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QUATERA: THE QUATERNION REGRESSION ALGORITHM

Marcelino M. de Almeida*, Daniele Mortari†Renato Zanetti‡, Maruthi Akella§

This work proposes a batch solution to the problem of estimating fixed angular velocity us-
ing orientation measurements. Provided that the angular velocity remains constant, we show
that the orientation quaternion belongs to a constant plane of rotation as time evolves. Moti-
vated by this fundamental property, we are able to determine the angular velocity’s direction
by estimating the quaternion plane of rotation. Under the small angle assumption on the
attitude measurement noise, the plane of rotation is estimated by minimizing a constrained
Total Least Squares cost function, and our algorithm produces a unique optimizing solution
through a batch approach (no need for iterations). The angular velocity magnitude is esti-
mated by projecting the measured quaternions onto the estimated plane of rotation, and then
computing the least squares evolution of the quaternion angle in the plane. We derive certain
important statistical properties of the problem, and draw parallels to the relatively straight-
forward problem of estimating constant translational velocity from position measurements.
We also perform a Monte Carlo analysis of the proposed algorithm, validating our method.

INTRODUCTION

This paper presents a batch solution to the problem of angular velocity estimation using a time-sequence
of orientation measurements. Our approach is motivated by the constant translational velocity estimation
problem, whose solution is well known and has well-understood statistical properties [6]. Surprisingly, the
rotational counterpart is significantly more challenging and has not yet been solved in a batch sense (to the
best of our knowledge). Based on reasonable assumptions for the quaternion noise measurement model, we
employ a Total Least Squares (TLS) cost function to derive a closed-form solution of the constant angular
velocity estimation problem without the need to use iterative algorithms with no closed form solution.

The problem of estimating the angular velocity under pure spin is a very specialized case to the general
problem of estimating the angular velocity for a tumbling body. However, the understanding of the pure
spin problem aids solving the generalized case assuming that the tumbling motion can be approximated to
pure spin throughout a sufficiently short-duration finite sequence of measurements. This can be useful when
estimating the angular velocity of a non-cooperative target whose inertia properties and external torques are
unknown.

The lack of precise knowledge of rigid-body’s inertia matrix and torque vector also poses a major challenge
to standard angular velocity estimation techniques. Many of the existing angular velocity estimators [26, 22]
rely on the knowledge of the target’s specific inertia and torque parameters. An exception can be made for
the derivative approach described in Ref. [4], but as the author acknowledges, the angular velocity estimator
can produce considerable error due to the presence of measurement noise. In Ref. [5], the authors present
the Pseudolinear Kalman Filter (PSELIKA), which does not depend on knowledge of inertia matrix or input
torques. However, PSELIKA is developed with the goal of “simplicity rather than accuracy” [5], serving as a
relatively coarse angular velocity estimator for control loop damping purposes.

*PhD Candidate, Dept. of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin. email:
marcelino.malmeidan@utexas.edu.

†Professor, Dept. of Aerospace Engineering, Texas A&M University, e-mail: mortari@tamu.edu.
‡Assistant Professor, Dept. of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, email: re-
nato@utexas.edu.

§E.P. Schoch Professor, Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, email:
makella@mail.utexas.edu.

1



In Ref. [24], the author proposes generalizations to Wahba’s problem by accepting sequential vector mea-
surements instead of the traditional simultaneous ones (see Ref. [18] and the references therein). These gen-
eralizations implicate the need to estimate for initial orientation and angular velocity (not only orientation, as
in Wahba’s problem). The work of Ref. [24] proposes the following problems:

• First Generalized Wahba’s Problem (FGWP) - The system is in pure spin with known spin-axis but
unknown spin rate. The author presents a closed-form solution to this problem based on two mea-
surements. The work of Ref. [27] uses semidefinite optimization to solve FGWP for more than two
measurements.

• Second Generalized Wahba’s Problem (SGWP) - The system is tumbling (torque-free) with known
inertia matrix. This system is shown to be observable with at least three vector measurements, but no
solution is provided by Ref. [24]. A solution to the three-vector measurement problem is provided in
Ref. [11] and a numerical solution is provided in Ref. [25] for four measurements or more.

An alternative solution to the pure spin angular velocity estimation problem is to use methods based on
the Multiplicative Extended Kalman Filter (MEKF)[14, 10, 16], since these rely on kinematics only. These
methods should usually converge if properly initialized and iterated through a backward smoothing process
[23]. Iterated nonlinear programming methods present the drawback that these might converge to local min-
ima, unless proven otherwise. Our solution in this paper departs from filtering-based ones in that no iterations
are necessary for the proposed algorithm.

The primary contribution of this work is the Quaternion Regression Algorithm (QuateRA). Our QuateRA
builds upon the work of Ref. [20], and it is a batch solver that does not require iterations, even though the
problem is nonlinear. QuateRA uses a sequence of orientation measurements to determine the system’s axis
of rotation (AOR) through an SVD procedure, and then it uses the AOR to estimate for the angular velocity
magnitude (AVM). We develop QuateRA’s AOR estimation with use of the Total Least Squares (TLS) cost
function, and we are able to provide a solution under mild assumptions on the measurement noise. In fact,
the AOR estimation algorithm herein presented shares important similarities with the problem of averaging
quaternions [15, 17], but instead of finding an average quaternion, we search for an average quaternion plane.
The quaternion average is actually a particular solution to our algorithm. In the current work, we also discuss
some asymptotic statistical properties involving QuateRA, validating those with Monte Carlo simulations.

QuateRA’s AOR estimation was first introduced by Ref. [20], and experimental validation was presented
in Ref. [2]. Ref. [3] used QuateRA’s AOR estimate in conjunction with a modified MEKF to estimate the
relative angular velocity of a non-cooperative target. The current work departs from our earlier contributions
in the following aspects:

• The previous works used QuateRA’s AOR estimation based on heuristics, instead of being a solution
that formally minimizes a cost function. In the current work, we start from a constrained version of
TLS (the constraints are the quaternion unit norms), and reach the same solution suggested by Ref. [20]
under the assumption of small angle approximation for the quaternion measurement noise.

