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POSITION ESTIMATION USING IMAGE DERIVATIVE

Daniele Mortari∗, Francesco de Dilectis†, and Renato Zanetti‡

This paper describes an image processing algorithm to process Moon and/or Earth
images. The theory presented is based on the fact that Moon hard edge points are
characterized by the highest values of the image derivative. Outliers are eliminated
by two sequential filters. Moon center and radius are then estimated by nonlinear
least-squares using circular sigmoid functions. The proposed image processing
has been applied and validated using real and synthetic Moon images.

INTRODUCTION

This paper completes a study, previously performed [1], to process cropped Moon and/or Earth
images. The theory presented, which has been applied to real and synthetic Moon images, is based
on the fact that the edge points are characterized by the highest values of the image derivative.

Figure 1. Image Processing General Flowchart

The content of this paper follows the general flowchart given in Fig. 1 which summarizes the main
processes. These steps are explained in details in the following sections. The proposed algorithm
has the following steps:
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• The geometrical illumination conditions and the expected size of the observed Moon are first
computed. These data allow to understand if the Moon is new, crescent, gibbous, or full.

• The image differentiation is obtained with a fourth order Richardson extrapolation. An ana-
lytical surface example is provided quantifying the accuracy gain obtained using Richardson
extrapolation.

• The pixels of the gradient image thus obtained, are sorted in descending mode. This means
that the first set of pixels have high probability of being edge points. Outliers are then elimi-
nated by two sequential filters. The first filter validates an edge pixel based on eigenanalysis
of a small gradient box around the pixel and by investigation of the same box in the original
image. The second filter is an improved version of the RANSAC algorithm.

• The edge point selected are then used to obtain a first estimate of the Moon center and ra-
dius. Taubin best fitting [6] (for circles) and the Fitzgibbons algorithm (for ellipses) are used.
For the current application, the eccentricity of the Earth is so small that the ellipse angular
orientation is a parameter ill defined to estimate (using noisy edge points). In addition, the
presence of the atmosphere and high-altitude clouds make the problem even more inaccurate
for Earth images. Therefore the orientation of the Earth ellipse is assumed known from the
attitude of the camera.

• The final estimation of Moon center and radius is performed by non-linear least-squares using
a circular sigmoid function to describe the Moon edge transition.

ILLUMINATION AND IMAGE PROCESSING PARAMETERS

The image processing software require the computation of some internal parameters. With ref-
erence to Fig. 2, these parameters depend on the Moon size on the imager, pr (cannot be smaller
than a given value) and on the illumination geometry, pi (to define the separation between new and
crescent Moon and between gibbous and full Moon). In this section, based on the geometry (Moon
and Sun positions, J2000) and on a rough estimate of Spacecraft position (J2000), the conditions
when the Moon is geometrically considered new, full, gibbous, or crescent are here derived.

Figure 2. Expected Moon radius (pr) and illumination parameter (pi)

The observed Moon radius (in pixel) in the imager, pr, as well as the illumination size along the
axis of symmetry, pi, dictate the values of important internal driving parameters used in the image
processing code.

2



To estimate the full or new Moon cases, we use the fol-
lowing input data. Let r̂s be Sun-to-Moon rays direction
(unit-vector), ro be (estimated) Spacecraft-to-Moon vector,
and Rm the Moon radius. From these data we can compute

pr =
f Rm

d
√
|ro|2 −R2

m

(pixels) (1)

the illumination angle is then computed as

cosϑ = r̂s · r̂o (2)

from which ϑ is derived. The angle αm can be derived from
the equation

|ro| sinαm = Rm (3) Figure 3. Full/New Moon geometry

Full or new Moon

while the value of the critical distance, rcr, can be obtained by

rcr sinϑ = Rm (4)

Therefore,

if |ro| < rcr and
{
ϑ < π/2 then pi = 2pr (Full Moon)
ϑ > π/2 then pi = 0 (New Moon)

(5)

Gibbous Moon

Gibbous Moon will occur when

|ro| > rcr and ϑ <
π

2
. (6)

When these conditions are satisfied then (see Fig. 4) the pi
illumination parameter can be computed using the following
equations

x2 = |ro|2 +R2
m − 2 |ro|Rm sinϑ → x (7)

and
sinαe

Rm
=

cosϑ

x
→ αe (8)

