg + ηk) , (11)

where bg is the gyro bias, Sg is the gyro scale factor matrix, Γg is the gyro nonorthogonality and
axes misalignment matrix, ηk is a white sequence, and where

Sg ,




sgx

0 0
0 sgy

0
0 0 sgz



 , Γg ,




0 γgxz

−γgxy

−γgyz
0 γgyx

γgzy
−γgzx

0



 , (12)

and (γgyz
, γgzy

, γgzx
, γgxz

, γgxy
, γgyx

) are nonorthogonality and axes misalignment errors, bg ∈ ℜ3

is the bias in the gyro, (sgx
, sgy

, sgz
) are scale factor errors, and ηk ∈ ℜ3 is a white sequence.

The nonorthogonality and axes misalignment errors, scale factor errors, and bias parameters are all
modeled as zero-mean random constants. The noise ηk is modeled as a zero-mean, white random
sequence. To first-order, we have

(I3×3 + Sg)(I3×3 + Γg) ≈ I3×3 + Sg + Γg .

Hence, Eq. (11) can be written in the form

∆θk = (I3×3 + ∆g)(∆θtrue,k + bg + ηk), (13)

where ∆g , Sg + Γg.

PROPAGATION

Suppose that we have available IMU measurements of ∆v’s and ∆θ’s. The standard procedure
is to assume a and ω constant over the time step, tk - tk−1, such that

ak ,
∆vk

∆t
, ωk ,

∆θk

∆t
, ∀t ∈ [tk−1, tk].

The quaternion expressing the rotation from inertial to case at time tk−1 is denoted by qk−1. Define
the quaternion ∆q expressing the rotation during one time step as,

∆q̂(t) , q̂(t) ⊗ q̂−1

k−1
, t ∈ [tk−1, tk].

Its evolution is given by

∆
˙̂
q(t) =

˙̂
q(t) ⊗ q̂

−1

k−1 =
1

2
Ω(ωk)∆q(t), t ∈ [tk−1, tk]. (14)
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Let θ be the rotation vector parametrization of ∆q, using this parametrization and assuming small
θ (i.e. small time step), Eq. (14) becomes

˙̂
θ(t) = ωk − ωk × θ̂(t), t ∈ [tk−1, tk], θ̂(tk−1) = 0. (15)

The solution of Eq. (15) is

θ̂(t) = ωk(t − tk−1),

therefore the discrete quaternion update is given by

q̂k = q(∆θk) ⊗ q̂k−1,

where

q(∆θk) =

[
sin

(
1

2
‖∆θk‖

)
· ∆θk

/
‖∆θk‖

cos( 1

2
‖∆θk‖)

]
.

the estimate of the velocity evolves as

˙̂v(t) = g(r̂ + T̂(t)Td̂) + T̂(t)Tak, t ∈ [tk−1, tk], (16)

The estimate of the rotation matrix is

T̂(t)T = T
(
q̂(t)

)T
= T( q̂k−1)

T T(∆q̂(t) )T, t ∈ [tk−1, tk],

to first order
∆T(t) , T(∆q̂(t) ) ≃ I3×3 − [θ̂(t)×], t ∈ [tk−1, tk].

We assume that

ĝ(t) , g(r̂(t) + T̂(t)Td̂) ≃ g
(
r̂k−1 + T̂(t)Td̂

)

≃ g
(
r̂k−1 + T̂T

k−1d̂
)

+
∂g(r)

∂r

∣∣∣∣brk−1+
bTT

k−1

bd (
T̂(t)T − T̂k−1

)
d̂

= ĝk−1 + Ĝk−1T̂
T
k−1[θ̂(t)×]d̂, ∀ t ∈ [tk−1, tk],

which implies that we are assuming the acceleration of gravity at the IMU location is constant during
the time step. The contribution of Ĝk−1[θ̂(t)×]d̂ is negligible but will be kept for completeness.
Eq. (16) becomes

˙̂v(t) = ĝk−1 + T̂(t)Tak = ĝk−1 − Ĝk−1T̂
T
k−1[d̂×] θ̂(t) + T̂T

k−1∆T̂(t)ak (17)