• None of the previous works analyzed the statistical properties of QuateRA. In the current work, we ex-
plore the strong consistency properties of QuateRA, and we derive covariance matrices for the angular
velocity estimation. We also present Monte Carlo analysis to endorse the derived statistical properties.

• When estimating the AVM, Ref. [20] suggested the use of performing “dirty” derivatives on the most
recently measured quaternions. In contrast, the work of [2] showed that one can often obtain better re-
sults by pre-filtering the measured quaternions before employing the derivative. The AVM estimation
in Ref. [3] is performed by using a modified MEKF. The AVM estimation suggested by Ref. [20] is
actually biased under mild measurement noise, while the solutions presented in Refs. [2] and [3] rem-
edy the bias problem, but introduce tuning parameters. In contrast, this work reprojects the measured
quaternions onto the plane of rotation estimated by QuateRA, and calculates the AVM as an average
quaternion displacement over time.
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The remainder of this paper is organized as follows: the following sections presents a motivation to the
angular velocity estimation problem by introducing solutions to the simple problem of estimating constant
linear velocity from position measurements. Some of the insights therein are crucial for understanding Quat-
eRA’s statistical properties. The subsequent section introduces the rotational attitude kinematics, describing
some notations and parametrizations, as well as the assumed measurement model. Next, we present the
QuateRA algorithm, followed by a Monte Carlo analysis of the proposed algorithm. Finally, the final section
presents conclusions for this work.

MOTIVATION: BATCH ESTIMATION OF LINEAR VELOCITY FROM POSITION MEASURE-
MENTS

Assume a point mass moving on the xy plane with unknown constant velocity v =
[
vx vy

]T
. The

position of the body is denoted as p =
[
x y

]T
. The kinematics of the problem is described as:

p(t) = p0 + vt, (1)

where t denotes time and p0 ,
[
x0 y0

]T
is the position of the system at time t = 0. The goal of this

section is to estimate the vector X =
[
pT0 vT

]T
through LS and TLS, drawing parallels between the two

approaches.

We denote an estimated variable as (̂·) (x̂(t) is an estimate of x(t) and ŷ(t) is an estimate of y(t)), and a
measured variable as (̄·) (p̄ is a measurement of p and v̄ is a measurement of v). We use star notation (·)∗
with variables with general covariance to distinguish them from their counterpart with normalized covariance
(cov[p∗] is a positive-definite matrix, while cov[p] = I , where I is an identity matrix). The notation

−→
(·) is

used to denote unit-norm vectors (−→x satisfies ||−→x ||2 = 1). In addition, for simplicity of notation, we denote
pi = p(ti).

Assume that we measure the position of this system at n different instants of time ti, i ∈ {1, · · · , n}. The
measurement model is given by: {

x̄(ti) = x(ti) + εx(ti)

ȳ(ti) = y(ti) + εy(ti)
, (2)

where ε∗i ,
[
εx(ti) εy(ti)

]T
is assumed to be a normally distributed random variable with mean E[ε∗i ] = 0

and covariance Pε , cov[ε∗i ] = E[ε∗i ε
∗T
i ], with Pε > 0. We denote the measured position p̄∗i = pi +

ε∗i , which is a random variable with mean E[p̄∗i ] = pi and covariance cov[p̄∗i ] = Pε. Decomposing the
covariance matrix as Pε = LLT , we define the normalized measurements p̄i = L−1p̄∗i such that p̄i =
L−1pi + L−1ε∗i . Defining εi = L−1ε∗i , we have that E[εi] = 0 and cov[εi] = E[εiε

T
i ] = I2, where I2 is

the two-dimension identity matrix.

The vector of normalized measured positions is written as P̄ ,
[
p̄T1 p̄T2 · · · p̄Tn

]T
, and the equivalent

vector of normalized true positions is given by P ,
[
(L−1p1)T (L−1p2)T · · · (L−1pn)T

]T
. The

measurement error vector is written as ε ,
[
εT1 εT2 · · · εTn

]T
, implying P̄ = P + ε. Since E[ε] = 0,

then we have that E[P̄ ] = P and cov[P̄ ] = cov[ε] = I2n.

Given the measurement vector P̄ , we want to optimally estimate the system’s initial position p0 and
velocity v. A common method to solve this problem is to use the least squares solution, which pursues to
find optimal p0 and v that minimizes the cost function:

J =
1

2
εTε =

1

2

(
P̄ − P

)T (
P̄ − P

)
. (3)

The solution to this problem is very well known in the literature. Constructing the matrixH ∈ R2n×4:

H =


L−1 0 · · · 0
0 L−1 · · · 0
...

...
. . .

...
0 0 · · · L−1



I2 t1I2

I2 t2I2

...
...

I2 tnI2

 , (4)
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we have that P = HX . The optimal solution* X̂LS =
[
p̂T0 v̂T

]
for the cost function in Eq. 3 is given by:

X̂LS =
(
HTH

)−1
HT P̄ . (5)

Although Eq. 5 is a very common method to estimate the unknowns from Eq. 1, it is also possible to obtain
solutions that minimize cost functions different from Eq. 3.

In particular, one can pursue a solution through Total Least Squares (TLS - also referred to as Orthogonal
Least Squares), as opposed to Least Squares (LS). Starting from Eq. 1, we have that:

x(t) = x0 + vx · t (6)
y(t) = y0 + vx · t (7)

Isolating the t term in Eq. 6 and substituting it into Eq. 7 leads to:

y = y0 +
vy
vx

(
x− x0

)
=
(
y0 − vy

vx
x0

)
+
vy
vx
x (8)

Defining α , y0 − vy
vx
x0 and β =

vy
vx

, then Eq. 8 can be written in the compact form:

y = α+ βx, (9)

and the unknowns to be found are now α and β. The problem can be recast as finding the Cartesian line
L(l0,

−→
l ) (l0 ∈ R2 is a point belonging to the line, and

−→
l ∈ S1 is the line direction) such that the distance

squared between the regularized measured points p̄i, i ∈ {1, · · · , n} and the line L(l0,
−→
l ) are minimized.