Figure 4. Gibbous Moon geometry

and
tanαm

pr
=

tanαe

rpe
→ rpe = pr

tanαe

tanαm
(9)

and, therefore,

pi = pr + rpe =

(
1 +

tanαe

tanαm

)
pr (10)
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Crescent Moon will occur when

|ro| > rcr and ϑ >
π

2
. (11)

When these conditions are satisfied then (see Fig. 5) the pi
illumination parameter can be computed using the following
equations

x2 = |ro|2 +R2
m − 2 |ro|Rm sinϑ → x (12)

and
sinαe

Rm
=
− cosϑ

x
→ αe (13) Figure 5. Crescent Moon geometry

Crescent Moon

and
tanαm

pr
=

tanαe

rpe
→ rpe = pr

tanαe

tanαm
(14)

and, therefore,

pi = pr − rpe =

(
1− tanαe

tanαm

)
pr (15)

GRADIENT-BASED IMAGE PROCESSING ALGORITHM

The gradient-based image processing approach is based on the fact that the part of the image with
strongest variation of gray-tones is the Moon observable hard edge. Pixels with highest derivatives
are the most likely to belong to the hard edge. Some of the selected bright gradient pixels do not
belong to the Moon hard edge (outliers). These outliers are eliminated prior to using a best fitting
algorithm to determine the sought geometrical properties.

Image differentiation

The gradient of a discrete function (the imager) is computed by numerical differentiation. In
our case, the gradient is computed using four point central difference with a single Richardson
extrapolation.

The row and column four point central partial differences computed at pixel [r, c] are
g′r(r, c) =

8[I(r + 1, c)− I(r − 1, c)]− [I(r + 2, c)− I(r − 2, c)]

12h

g′c(r, c) =
8[I(r, c+ 1)− I(r, c− 1)]− [I(r, c+ 2)− I(r, c− 2)]

12h

(16)

These derivatives are accurate with order h4, where h is the pixel dimension. The image gradient is
then computed as

g′(r, c) =
√
g′2r (r, c) + g′2c (r, c) (17)
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A single Richardson extrapolation requires computing Eq. (17) one time with step 2h (getting
g′2h) and one time with step h (getting g′h). Therefore, the true derivative can be written as{

g′|true = g′2h + c (2h)4

g′|true = g′h + c h4 (18)

Equating these two equation we obtain

g′h − g′2h = c h4(24 − 1) → c h4 =
1

24 − 1

(
g′h − g′2h

)
(19)

and therefore

g′|true = g′h +
1

24 − 1

(
g′h − g′2h

)
(20)

An example of application of a single Richardson extrapolation is done using the six-hump Camel
back function

f(x, y) =
x2

4

(
4− 21

40
x2 +

x4

8

)
+
xy

4
+ y2

(
y2

4
− 1

)
(21)

Figure 6. Six-hump Camel back function

Fig. 7 shows the accuracy of a single Richardson extrapolation

In this figure the errors with respect to the true analytic values are show for the four cases:

• Top-left: 2-point central differentiation and no Richardson extrapolation;
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Figure 7. Accuracy results for the six-hump Camel back function example

• Top-right: 4-point central differentiation and no Richardson extrapolation;

• Bottom-left: 2-point central differentiation and one Richardson extrapolation;

• Bottom-right: 4-point central differentiation and one Richardson extrapolation;

These results clearly show that: 1) the accuracy provided by 4-point central differentiation and
no Richardson extrapolation is equivalent to that provided by 2-point central differentiation and one
Richardson extrapolation and 2) the 4-point central differentiation and one Richardson extrapolation
provides almost the machine error accuracy. For this reason the 4-point central differentiation and
one Richardson extrapolation is selected to evaluate which are the pixels with greatest gradient.

The image gradient pixels are sorted in descending mode. The pixels with highest gradient values
(edge pixels) are, therefore, concentrated as the first sorted elements. Unfortunately, some high
gradient pixels (outliers) also appear on the Moon body (because of the illumination and local
topology) or external (e.g., some bright stars or visible planets). Therefore, the outliers must be
eliminated. Two sequential approaches have been implemented in order to eliminate the outliers.
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Box-based outliers Identification

The first approach to remove outliers is based on local analysis around the pixels being considered
as potential edge pixels (pixels with the highest gradient values). With reference to Fig. 8, this
approach is based on using a mask size (the figure shows a 7 × 7 mask) whose size depend on the
expected Moon dimension in pixels, pr.