≃ ĝk−1 + T̂T
k−1ak −

(
Ĝk−1T̂

T
k−1[d̂×] + T̂T

k−1[ak×]
)

θ̂(t), t ∈ [tk−1, tk],

integrating Eq. (17) we obtain

v̂k = v̂k−1 + T̂T
k−1∆vk + ĝk−1∆t −

1

2

(
Ĝk−1T̂

T
k−1[d̂×] + T̂T

k−1[ak×]
)

∆θk∆t,

integrating Eq. (17) twice yields

r̂k = r̂k−1 + v̂k−1∆t +
1

2
ĝk−1∆t2 +

1

2
T̂T

k−1∆vk∆t −
1

6

(
Ĝk−1T̂

T
k−1[d̂×] + T̂T

k−1[ak×]
)

∆θk∆t2.

In summary the estimated states are obtained solving

r̂k = r̂k−1 + v̂k−1∆t +
1

2
T̂T

k−1

(
I3×3 +

1

3
[∆θk×]

)
∆vk∆t +

1

2

(
ĝk−1 −

1

3
Ĝk−1T̂

T
k−1[d̂×]∆θk

)
∆t2

v̂k = v̂k−1 + T̂T
k−1

(
I3×3 +

1

2
[∆θk×]

)
∆vk +

(
ĝk−1 −

1

2
Ĝk−1T̂

T
k−1[d̂×]∆θk

)
∆t (18)

q̂k = q(∆θk) ⊗ q̂ k−1.
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If it is desired to have a more accurate representation of the gravitational acceleration, the time
step can be divided to use a higher order method, each sub-step will employ an equation similar
to Eq. (18), then all contribution will be added together in a weighted average. Notice that only
the contribution due to gravity will be represented more accurately. Relying solely on the IMU
integral measurements, point-wise in time quantities are not available and discretization errors are
unavoidable. This approach would be preferable if the IMU was providing measurements at a low
frequency; normally the IMU can function at ten Hertz or higher, which makes the assumption of
constant gravitational acceleration in between measurements very reasonable.

Solution of the navigation equations given in Eq. (18) yields the navigated spacecraft position,
velocity, and attitude. The navigation system, also provides a measure of the estimated states
uncertainty. The accuracy of the navigated state depends strongly on knowledge of the initial
spacecraft state. Also, any measurement errors present in ∆θk and ∆vk will corrupt the navigation
solution.

As can be seen in Eq. (18), solution of the position and velocity equations requires knowledge of
the attitude to rotate the IMU accelerations from the case frame to the inertial frame. Therefore the
estimation error of position and velocity is coupled to the attitude error. The attitude estimation
does not rely on the position and velocity estimation, hence can be addressed independently.

Attitude estimation errors

It is assumed that
qk = q(∆θtrue,k) ⊗ qk−1. (19)

This is only an approximation, but the discretization error will be compensated via process noise.
Define the multiplicative attitude error as

δq , q ⊗ q̂−1.

Using Eqs. (18) and (19) yields

δqk = q(∆θtrue,k) ⊗ qk−1 ⊗ q̂−1

k−1
⊗ q(∆θk)−1

= q(∆θtrue,k) ⊗ δqk−1 ⊗ q(∆θk)−1

= q(∆θtrue,k) ⊗ q(∆θk)−1 ⊗ q(∆θk) ⊗ δqk−1 ⊗ q(∆θk)−1,

which can be re-written as

δqk = q(∆θtrue,k) ⊗ q(∆θk)−1 ⊗

([
T(∆θk) 0

0T 1

]
δqk−1

)
. (20)

Assuming small angles, the vector component of the quaternion fully represents the attitude

δq ≃

[
δq

1

]
, q(∆θtrue,k) ⊗ q(∆θk)−1 ≃

[
1

2
(∆θtrue,k − ∆θk)

1

]
.

Employing Eq. (20) and approximating to first-order yields

δqk = T(∆θk) δqk−1 +
1

2
(∆θtrue,k − ∆θk) .

It then follows from Eq. (13) that

δqk = T(∆θk) δqk−1 +
1

2

[
(I + ∆g)

−1∆θk − bg − ξk − ∆θk

]
.