The distance function used in TLS is not necessarily the Euclidian distance between a point and a line, unless
the error covariance is of the form Pε = σ2I2, where σ ∈ R>0.

For general values of the covariance matrix, we pursue as in LS by covariance-normalizing the measure-
ments p̄i = L−1p̄∗i , where L comes from the decomposition of Pε = LLT . Defining d

(
p̄i, L

)
as the

Euclidian distance between p̄i and L(l0,
−→
l ), the TLS cost function is given by:

JTLS =

n∑
i=1

d
(
p̄i, L

)2
. (10)

The regression problem for the cost of Eq. 10 was first proposed and solved in [1] for the special case in
which Pε = σ2I2. Many solution formulations have been presented to this problem for the general case (see
[29, 19, 7] for literature review), but here we present the solution presented in [28] due to its connections to
the QuateRA problem. First, we calculate the centroid of all the data-points:

µp ,
1

n

n∑
i=1

p̄i. (11)

It turns out that the optimal line L̂(l0,
−→
l ) passes through the centroid µp. Since a line is defined as a

point and a direction, the solution is complete once the line direction is found. To this purpose, we define the
translated vectors p

i
:

p
i
, p̄i − µp, ∀i ∈ {1, · · · , n} (12)

Clearly, the centroid of the set of vectors p
i
, i ∈ {1, · · · , n} is at the origin. Then, we define the matrix

B ∈ R2×n as a concatenation of all translated vectors p
i
:

B ,
[
p

1
p

2
· · · p

n

]
(13)

*We use the subscript LS to indicate that this is the Linear Squares solution to the problem.
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Taking the Singular Value Decomposition (SVD) on the matrix B, we get B = UΣ̃V T , where U =[
u1 u2

]
contains the left singular vectors ofB, V =

[
v1 v2 · · ·vn

]
contains the right singular vectors

ofB, and Σ̃ =
[
Σ 02×n−2

]
contains the singular values ofB within Σ = diag

(
σ1, σ2

)
.

As shown in Ref. [28], the line that minimizes the cost function of Eq. 10 is parameterized as L̂(µp,u1),
where u1 ∈ S1 is the first left singular vector ofB, and the optimal cost is given by ĴTLS = σ2. The problem
can then be mapped back into the original coordinates:

µ∗p =

[
µ∗px
µ∗py

]
= Lµp, u∗1 =

[
u∗1x
u∗1y

]
=

Lu1∥∥Lu1

∥∥ . (14)

Thus, the TLS minimizer that fits the model of Eq. 9 given the measurements of Eq. 2 and the measurement
noise covariance Pε is given by the line L̂∗(µ∗p,u

∗
1). The constants α and β from Eq. 9 can be calculated as:

β =
u∗1y
u∗1x

, α = µ∗py − βµ∗px. (15)

Going back to the original problem of estimating the velocity in Eq. 1, the vector u∗1 is an estimate of the
velocity direction −→v , v/||v||. In order to obtain the estimation of the velocity v, one still needs to estimate
the velocity magnitude ||v||.

We can project the measured points onto the optimal line µ∗p,u
∗
1, obtaining the TLS estimates for these

points along the line. Then, the velocity magnitude can be estimated as an average displacement along the
line. Given that the measurements are distributed as p̄∗i ∼ N (pi,Pε), it is possible to show that the marginal
distribution of p̄∗i along any line L(l0,

−→
l ) is a one-dimensional normally-distributed random variable with

mean at p∗pi and standard deviation σ along the
−→
l direction, where:

p∗pi = l0 +
1

σ2

[(
p̄∗i − l0

)T
P−1−→l

]−→
l , σ =

1∥∥∥L−1−→l
∥∥∥ =

1√−→
l P−1

−→
l
. (16)

Hence, defining S̄i = p∗piu
∗
1 as the displacement along the optimal TLS line, and admitting the distribution

S̄i ∼ N (Si, σ
2), one can use LS to solve for S0 and ||v|| in the model:

Si = S0 + ||v|| · ti. (17)

Analysis

It turns out that the solution obtained through LS (Eq. 5) is generally different from the one obtained
through TLS (solution of Eq. 17 and the first left singular vector of the matrix in Eq. 13). The different
solutions are expected, given that both estimators employ different cost functions.

For the particular scenario of estimating the planar system’s velocity of Eq. 1, the LS solution is more
advantageous than TLS in many aspects, some of which are described below. Assuming a linear model (as
in Eq. 1) with additive gaussian measurement noise (as in Eq. 2), LS is a maximum likelyhood estimator,
implying:

• LS is known to be the globally optimal estimator that obtains the Minimum Mean Square Error
(MMSE) of the estimate, i.e., it minimizes MSE = E

[(
X̄ −X

)T (
X̄ −X

)]
. This implies that,

in average, no other estimator will perform as good as LS for minimization of MSE. In other words,
the LS solution will produce smaller squared error more than 50% of the time (in average) when com-
pared with any other estimator.

• LS is well known for being an unbiased estimator given zero-mean additive noise to the measurements.
On the other hand, TLS is only guaranteed to be strongly consistent, i.e., the TLS estimate converges
to the true value (with probability 1) as the number of measurements n tend to infinity [12, 8], meaning
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that it is asymptotically unbiased. Monte Carlo analysis suggest that the bias of TLS is statistically
appreciable when signal-to-noise ratio is low, and n is small [29]. On the other hand, the Monte Carlo
analysis in [13] indicate that n > 20 is large enough to neglect the TLS bias.