In Fig. 8 the central pixel (in blue) is the one being considered as potential pixel on the Moon
edge. Using all the pixels of the gradient mask as lumped masses, the eigenvalues and eigenvectors
of the inertia matrix are computed. The eigenvalues ratio (min/max) must be lower than a given
threshold (e.g., 0.3), the eigenvector associated to the minimum eigenvalue (red line) in inclined by
an angle γ with respect to the row axis direction. In the figure, the pixels marked as green should
both have high derivative values. The pixels marked as red, on the other hand should have very
different gray tones.

Figure 8. Outliers: first approach

RANSAC for circle and ellipse

A standard algorithm to eliminate outliers is called RANSAC which is an abbreviation for “RAN-
dom SAmple Consensus”. The RANSAC algorithm [2] is an algorithm for robust fitting of models
in the presence of many data outliers. The algorithm is very simple and can be applied ti lines, cir-
cle, ellipse, etc. Given a fitting problem with n data points and unknown m parameters x, estimate
the parameters. For example, for lines m = 2, circles m = 3, and for ellipse m = 5. Starting with
Nmin = n, the classic RANSAC algorithm perform Ntest times the following steps:

1. selects m data points at random;

2. estimates the m parameter, meaning to find the curve passing through these m points;

3. counts how many data items are located at a distance greater than a minimum value dmin from
the curve. They are Nk.

4. if Nk < Nmin then set Nmin = Nk.
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Figure 9. RANSAC flowchart

One of the limitations of the RANSAC algorithm is the random procedure in which the points are
selected. The random selection approach may persistently select outliers. To improve RANSAC, a
technique (originally developed for Pyramid Star-Identification [3]) to select always different triads
with indices continuously changing, has been adopted.

Best fitting for Circle and Ellipse

Once the pixels in the image have been selected, the algorithm must determine the geometric
characteristics of the observed body, that is, radius and center for the Moon, considered a sphere,
and axes and center for the Earth, considered an ellipsoid of revolution. Feature recognition for
conic curves is based essentially on best fitting, which are typically grouped in two categories:

Geometric fit tries to minimize the geometric distance between the data points and the conic. In
general this method is considered the most accurate, however it does not admit closed solution and
requires the use of iterative algorithms.

Algebraic fit tries to minimize the “algebraic distance”, i.e. the implicit conic equation F (x, y) =
0. Many methods based on this approach have been developed and they differ in accuracy, stability
and complexity. They generally give results less accurate than the geometric fit, but on the other
hand have closed form solutions and therefore can be implemented in a much simpler way.

Taubin for circles

Best fitting algorithms based on geometric fit are iterative methods requiring an initial guess, and
their reliability and accuracy is ultimately solely dependent in the iterative scheme implemented.
Typically, the Levenberg-Marquardt scheme is considered the most accurate. However, given the
need to keep the computational load on-board at a minimum, algorithms based on algebraic fit seem
a better choice, even if their accuracy is slightly worse. Among these, the Taubin [6] method is used
and described in further detail.

Given the circle implicit equation as

a (x2 + y2) + b x+ c y + d = a z + b x+ c y + d = 0 (22)
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Method Geometric (G) Initial guess Notes
Algebraic (A) (Y/N)

Levenberg-Marquardt G Y Iterative, considered the “best”
Trust Region G Y Improvement on the L-M
Chernov-Lesort G Y Guaranteed convergence
Kåsa A N Fastest. Biased towards small radii
Pratt A N Improvement on Kåsa
Taubin A N Reduces to a 3× 3 eigenvalue problem
Kukush-Markovsky-van Huffel A N Works best with big dataset

Table 1. Summary of Best fitting algorithms for circle

the Taubin Best Fit minimizes the function:

FT (a, b, c, d) =
n
∑

i(a zi + b xi + c yi + d)2∑
i(4a

2 zi + 4ab xi + 4ac yi + b2 + c2)
(23)

which is equivalent to minimize

FT (a, b, c, d) =
∑
i

(a zi + b xi + c yi + d)2 (24)

subject to the constraint
4a2 z̄ + 4ab x̄+ 4ac ȳ + b2 + c2 = 1 (25)

where the bar sign indicates simple average of the variables.

x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi, and z̄ =
1

n

n∑
i=1

(x2
i + y2

i ) =
1

n

n∑
i=1

zi. (26)

One important property of this method is that the results are independent of the reference frame. By
reformulating this problem in matrix form, it becomes apparent how it is equivalent to a generalized
eigenvalue problem. Indeed, define

A =


a
b
c
d

 , Z =

z1 x1 y1 1
...

...
...