To first-order in ∆g we have
(I + ∆g)

−1 ≃ I − ∆g.
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It then follows that (to first-order)

δqk = T(∆θk) δqk−1 −
1

2
(∆g∆θk + bg + ξk) .

With the given definition of Sg in Eq. (12), we can write

Sg∆θk = D(∆θk)sg,

where

sg ,




sgx

sgy

sgz



 and D(∆θk) ,




∆θkx

0 0
0 ∆θky

0
0 0 ∆θkz



 . (21)

Similarly, we can write
Γg∆θk = N(∆θk)γg , (22)

where

γg ,





γgxy

γgxz

γgyx

γgyz

γgzx

γgzy




and N(∆θk) ,




−∆θkz

∆θky
0 0 0 0

0 0 ∆θkz
−∆θkx

0 0
0 0 0 0 −∆θky

∆θkx



 .

For small angles the rotation vector θ is approximately twice the vector part of the quaternion,
therefore it follows that the estimation error represented with the rotation vector is given by

eθ,k = T(∆θk)eθ,k−1 − D(∆θk)sg − N(∆θk)γg − bg − ξ
k
. (23)

Position and velocity estimation errors

The assumption made in Eq. (19) is equivalent to assuming constant angular velocity in between
measurements. Similarly the gravitational and nongravitational accelerations will be assumed con-
stant during the time step. These assumptions lead to equations for the propagation of the true
state equivalent to Eq. (18) yields

rk = rk−1 + vk−1∆t +
1

2
gk−1∆t2 +

1

2
TT

k−1

(
I3×3 +

1

3
[∆θtrue,k×]

)
∆vtrue,k∆t+

−
1

6
Gk−1T

T
k−1[d×]∆θtrue,k∆t2.

vk = vk−1 + gk−1∆t + TT
k−1

(
I3×3 +

1

2
[∆θtrue,k×]

)
∆vtrue,k −

1

2
Gk−1T

T
k−1[d×]∆θtrue,k∆t.

To compensate for the error introduced by the discretization, process noise will be added in the
Kalman filter. The position and velocity estimation error are defined to be

er , r − r̂ and ev , v − v̂.

Computing er yields

er,k = er,k−1 + ev,k−1∆t +
1

2
(gk−1 − ĝk−1)∆t2 −

1

6
Gk−1T

T
k−1[d×]∆θtrue,k∆t2+

+
1

6
Ĝk−1T̂

T
k−1[d̂×]∆θk∆t2 +

1

2
TT

k−1

(
I3×3 +

1

3
[∆θtrue,k×]

)
(∆vtrue,k) ∆t+

−
1

2
T̂T

k−1

(
I3×3 +

1

3
[∆θk×]

)
∆vk∆t,

9



vector d̂ is the estimate of the distance between the IMU and the center of mass. Expanding gravity,
utilizing a Taylor series and neglecting higher order terms, it follows that

g(r + TTd) − g(r̂ + T̂Td̂) ≃ Ĝ
(
er + TTd − T̂Td̂

)
,

where

Ĝ ,
∂g

∂r

∣∣∣∣
r=br+bTTbd .

Since the quaternion error is defined as δq , q ⊗ q̂ −1 and attitude matrices are multiplied in the
same order as quaternions, then δT = TT̂T. Therefore,

TTd − T̂Td̂ = T̂T δTT(d̂ + ed) − T̂Td̂,

where ed , d − d̂. To first-order it follows that

δTT ≃ I3×3 + [eθ×].

Then
TTd − T̂Td̂ ≃ T̂T[eθ×]d̂ + T̂Ted = −T̂T[d̂×]eθ + T̂T ed.

Similarly
TT∆vtrue − T̂T∆v = T̂T δTT∆vtrue − T̂T∆v.

Hence, to first-order, we have

TT∆vtrue − T̂T∆v ≃ T̂T[eθ×]∆v + T̂T (∆vtrue − ∆v) .