• The error-covariance for TLS estimates are known for n → ∞, while the error-covariance of LS is
known for any n. However, the Monte Carlo analysis in [13] suggest that the TLS error-covariance
estimation for n → ∞ is a good approximation for n < ∞ provided that n > 20. Ref [8] derives a
TLS covariance matrix for large samples.

• The LS estimate of the velocity magnitude ||v|| using Eq. 17 assumes that the velocity direction −→v is
precisely known. However, as already mentioned, TLS provides a biased estimate −̄→v = u1, which can
also implicate on a biased estimation of ||v||.

Based on the comparisons above, there is no compelling reason to convert the model of Eq. 1 into the form
of Eq. 9, and then perform TLS. On the other hand, provided that measurement noise is sufficiently small, and
the number of measurements are large enough (e.g., say n > 20), then then TLS is a competitive algorithm
that matches closely the LS solution in the MSE sense (i.e., it outperforms LS in the MSE sense almost 50%
of the time).

As a motivational example, assume a system moving on a line with initial position p0 =
[
1 0

]T
m and ve-

locity v =
[
2 1

]T
m. The measurement error standard deviation is given by σε = 0.1m. The measurements

are taken once every dt , ti+1 − ti = 0.1s and the regression is made with n = 20 measurements. Running
a Monte Carlo simulation of 100.000 solutions, it turns out that LS outperforms TLS 51.05% of the time in
the estimated squared error sense. If the measurement error standard deviation degrades to σε = 0.5m, then
LS outperforms TLS 55.44% of the time. By taking n = 50 measurements with σε = 0.1m, LS outperforms
TLS 50.34% of the time.

Despite of the possible limitations of TLS, we employ the TLS cost function in the development of Quat-
eRA. This choice is made because it is then possible to decouple the estimation of the angular velocity axis
of rotation from its magnitude, whereas the estimation of the coupled problem (which would be the LS coun-
terpart) is substantially more complex. When estimating a fixed axis of rotation among sequential quaternion
measurements, the estimation problem can be posed as a plane fitting problem (special case of TLS), as will
be shown in the following sections.

ATTITUDE KINEMATICS AND MEASUREMENT MODEL

We adopt the notation qBA to represent the relative orientation quaternion between frames A and B. A
quaternion is written in the form:

qBA =
[
qBAs (qBAv)

T
]T
, (18)

where qBAv and qBAs are the vector and scalar components of the quaternion qBA , respectively. Also, quaternions
satisfy the norm constraint

∥∥qBA∥∥ = 1.

We denote the quaternion inverse rotation as (qBA )−1 = qAB , which is given by:

qAB =
[
qBAs −(qBAv)

T
]T
. (19)

The quaternion composition rule is denoted as:

qCA = qCB ⊗ qBA , qCB⊗ =

[
qCBs −(qCBv)

T

qCBv qCBsI − [qCBv×]

]
, (20)

where I is the 3 × 3 identity matrix, and [v×] is the skew-symmetric cross product matrix associated with
a vector v ∈ R3. The matrix qCB⊗ is a 4D rotation matrix, implying orthogonality, i.e., it satisfies qCB ⊗
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(qCB⊗)T = (qCB⊗)TqCB⊗ = I4. Also, we denote the identity quaternion:

qI , (qBA )−1 ⊗ qBA = qBA ⊗ (qBA )−1 =
[
1 0 0 0

]T
(21)

Given a vector v ∈ R3, then we define v⊗ ∈ R4×4 as:

v⊗ ,

[
0 −vT
v −[v×]

]
. (22)

With some slight abuse of notation, we define the composition of a quaternion q ∈ S3 with a vector v ∈ R3

as:

q ⊗ v , q ⊗
[

0
v

]
. (23)

Given a vector vA ∈ R3 expressed in frame A, its representation in frame B can be obtained as:[
0

vB

]
= qBA ⊗ vA ⊗ (qBA )−1. (24)

Denote ωCB/A ∈ R3 as the angular velocity of frame B w.r.t. frame A expressed in frame C. Then, the
rotational kinematics for qBA is given by:

q̇BA =
1

2
ωBB/A ⊗ q

B
A . (25)

For an angular velocity ωBB/A, we denote its magnitude ΩB/A and its direction −→ωB
B/A, such that:

ΩB/A ,
∥∥∥ωBB/A∥∥∥ , −→ωB

B/A ,
ωBB/A

ΩB/A
. (26)

Assuming a constant angular velocity ωBB/A throughout a period ∆t = tf − t0, then the solution to the
kinematic differential equation in Eq. 25 is given by qBA (tf ) = F (ωBB/A) · qBA (t0), where:

F
(
ωBB/A

)
= exp

[
1
2ω

B
B/A⊗

]
= cos

ΩB/A∆t

2
· I + sin

ΩB/A∆t

2
· −→ωB

B/A ⊗ . (27)

Using the subscript I to denote inertial frame and O for the frame of the object of interest, the remainder
of this paper will denote qi , qOI (ti), ω , ωOO/I , −→ω , −→ωO

O/I , and Ω , ΩO/I .

Measurement Model

In this section, we present the assumed measurement model for the problem. The assumptions and deriva-
tions herein presented are crucial for posing and solving the AOR optimal estimation within QuateRA.

We employ the quaternion measurement model given by:

q̄i = qi ⊗ qNi, (28)

where qi =
[
qsi qTvi

]T
is the true quaternion and qNi is the noise quaternion:

qNi ,
[
cos θi2 eTNi sin θi

2

]T
, (29)
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in which θi and eNi are independent random variables. We assume that θi is Gaussian (Although it might
be unrealistic to assume that angles are distributed as Gaussian, Ref. [21] has shown that this is a reasonable
approximation for double-precision machines as long as σθ ≤ 22 deg) such that θi ∼ N (0, σ2

θ), and eNi ∈ S2

is a unit-norm random vector uniformly distributed in S2 = {x ∈ R3 : ||x|| = 1} and has the characteristics
E[eNi] = 0 and E[eNie

T
Ni] = 1

3I (see Appendix A).