...
zn xn yn 1

 , and M =
1

n
ZTZ =


z̄z̄ z̄x̄ z̄ȳ z̄
z̄x̄ x̄x̄ x̄ȳ x̄
z̄ȳ x̄ȳ ȳȳ ȳ
z̄ x̄ ȳ 1

 , (27)

then the best fitting problem can be rewritten as

AT M A = 0 subject to AT N A = 1, (28)

where

N =


4z̄ 2x̄ 2ȳ 0
2z̄ 1 0 0
2ȳ 0 1 0
0 0 0 0

 . (29)
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Therefore, the optimization problem is equivalent to the following generalized eigenvalue problem:

M A = η N A. (30)

Since for each solution, [A, η]
AT M A = η AT N A = η (31)

then to minimize AT M A the smallest positive eigenvalue should be chosen. Because the matrix N
has rank three, such eigenvalue can be found by explicitly solving the cubic characteristic equation
without the necessity to implement SVD or other more sophisticated algorithms.

Fitzgibbons for ellipse

The problem of best fitting for an ellipse is sensibly more complicated and somewhat less studied
than the circle. Firstly, compared to the three parameters necessary to describe the circle (x, y,R), a
generic ellipse is defined by 5 parameters (x, y, a, b, θ). Moreover, especially for very small values
of the eccentricity, the inclination is very hard to discern and the error associated with it is several
orders of magnitude greater than for the other parameters.

Because the Earth itself, when considered an ellipsoid of revolution, has very small eccentricity,
its planar projections are also almost circular, with ratio between the axes varying between 1 and
0.9966 depending on the latitude of the observer. We thus expect the highest errors in inclination
estimation.

While geometric fit methods exist for the ellipse, they tend to not be very accurate and efficient
due to the complicated formulation required. An non-linear Least Square approach, using the Ja-
cobian of an ellipse in canonical form has been attempted; however, this method has proven itself
not accurate enough for the requirements, and extremely slow to converge, even when advanced
algorithms, like Levenberg-Marquardt are used. On the other hand, several studies ([4],[5]) have
explored and improved the algebraic fit approach, with promising results. In particular, we have
selected the Improved Fitzgibbon method, which reduces to solving a 3× 3 eigenvalue problem.

To show this, consider the implicit equation of a conic:

f(a, b, c, d, e, f) = ax2 + bxy + cy2 + dx+ ey + f = xTa = 0. (32)

For this equation to represent an ellipse, it must be b2 − 4ac < 0, but with proper rescaling of the
coefficient, which does not change the final result, it can be rewritten as b2 − 4ac = 1. Therefore
the problem can be rewritten in matrix form as:

min
a

aTDTDa = min
a

aTSa subject to aTCa = 1. (33)

where

D =

x
2
1 x1y1 y2

1 x1 y1 1
...

...
...

...
...

...
x2
n xnyn y2

n xn yn 1

 , S = DTD, and C =



0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (34)

Solving this optimization problem leads to Sa = λCa subject to aTCa = 1, and the solution is
the eigenvector corresponding to the minimum positive eigenvalue. However, solving the problem
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in this form leads to numerical instability. Instead, it is possible to decouple the quadratic part of
D from the linear part, to obtain a simplified formulation that, together with being stable, has the
added advantage of being of dimension 3 and thus the subsequent eigenanalysis can be performed
without using SVD or similar. Therefore, by defining

D = [D1, D2], where D1 =

x
2
1 x1y1 y2

1
...

...
...

x2
n xnyn y2

n

 , and D2 =

x1 y1 1
...

...
...

xn yn 1

 , (35)

and where

S =

[
S1 S2

ST
2 S3

]
, where


S1 = DT

1D1

S2 = DT
1D2

S3 = DT
2D2

and C1 =

0 0 2
0 −1 0
2 0 0

 . (36)

The final system of equation assumes the form:

Ma1 = C−1
1 (S1 − S2S

T
3S2)a1 = λmin a1 where a1 =


a
b
c

 (37)

and

a2 =


d
e
f

 = −ST
3S2 a1. (38)

This version of the Fitzgibbon algorithm has been implemented with an explicit cubic solver for the
characteristic equation.