Finally, the position estimation error is obtained to first-order as

er,k = er,k−1 + ev,k−1∆t −
1

2
T̂T

k−1

[(
I3×3 +

1

3
[∆θm,k×]

)
∆vm,k×

]
eθ∆t (24)

+
1

2
Ĝk−1

(
er +

1

3
T̂T[(d̂ × ∆θm,k)×]eθ +

1

3
T̂T [∆θm,k×]ed

)
∆t2+

+
1

2
T̂T

k−1

(
I3×3 +

1

3
[∆θm,k×]

)
(∆vtrue,k − ∆vm,k) ∆t −

1

6
Ûk−1er∆t2+

−
1

6

(
T̂T

k−1[∆vm,k×] + Ĝk−1T̂
T
k−1[d̂×]∆t

)
(∆θtrue,k − ∆θm,k)∆t.

Following a similar pattern, the velocity estimation error is given by

ev,k = ev,k−1 + Ĝk−1er∆t − T̂T
k−1

[(
I3×3 +

1

2
[∆θm,k×]

)
∆vm,k×

]
eθ (25)

+
1

2
Ĝk−1T̂

T

([(
d̂ × ∆θm,k

)
×

]
eθ + [∆θm,k×]ed

)
∆t+

+ T̂T
k−1

(
I3×3 +

1

2
[∆θm,k×]

)
(∆vtrue,k − ∆vm,k) −

1

2
Ûk−1er∆t+

−
1

2

(
T̂T

k−1[∆vm,k×] + Ĝk−1T̂
T
k−1[d̂×]∆t

)
(∆θtrue,k − ∆θm,k).

In Eqs. (24) and (25), the ij-th component of matrix Û is defined as

Û(ij) ,

3∑

l=1

∂2g(i)

∂r(j) ∂r(l)
u(l)

∣∣∣∣∣
r=r̂+T̂Td̂

u , T̂T
k−1[d̂×]∆θm,k.

10



This term arises from the difference in gravitational acceleration between the center of mass and the
IMU location, and can be neglected in most practical applications. Rearranging the terms in the
accelerometer model given in Eq. (10) yields

∆v = (I + ∆a)−1∆vtrue − (ba + ξ)

where, after some manipulation and using the fact that for “small” ∆a we have (I+∆a)−1 ≃ I−∆a,
we obtain

∆vtrue − ∆v = −∆a∆v − (ba + ξ).

The matrix ∆a is comprised of random constants, ba is a random constant vector, ed is a random
constant if we assume ballistic entry, and ξ is a random sequence. Consider the term ∆a∆v more
closely. From the definition of ∆a given in Eq. (9) we have

∆a∆v = (Γa + Sa) ∆v.

With the definitions of Γa and Sa given in Eq. (8), we find that we can also write ∆aak as

∆a∆v = D(∆v)sa + N(∆v)γa,

where definitions equivalent to those of Eqs. (21) and (22) are used.
Collecting the position, velocity, and attitude estimation error equations from Eqs. (23)–(25),

and writing in matrix form yields the stochastic linear matrix difference equation

ek = Φk−1ek−1 + Υk−1bν + Jk−1νk−1, (26)

where

ek ,




er,k

ev,k

eθ,k



 ∈ ℜ9, bν ,





sa

γa

ba

sg

γg

bg

ed





∈ ℜ27, νk−1 ,

[
ξk

ηk

]
∈ ℜ6.

The error state matrix Φk ∈ ℜ9×9 is

Φk−1 =




I3×3 + 1

2
Ĝk−1∆t2 I3×3∆t

Ĝk−1∆t I3×3

O3×3 O3×3

1

2

{
1

3
Ĝk−1T̂

T[(d̂ × ∆θk)×]∆t − T̂T
k−1

[(
I3×3 + 1

3
[∆θk×]

)
∆vk×

]}
∆t

1

2
Ĝk−1T̂

T

[(
d̂ × ∆θk

)
×

]
∆t − T̂T

k−1

[(
I3×3 + 1

2
[∆θk×]

)
∆vk×

]

T(∆θk)



 ,

and the input mapping matrices are Υk ∈ ℜ9×27 and Jk ∈ ℜ9×6 are

Υk−1 =
[
Υa,k−1 Υg,k−1 Υd,k−1

]
,

Υa,k−1 =




− 1

2
T̂T

k−1

(
I3×3 + 1

3
[∆θk×]

) [
D(∆vk) N(∆vk) I3×3

]
∆t

−T̂T
k−1

(
I3×3 + 1

2
[∆θk×]