Assuming that all qNi, i ∈ {1, · · · , n} are idependent and identically distributed, we define the quantities
µN and PN as the mean and covariance for the noise quaternion, respectively:

µN , E
[
qNi

]
= E

[
cos θi2

eNi sin θi
2

]
=

[
E
[
cos θi2

]
E
[
eNi sin θi

2

]] =

[
E
[
cos θi2

]
E
[
eNi

]
E
[
sin θi

2

]] = E
[
cos θi2

] [1
0

]
(30)

PN , E
[(
qNi − µN

) (
qNi − µN

)T ] = E
[
qNiq

T
Ni

]
− µNµTN

=

[
E
[
cos2 θi

2

]
− E2

[
cos θi2

]
E
[
eNi cos θi2 sin θi

2

]
E
[
eTNi cos θi2 sin θi

2

]
E
[
eNie

T
Ni

]
E
[
sin2 θk

2

]] (31)

=

[
E
[
cos2 θi

2

]
− E2

[
cos θi2

]
0

0 1
3E
[
sin2 θi

2

]
I3

]

The expected values above can be calculated according with Ref. [21]: E
[
cos θi2

]
= e−σ

2
θ/8,

E
[
cos2 θi

2

]
= 1

2

(
1 + e−σ

2
θ/2
)

, and E
[
sin2 θi

2

]
= 1

2

(
1− e−σ2

θ/2
)

. Defining σ2
s , E

[
cos2 θi

2

]
−

E2
[
cos θk2

]
and σ2

v , 1
3E
[
sin2 θi

2

]
, then the noise covariance matrix takes the form:

PN =

[
σ2
s 0

0 σ2
vI3

]
. (32)

We define the covariance for the measured quaternion as:

Pq , E
[(
q̄i − E

[
q̄i
]) (
q̄i − E

[
q̄i
])T ] = E

[
q̄iq̄

T
i

]
− E

[
q̄i
]
E
[
q̄i
]T

(33)

=
(
qi⊗

)
E
[
qNiq

T
Ni

] (
qi⊗

)T − (qi⊗)µNµTN (qi⊗)T =
(
qi⊗

) [
E
[
qNiq

T
Ni

]
− µNµTN

] (
qi⊗

)T
(34)

=
(
qi⊗

)
PN

(
qi⊗

)T
(35)

If we make the notation relaxation qi =
[
qs qTv

]T
, and use Eqs. ?? and 32, we can further expand Pq as:

Pq =

[
σ2
sq

2
s + σ2

vq
T
v qv σ2

sqsq
T
v − σ2

vqsq
T
v

σ2
sqsqv − σ2

vqsqv σ2
sqvq

T
v − σ2

v

(
q2
sI3 −

[
qv×

]2)] . (36)

Using the properties
[
qv×

]2
= qvq

T
v − qTv qvI3, and q2

s + qTv qv = 1, we have that:

Pq =

[
σ2
v +

(
σ2
s − σ2

v

)
q2
s

(
σ2
s − σ2

v

)
qsq

T
v(

σ2
s − σ2

v

)
qsqv σ2

vI3 +
(
σ2
s − σ2

v

)
qvq

T
v

]
= σ2

vI4 +
(
σ2
s − σ2

v

)
qiq

T
i . (37)

Using the statistics above, if one desires to perform a quaternion measurement normalization, it is necessary
to decompose the covariance matrix in the form Pq = LqL

T
q . There are multiple ways of proceeding with

the decomposition, but here we derive the square root decomposition, i.e., Pq = LqLq , where Lq = LTq .
Starting from Eq. 37, we add and subtract 2σ2

vqiq
T
i and 2σvσsqiq

T
i on the right-hand side of the equation:

Pq = σ2
vI4 − 2σ2

vqiq
T
i + 2σvσsqiq

T
i +

(
σ2
s − 2σvσs + σ2

v

)
qiq

T
i (38)

= σ2
vI4 − 2σv

(
σv − σs

)
qiq

T
i +

(
σv − σs

)2
qiq

T
i . (39)
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Defining σq , σv − σs and using the property qiqTi = qiq
T
i qiq

T
i then:

Pq = σ2
vI4 − 2σqqiq

T
i + σ2

qqiq
T
i qiq

T
i = σ2

vI4 − 2σqqiq
T
i + σ2

q

(
qiq

T
i

)2
(40)

=
(
σvI4 − σqqiqTi

)2
(41)

Therefore, the matrix square-root of Pq is given by Lq = σvI4 − σqqiqTi , where σq = σv − σs. The
inverse of the square-root matrix is given by:

L−1
q =

1

σsσv

(
σsI4 + σqqiq

T
i

)
. (42)

Post-multiplying L−1
q by qi, we get that:

L−1
q qi =

1

σsσv

(
σsqi + σqqi

)
=

σv
σsσv

qi =
1

σs
qi. (43)

Therefore, qi is an eigenvector of L−1
q , and the corresponding eigenvalue is given by λq = 1/σs. Having

that in mind, if we perform a Taylor Expansion on Eq. 28 around θi = 0, and pre-multiply by L−1
q , we get

that:

L−1
q q̄i = L−1

q qi ⊗ qNi = L−1
q

(
qi⊗

)(
qI + ∂qNi

∂θi

∣∣∣
0
θi + ∂2qNi

∂θ2
i

∣∣∣
0
θ2
i + · · ·

)
(44)

= L−1
q qi +L−1

q

(
qi⊗

)(∂qNi
∂θi

∣∣∣
0
θi + ∂2qNi

∂θ2
i

∣∣∣
0
θ2
i + · · ·

)
(45)

=
1

σs
qi +L−1

q

(
qi⊗

)(∂qNi
∂θi

∣∣∣
0
θi + ∂2qNi

∂θ2
i

∣∣∣
0
θ2
i + · · ·

)
, (46)

where qI is the identity quaternion defined in Eq. 21.