NUMERICAL TESTS

To support the capability of the developed image processing code, three numerical examples of
partially observed Moon are here presented. All these tests have been performed with no infor-
mation about time, camera data, and observer, Moon, and Sun positions. The image derivative is
obtained using the 4-point central approach with no Richardson extrapolation. These information
clearly help to define the best values of the internal parameters. Since this help is missing, the
internal parameters have been adopted with same values in all three tests. These values are:

1. Maximum number of highest derivatives selected: N = 1500;

2. Box-based outliers elimination: box size = 21× 21;

3. Box-based outliers elimination: derivative ratio > 0.6;

4. Box-based outliers elimination: corner ratio < 0.3;

5. Box-based outliers elimination: eigenvalue ratio < 0.3;

6. RANSAC: minimum distance dmin = 4 pixels;

7. RANSAC: number of tests = 100.
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Example #1: Real image, four-times cropped

The original image of example #1, shown in Fig. 10, was intentionally cropped from a real image
(taken from Earth) to validate the capability of the software to face a multiple cropped Moon images.
Four times cropped is the also the maximum number of cropped segments possible. The four figures
of Fig. 10 show the four main phases of the image processing. Once the image differentiation has
been computed, the first 1,490 points with highest derivatives have been selected. This number
differs from N = 1500 because the image is small and the number of points selected is also a
function of the total number of pixels (N = 1500 is also the maximum number).

Figure 10. Example #1: Original image
Figure 11. Example #1: Image processing phases

The box-based outliers elimination approach discarded 375 points based on the results shown
in Fig. 12 while RANSAC eliminated additional 5 points. The resulting points are shown in the
bottom right figure of Fig. 11 using blue markers.

The bottom right figure of Fig. 11 shows the results obtained by Taubin fitting approach to
estimate the circle parameters (Moon center and radius). The maximum distance from the estimated
circle (worst residual) of the selected points was 2.9 pixels. The Taubin estimation gives a Moon
center located at row 185.56 and column 187.34 and radius 218.03. Using this estimate, the set of
points shown by red and blue markers in Fig. 13 over of Moon edge have been selected. These
points are then used by CSF-LS to perform the nonlinear least-square estimation of Moon center
and radius using circular sigmoid function. The new estimate implies a variation of −0.7, −0.5,
and 0.4 pixels for row and column center coordinates and for radius, respectively.
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Figure 12. Box-based outliers statistics Figure 13. Example #1: CSF-LS final estimation
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Example #2: Synthetic image cropped

In the second example the test image is a synthetically generated image. All the relevant data and
results are shown in Figs. 14, 15, and 16.

Figure 14. Image convolution (3× 3 mask)

Figure 15. Example #2: Image processing phases

Figure 16. Example #2: CSF-LS final estimation

14



Example #3: Real image with center far outside the imager

Figure 17. Example #3: Original image
Figure 18. Example #3: Image processing phases

ERROR ANALYSIS

This section is dedicated to the error analysis associated to the following sources:

1. Estimated position error. This analysis quantifies how the error in the measured Moon
radius (in pixel) affects the Spacecraft-to-Moon distance computation (in km).

2. Estimated attitude error. This analysis quantifies how the error in the camera attitude
knowledge (angle between quaternion) affects the Spacecraft-to-Moon direction (unit-vector).

3. Image processing errors. This Montecarlo analysis shows the distribution of the Moon ra-
dius and center estimated by the image processing software when the image is perturbed by
Gaussian noise. This is done in the three cases of crescent, gibbous, and full Moon illumina-
tion.

Position and attitude uncertainty propagation

This section investigates the error in the Moon estimated radius because of the position esti-
mation error. That is, how the Spacecraft position estimate affects the measurement of the Moon
radius in the imager. It also investigates the error in the Moon center direction because of the atti-
tude estimation error. That is, since the Spacecraft position estimate requires the evaluation of the
Spacecraft-to-Moon vector in J2000 while it is measured in the camera reference frame, how the
camera to J2000 change of coordinate affect the Spacecraft-to-Moon direction?
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Figure 19. Example #3: CSF-LS final estimation

Let us consider the Moon radius (in pixel) uncertainty first. Moon radius is directly related to the
Spacecraft-to-Moon distance. The Spacecraft-to-Moon vector is rom = rm − r where rm and r
are the Moon and Spacecraft position vectors in J2000, respectively. Vector rm is simply derived
from time while the Spacecraft position vector, r, it can be considered a random vector variable with
mean r̄ and standard deviation σr, that is, r ∼ N (r̄, σrû), where û is a random unit-vector variable
uniformly distributed in the unit-radius sphere. Neglecting the ephemeris errors, the uncertainty in
the Spacecraft vector position coincides with the uncertainty in the Spacecraft-to-Moon distance,
σD = σr.