) [
D(∆vk) N(∆vk) I3×3

]

O3×9





Υg,k−1 =





1

6

(
T̂T

k−1
[∆vk×] + Ĝk−1T̂

T
k−1

[d̂×]∆t
) [

D(∆θk) N(∆θk) I3×3

]
∆t

1

2

(
T̂T

k−1
[∆vk×] + Ĝk−1T̂

T
k−1

[d̂×]∆t
) [

D(∆θk) N(∆θk) I3×3

]

−
[
D(∆θk) N(∆θk) I3×3

]





Υd,k−1 =




1

6
Ĝk−1T̂

T[∆θk×]∆t2

1

2
Ĝk−1T̂

T[∆θk×]∆t

O3×3





11



and

Jk−1 =





− 1

2
T̂T

k−1

(
I3×3 + 1

3
[∆θk×]

)
∆t 1

6

(
T̂T

k−1
[∆vk×] + Ĝk−1T̂

T
k−1

[d̂×]∆t
)

∆t

−T̂T
k−1

(
I3×3 + 1

2
[∆θk×]

)
1

2

(
T̂T

k−1
[∆vk×] + Ĝk−1T̂

T
k−1

[d̂×]∆t
)

O3×3 −I3×3



 .

The components of bν in Eq. (26) are the various random constant errors associated with the IMU,
where it assumed that

E {bν} = 0

and Bν ∈ ℜ27×27 is
Bν , E

{
bνb

T
ν

}
.

The components of νk in Eq. (26) are the non-constant random components of the IMU errors,
where it is assumed that

E {νk} = 0 and E
{
νiν

T
j

}
= Viδij .

It is now left to calculate the covariance evolution from Eq. (26). One way is to augment the
state vector with the bias bν . The solution chosen here is different: the bias will not be included as
a state variable, but directly as a source of error, following the approach previously developed.

Estimation error covariance

If no updates occur, the error covariance in the IMU dead-reckoning case can be computed with
the previously derived equation

P−

k = Φk−1P
+

k−1
ΦT

k−1 + Υk−1BνΥ
T
k−1 + Qk−1 + Φk−1Lk−1BνΥ

T
k−1 + Υk−1BνL

T
k−1Φ

T
k−1

where
Lk = Φk−1Lk−1 + Υk−1, L0 = O,

and
Qk = JkVkJ

T
k .

DEAD RECKONING NAVIGATION

Suppose that the IMU observations, ∆vk and ∆θk are available. Then, dead reckoning navi-
gation, including computing the associated state estimation error covariance, is the process of the
following equations at each time tk a measurement is available:

r̂k = r̂k−1 + v̂k−1∆t +
1

2
T̂T

k−1

(
I3×3 +

1

3
[∆θk×]

)
∆vk∆t +

(
1

2
ĝk−1 −

1

6
Ĝk−1[d̂×]∆θk

)
∆t2

v̂k = v̂k−1 + T̂T
k−1

(
I3×3 +

1

2
[∆θk×]

)
∆vk +

(
ĝk−1 −

1

2
Ĝk−1[d̂×]∆θk

)
∆t

q̂k = q(∆θk) ⊗ q̂ k−1

Lk = Fk−1Lk−1 + Hk−1

Pk = Fk−1Pk−1F
T
k−1 + Jk−1Vk−1J

T
k−1 + Hk−1WHT

k−1 + Fk−1Lk−1WHT
k−1 + Hk−1WLT

k−1F
T
k−1.

where ĝk , g(r̂k + T̂T
k d̂) is the modeled gravity, q̂ =

[
q̂T q̂

]T
and

T̂T
k , T(q̂)T = I3×3 + 2q̂k[q̂k×] + 2[q̂k×]2,

12



Φk ,




I3×3 + 1

2
Ĝk−1∆t2 I3×3∆t

Ĝk−1∆t I3×3

O3×3 O3×3

1

2

{
1

3
Ĝk−1T̂

T[(d̂ × ∆θk)×]∆t − T̂T
k−1

[(
I3×3 + 1

3
[∆θk×]

)
∆vk×

]}
∆t

1

2
Ĝk−1T̂

T

[(
d̂ × ∆θk

)
×

]
∆t − T̂T

k−1

[(
I3×3 + 1

2
[∆θk×]