Therefore, if we consider only the 0-th order approximation for the measurement normalization performed
by the operationL−1

q q̄k, then this operation is just a scaling operation on the true quaternion. In practice, it is
impossible to perform the measurement normalization L−1

q q̄i because Lq is a function of the true quaternion
qi (not the measured one), which is unknown. Alternatively, if we make the practical approximation [8]:

Pq ≈
(
σvI4 − σqq̄iq̄Ti

)2
=⇒ L−1

q ≈
1

σsσv

(
σsI4 + σqq̄iq̄

T
i

)
, (47)

then the measurement normalization leads to L−1
q q̄i = λqq̄i.

THE QUATERNION REGRESSION ALGORITHM

In this section, we develop the QuateRA algorithm. We employ a similar approach to the TLS development
previously shown, which first calculates the linear velocity direction in the optimal line, then calculates the
linear velocity magnitude along the same line. Similarly, QuateRA assumes constant ω to first estimate the
AOR −̂→ω , then uses its knowledge to estimate for the AVM Ω̂. Finally, the estimated angular velocity is given
by ω̂ = Ω̂−̂→ω .

In order to estimate the AOR, QuateRA uses a geometric interpretation based on the solution to the quater-
nion kinematic equation for constant ω:

q(t) =
[
cos Ω∆t

2 · I + sin Ω∆t
2 ·
−→ω⊗

]
q0, (48)

with ∆t , t − t0. Defining the vectors u1 ∈ S3 = q0 and u2 ∈ S3 = −→ω ⊗ q0, we have that uT1 u2 =
q0 · −→ω ⊗ ·q0. Since −→ω⊗ is a skew-symmetric matrix (see Eq. 22) then uT1 u2 = 0, i.e., u1 ⊥ u2. Clearly,
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any q(t) described by Eq. 48 is a linear combination of u1 and u2, for all t ∈ R. Hence, if we define
the 4D hyperplane P(u1,u2) = span{u1,u2}, then q(t) ∈ P(u1,u2), ∀ t ∈ R. In addition, there exists
a perpendicular plane P(u3,u4) = span{u3,u4}, with u3,u4 ∈ S3 such that u4 = −→ω ⊗ u3, where
uT3 q(t) = uT4 q(t) = 0, ∀ t ∈ R.

Therefore, if we have a sequence of measurements q̄i, i ∈ {1, · · · , n}, with n ∈ N≥2, then we can
estimate the axis of rotation by finding the optimal hyperplane that fits the measured quaternions. Plane-
fitting is a classical TLS problem given a measurement model as in Eq. ?? with a non-singular measurement
error covariance matrix. We use the TLS cost function to derive a quaternion plane fitting formulation. In
TLS, whenever the measurement covariance matrix is not of the form cov

[
A B

]
= σ2I , the measurements

have to be normalized by the inverse of some “square root” of the covariance matrix. We have already shown
in the previous section that the square-root normalization can be approximated to a constant scaling on all
measured quaternions. If we assume that all measurements are identically distributed, then this is a weighed
TLS problem where all the weights are identical, implying that the weights can be neglected on the cost
function.

The remainder of this section is structured as follows: next subsection presents the AOR estimation algo-
rithm, while the following one presents the AVM estimator. The subsequent subsection summarizes QuateRA
into a few steps, while the last subsection presents some insights and analysis to the overall algorithm.

Estimation of the Axis of Rotation

Given a set of quaternion measurements q̄i, i ∈ {1, · · · , n}, we construct the measurement matrix Q̄ as:

Q̄ ,
[
q̄1 q̄2 · · · q̄n

]
. (49)

An important property that arises from the previous definition is that:

tr
(
Q̄Q̄T

)
= tr

(∑n
i=1 q̄iq̄

T
1

)
=

n∑
i=1

tr
(
q̄iq̄

T
1

)
=

n∑
i=1

∥∥q̄i∥∥2
= n (50)

In order to estimate the AOR, the goal is to find a plane P̂(û1, û2) = span{û1, û2} and a set of estimated
quaternions q̂i ∈ P̂(û1, û2), i ∈ {1, · · · , n} that minimizes the TLS cost function:

J1 =
1

2

∥∥∥Q̄− Q̂∥∥∥2

F
, (51)

where the || · ||F denotes the Frobenius norm and Q̂ is defined as:

Q̂ ,
[
q̂1 q̂2 · · · q̂k

]
. (52)

From the Frobenius norm definition, we have that:

J1 =
1

2
tr
[(
Q̄− Q̂

) (
Q̄− Q̂

)T ]
=

1

2
tr
[
Q̄Q̄T − Q̄Q̂T − Q̂Q̄T + Q̂Q̂T

]
=

1

2
tr
(
Q̄Q̄T

)
− 1

2
tr
(
Q̄Q̂T

)
− 1

2
tr
(
Q̂Q̄T

)
+

1

2
tr
(
Q̂Q̂T

)
. (53)

Using the trace property tr(AB) = tr(BA), and the property of Eq. 50, we have that:

J1 = n− tr
(
Q̄Q̂T

)
= n− tr

(∑n
i=1 q̄iq̂

T
i

)
= n−

n∑
i=1

tr
(
q̄iq̂

T
i

)
= n−

n∑
i=1

q̄Ti q̂i. (54)

Minimizing the cost function of Eq. 54 is equivalent to maximizing the following cost function:

J2 =

k∑
i=1

q̄Ti q̂i. (55)
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Theorem 1. Given a quaternion q ∈ S3 and a plane spanned by the unit vectors u1 ∈ S3 and u2 ∈ S3

such that uT1 u2 = 0. Denoting this plane as P(u1,u2), the quaternion qp ∈ S3 that belongs to the plane
P(u1,u2) and minimizes the cost function:

J0 =
1

2

∥∥q − qp∥∥2

2
=

1

2

∥∥q − qp∥∥2

F
(56)

is given by:

qp =
1√(

qTu1

)2
+
(
qTu2

)2 [(qTu1

)
u1 +

(
qTu2

)
u2

]
(57)

Proof. The cost function of Eq. 56 can be written as:

J0 =
1

2

∥∥q − qp∥∥2

2
=

1

2

(
qTq − 2qTqp + qTp qp

)
= 1− qTqp. (58)

Minimizing the cost function of Eq. 58 is the same as maximizing the following cost function:

J1 = qTqp. (59)

Every quaternion that belongs to the plane P(u1,u2) can be written as a linear combination of u1 and u2:

qp = au1 + bu2. (60)

In order to satisfy the norm condition for ||qp|| = 1, the following holds:

||qp|| = qTp qp = a2uT1 u1 + 2abuT1 u2 + b2uT2 u2 = a2 + b2 = 1

Hence, the coefficients a and b from Eq. 60 are constrained such that a2 + b2 = 1. We rewrite the
optimization problem as: {

maxa,b J1 = qTqp = aqTu1 + bqTu2

s.t. a2 + b2 = 1.
(61)

Introducing the Lagrange multiplier λ, the Lagragian related to the problem above is written as:

L = aqTu1 + bqTu2 +
1

2
λ(a2 + b2 − 1) =⇒

{
∂L
∂a = qTu1 + λa
∂L
∂b = qTu2 + λb

.

From the first-order necessary optimality conditions, we get that:

qTu1 + λa = 0 =⇒ a = −q
Tu1

λ
, qTu2 + λb = 0 =⇒ b = −q

Tu2

λ
. (62)

Substituting a and b from Eq. 62 into a2 + b2 = 1, we get that:

(qTu1)2

λ2
+

(qTu2)2

λ2
= 1 =⇒ λ = ±

√
(qTu1)2 + (qTu2)2. (63)

Therefore, we have that:

a = −q
Tu1

λ
= ± 1√

(qTu1)2 + (qTu2)2
qTu1, b = −q

Tu2

λ
= ± 1√

(qTu1)2 + (qTu2)2
qTu2.

We can notice that this problem has two extremum points: a maximizing solution and a minimizing one.
By inspecting the cost function in Eq. 61, the maximizing solution has to be the one given by Eq. 57.
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Using Theorem 1, then q̂ can be written as a linear combination of the optimal plane vectors û1 and û2.
Hence, the cost function J2 from Eq. 55 can be written as:

J2 =

n∑
i=1

1√(
q̄Ti û1

)2
+
(
q̄Ti û2

)2 q̄Ti [(q̄Ti û1

)
û1 +

(
q̄Ti û2

)
û2

]
(64)

=

n∑
i=1

1√(
q̄Ti û1

)2
+
(
q̄Ti û2

)2 [(q̄Ti û1

)2
+
(
q̄Ti û2

)2]
=

n∑
i=1

√(
q̄Ti û1

)2
+
(
q̄Ti û2

)2
(65)

Note that in the total absence of measurement noise, and assuming û1 ∈ span{u1,u2}, û2 ∈
span{u1,u2} with ûT1 û2 = 0, the following holds:√(

q̄Ti û1

)2
+
(
q̄Ti û2

)2
= 1, ∀ i ∈ {1, · · · , n}. (66)

Defining the variable x ,
(
q̄Ti û1

)2
+
(
q̄Ti û2

)2
, then the First order Taylor Expansion of

√
x around x = 1

is given by:

√
x ≈ 1

2
+
x

2
=⇒

√(
q̄Ti û1

)2
+
(
q̄Ti û2

)2 ≈ 1

2
+

1

2

(
q̄Ti û1

)2
+

1

2

(
q̄Ti û2

)2
(67)

Therefore, under the small angle approximation for the measurement noise, we have that the cost function
J2 can be approximated to:

J2 ≈
n

2
+

1

2

n∑
i=1

[(
q̄Ti û1

)2
+
(
q̄Ti û2

)2] (68)

For simplicity of notation, we define a new cost function whose maximization is equivalent to the maxi-
mization of Eq. 68:

J =

n∑
i=1

[(
q̄Ti û1

)2
+
(
q̄Ti û2

)2]
=

n∑
i=1

[
ûT1 q̄iq̄

T
i û1 + ûT2 q̄iq̄

T
i û2

]
= ûT1

n∑
i=1

q̄iq̄
T
i û1 + ûT2

n∑
i=1

q̄iq̄
T
i û2

(69)

= ûT1 Q̄Q̄
T û1 + ûT2 Q̄Q̄

T û2 (70)

Defining Z̄ , Q̄Q̄T , the optimization problem can be stated in the following form:arg max
û1∈S3,û2∈S3

ûT1 Z̄û1 + ûT2 Z̄û2

s.t. ûT1 û2 = 0
. (71)

Theorem 2. The optimization problem in Eq. 71 does not a have unique solution.

Proof. Assume that û∗1 and û∗2, with û∗T1 û∗2 = 0, are maximizers of the cost function of Eq. 71. The optimal
cost is given by:

J∗ =

n∑
i=1

[(
q̄Ti û

∗
1

)2
+
(
q̄Ti û

∗
2

)2]
=

n∑
i=1

J∗i , (72)

where J∗i ,
(
q̄Ti û

∗
1

)2
+
(
q̄Ti û

∗
2

)2
. Also, define the vectors v1 ∈ S3 and v2 ∈ S3 as linear combinations of

û∗1 and û∗2:

v1 , aû∗1 + bû∗2, v2 , −bû∗1 + aû∗2, (73)
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for any a ∈ [−1, 1], b ∈ [−1, 1] such that a2 + b2 = 1. Now we compute the quantity Ji ,
(
q̄Ti v1

)2
+(

q̄Ti v2

)2
:

Ji =
(
aq̄Ti û

∗
1 + bq̄Ti û

∗
2

)2
+
(
−bq̄Ti û∗1 + aq̄Ti û

∗
2

)2
=
(
a2 + b2

) (
q̄Ti û

∗
1

)2
+
(
a2 + b2

) (
q̄Ti û

∗
2

)2
=
(
q̄Ti û

∗
1

)2
+
(
q̄Ti û

∗
2

)2
. (74)

Therefore, Ji = J∗i , implying that v1 and v2 are also maximizers of the cost function in Eq. 70.