The Moon radius in pixels in the imager is provided by

r =
f

d

Rm√
D2 −R2

m

(39)

where d is the pixel dimension (in the same unit of the focal length, f ), Rm = 1, 737.5 km is
the Moon radius, and D is the Spacecraft-to-Moon distance. This equation allows us to derive the
uncertainty in the Moon radius in the imager

σr =

∣∣∣∣ ∂r∂D
∣∣∣∣
r̄

σD =
f DRm

d (D2 −R2
m)3/2

σr (40)
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The inverse of Eq. (41)

σD =
d (D2 −R2

m)3/2

f DRm
σr (41)

provides an important information about the accuracy required by the radius estimation. This equa-
tion tells you how the radius estimate accuracy is affecting the Spacecraft-to-Moon vector length,
and, consequently, how this estimate is affecting the estimation of the Spacecraft position.

Figure 20. Calculated Moon distance error as a function of radius determination error

Equation (41) has been plotted in Fig. 20 as a function of the Moon radius error and for four
values of the Moon distance, D = 50,000 km, D = 150,000 km, D = 250,000 km, and D =
350,00 km.

The Moon direction uncertainty (in pixel) is caused by the uncertainty in the attitude knowledge.
Consider the attitude q ∼ N (q̄, 2σqû) with mean q̄ and standard deviation 2σq. Now the displace-

ment with respect to the camera optical axis is c =
f

d
tanϑ, where ϑ is the angle between estimated

Moon center and camer optical axis. Therefore, the radial uncertainty in the Moon center direction
is provided by

σc =
f

d

∣∣∣∣ 1

cos2 ϑ

∣∣∣∣
q̄

σq (42)
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Image processing error

Image processing error quantification requires performing statistics using a substantial set of
images with known truth data. Since no such ideal database is currently available, the analysis
of the resulting estimated parameters (Moon radius and center) dispersion is performed by adding
Gaussian noise to the same image. The Moon illumination scenario plays here a key role since
when the Moon is fully illuminated the number of data (pixels) used to perform the estimation will
be twice as much as in the partial illumination case (under the same other conditions: distance to
the Moon and selected camera). For this reason two scenarios have been considered:

1. Partially illuminated Moon (results provided in Fig. 21)

2. Full illuminated Moon (results provided in Fig. 22)

Figure 21. Image processing error results: partial illumination case

The results of the tests done using partial illumination Moon are shown in Fig. 21. The image
selected is real and it was taken on March 6, 2013 at 05:24:30 using a focal length f = 100 mm. The
statistics of the results obtained in 1,000 tests by adding Gaussian noise with zero-mean value and
standard deviation σ = 10 gray tone are given. The code estimates the Moon radius and center (row
and column) by least-squares using circular sigmoid function (CSF-LS). The results show the three
parameters estimated as unbiased and with a maximum error of the order of 0.2 pixels (with respect
to the original picture). The histogram of the number of iterations required by the least-squares to
converge shows an average of 8 iterations. The central-upper plot in Fig. 21 shows the ellipsoid
distribution of the Moon center error due to the fact that the estimation uses just data on one side of
the Moon, on the illuminated part.
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Figure 22. Image processing error results: full illumination case

The results of the tests done using full illuminated Moon are shown in Fig. 22. Also in this case
the image is real and was taken in Houston on February 25, 2013 at 22:33:00 CDT using a focal
length f = 105 mm. The statistics of the results obtained in 1,000 tests by adding Gaussian noise
with zero-mean value and standard deviation σ = 10 gray tone are given. The code estimates the
Moon radius and center (row and column) by least-squares using circular sigmoid function (CSF-
LS). The results show the three parameters estimated as unbiased and with a maximum error of the
order of 0.01 pixels, one order magnitude more accurate than what obtained in the partial illuminated
case. The histogram of the number of iterations required by the least-squares to converge shows an
average of 3 iterations. The central-upper plot in Fig. 21 shows the unbiased Gaussian distribution
of the Moon center error. These more accurate results are due to the fact that the estimation uses
data all around the Moon edge.

CONCLUSIONS

This paper presents an image processing algorithm capable of determining the apparent location
of the Earth or moon and its apparent diameter. This information can then be used for autonomous
onboard trajectory determination in cislunar space. Tow method of removing potential outliers are
introduced in order to increase the algorithm robustness. Preliminary analysis of the algorithm’s
performance is studied via processing both real and synthetic lunar images.
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