)
∆vk×

]

T(∆θk)



 ,

Υk−1 ,




− 1

2
T̂T

k−1

(
I3×3 + 1

3
[∆θk×]

) [
D(∆vk) N(∆vk) I3×3

]
∆t

−T̂T
k−1

(
I3×3 + 1

3
[∆θk×]

) [
D(∆vk) N(∆vk) I3×3

]

O3×9

1

6
T̂T

k−1
[∆vk×]

[
D(∆θk) N(∆θk) I3×3

]
∆t

1

2
T̂T

k−1
[∆vk×]

[
D(∆θk) N(∆θk) I3×3

]

−
[
D(∆θk) N(∆θk) I3×3

]

1

2
Ĝk−1T̂

T∆t2

Ĝk−1T̂
T∆t

O3×3



 ,

Jk−1 ,




− 1

2
T̂T

k−1

(
I3×3 + 1

3
[∆θk×]

)
∆t 1

6
T̂T

k−1
[∆vk×]∆t

−T̂T
k−1

(
I3×3 + 1

3
[∆θk×]

)
1

2
T̂T

k−1
[∆vk×]

O3×3 −I3×3



 ,

D(∆v) ,




∆vx 0 0
0 ∆vy 0
0 0 ∆vz



 , N(∆vm) ,




−∆vz ∆vy 0 0 0 0

0 0 ∆vz −∆vx 0 0
0 0 0 0 −∆vy ∆vx



 ,

D(∆θ) ,




∆θx 0 0
0 ∆θy 0
0 0 ∆θz



 , N(∆θ) ,




−∆θz ∆θy 0 0 0 0

0 0 ∆θz −∆θx 0 0
0 0 0 0 −∆θy ∆θx



 ,

with initial conditions

r̂0 = r̂(t0), v̂0 = v̂(t0), q̂0 = q̂(t0), P0 = P(t0), L0 = 0.

The sensor provide discrete measurements ∆vk and ∆θk, and their error models are assumed known
apriori and represented by the matrices Vk and Bν .

SIMULATION RESULTS

The linear covariance formulation thus described has been tested using a trajectory generated
by NASA JSC SORT simulation program. SORT is a high fidelity simulation used to provide the
true states and true measurements. Verification of the formulation is made through use of Monte
Carlo analysis corrupting the measurements and the initial estimate. The IMU measurements are
corrupted with all the sources previously described. By explicitly accounting for all the errors, the
uncertainty due to the random biased can be quantified in a single run, which aids the filter tuning
process. When biases are not directly accounted for, their contribution is introduced by adjusting
the filter covariances. Monte Carlo analysis becomes necessary to show that the covariance obtained
through the “tuning” matches the statistical covariance.

In the section, we compare the sampled estimation error covariance obtained through Monte
Carlo analysis with the linear covariance formulation to demonstrate the performance of the linear
covariance formulation. Figures 1–3 show samples of error evolution in each of the 100 runs (denoted
by “x”), the sample covariance (continuous lines), and the linear covariance formulation evaluated
(dashed lines). Figures 1–2 contain the inertial position and velocity errors in the x, y, and z axis
respectively. Figure 3 contains the three components of the attitude error from estimated body
frame to true body frame, the attitude error is represented as a rotation vector.
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Figure 1: Position estimation error. Error denoted by “x”, sample covariance by continuous line,
and calculated covariance by dashed line.
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Figure 2: Velocity estimation error. Error denoted by “x”, sample covariance by continuous line,
and calculated covariance by dashed line.
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Figure 3: Attitude estimation error. Error denoted by “x”, sample covariance by continuous line,
and calculated covariance by dashed line.
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CONCLUSIONS

In this work, the algorithms for precise dead-reckoning navigation were derived to include the
state estimation error covariance computation. The underlying error equations were linearized and
utilized to develop a formulation of the approximate state estimation error covariance. The corre-
lation of attitude errors with position and velocity errors was explicitly derived. The resulting set
of dead-reckoning relationships can be used as an independent verification of Monte Carlo analysis
during the verification of the entry filter.

Although no external measurements were simulated, the presented algorithm allows for their
easy introduction to update the state.
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