Theorem 3. A solution to the optimization problem in Eq. 71 can be obtained from the Singular Value
Decomposition (SVD) Z̄ = ÛΣ̂ÛT , where Û ∈ R4×4 =

[
û1 û2 û3 û4

]
contains the singular vectors

of Z̄, and Σ̂ = diag
(
σ̂1, σ̂2, σ̂3, σ̂4

)
contains the singular values of Z̄, wherein σ̂1 ≥ σ̂2 ≥ σ̂3 ≥ σ̂4 ≥ 0.

If σ̂2 > σ̂3, then û1 and û2 compose a solution to the optimization problem in Eq. 71 and the optimal cost
is given by J∗(û1, û2) = σ̂1 + σ̂2, with σ̂1 = ûT1 Z̄û1 and σ̂2 = ûT2 Z̄û2. It is also true that σ̂3 = ûT3 Z̄û3

and σ̂4 = ûT4 Z̄û4.

Proof. The proof follows from the known SVD property that the best-fit k-dimensional subspace for a matrix
is the subspace spanned by thee first k singular vectors.

Having the optimal hyperplane estimate P̂(û1, û2), we still need to calculate the AOR −̂→ω that leads
to rotation on that plane. As previously observed in Eq. 48, the optimal hyperplane can be written as
P̂(û1, û2) = P̂(û1,

−→ω ⊗ û1). This implies that û2 = −̂→ω ⊗ û1. Therefore, the optimal estimate for the
AOR is given by:

−̂→ω = û2 ⊗ û−1
1 . (75)

An important observation is that −̂→ω is an ambiguous estimate of −→ω up to a sign error, i.e, it estimates the
direction of −→ω , but the sense might be wrong. This ambiguity is eliminated when estimating the AVM Ω,
whose estimate Ω̂ will be negative when −̂→ω is an estimate of −−→ω . In any case, the product ω̂ = Ω̂−̂→ω is
consistent with ω = Ω−→ω .

Using the result from Theorem 1, the optimally estimated quaternions on the plane P̂(û1, û2) are given
by:

q̂i =
1√(

q̄Ti û1

)2
+
(
q̄Ti û2

)2 [(q̄Ti û1

)
û1 +

(
q̄Ti û2

)
û2

]
. (76)

Estimation of the Angular Velocity Magnitude

Using Eq. 48, and assuming that all q̂i belong to the plane P̂(û1, û2), then we can write q̂i in the form:

q̂i =
[
cos Ω∆ti

2 · I + sin Ωδit
2 · −̂→ω⊗

]
q̂1, (77)

where ∆ti = ti − t1, ∀i ∈ {1, · · · , n}. If we post-multiply q̂i by q̂−1
1 ⊗ û1, we get:

q̂
i
, q̂i ⊗ q̂−1

1 ⊗ û1 = cos
Ω∆ti

2
· û1 + sin

Ω∆ti
2
· −̂→ω ⊗ û1 (78)

= cos
Ω∆ti

2
· û1 + sin

Ω∆ti
2
· û2 (79)

Based on Eq. 79, the following holds:

q̂T
i
û1 = cos

Ω∆ti
2

, q̂T
i
û2 = sin

Ω∆ti
2

. (80)
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Defining the angle Φi = Ω∆ti, then estimates for Φi can be obtained from:

Φ̂i = 2 · atan2
(
q̂T
i
û2, q̂

T

i
û1

)
. (81)

Theorem 4. Assume that qN =
[
cos θ2 eTN sin θ

2

]T
is a noise quaternion, where θ is a zero-mean gaussian

random variable with E[θ2] = σ2
θ , and eN ∈ R2 is a unit vector uniformly distributed in the 3D sphere.

Also, define a plane P(qI , qv) as the hyperplane spanned by the unit vectors qI (identity quaternion) and
qv ,

[
0 vT

]T
with v ∈ S2 such that qTv qI = 0. Now, assume that qNp ∈ P(qI , qv) is the quaternion

that belongs to P(qI , qv) and is closest to qN such as in Theorem 1. Then, if we assume the small angle
approximation on θ = 0, the quaternion qNp has the form:

qNp =

[
cos Φ

2

v sin Φ
2

]
, (82)

where Φ has the approximate statistics E[Φ] = 0, and σ2
Φ , E[Φ2] = 1

3σ
2
θ .

Proof. According with Theorem 1, qNp is given by:

q̂Np =
1√(

qTNqI
)2

+
(
qTNqv

)2 [(qTNqI) qI +
(
qTNqv

)
qv
]

=
1√(

qTNqI
)2

+
(
qTNqv

)2
[
qTNqI
v · qTNqv

]
(83)

Comparing Eq. 83 with Eq. 82, we get that:

cos
Φ

2
=

qTNqI√(
qTNqI

)2
+
(
qTNqv

)2 (84)

From the definition of the identity quaternion (Eq. 21), we get that qTNqI = cos θ2 . In addition, we have that
qTNqv = eTNv sin θ

2 . Defining γ as the angle between the vectors eTN and v, then we can define cos γ , eTNv.
Given that eN is uniformly distributed in a 3D sphere, then Appendix A shows that cos γ ∼ U [−1, 1].
Therefore, we have that qTNqv = cos γ sin θ

2 . Plugging these values into Eq. 84, and performing Taylor series
expansion on both sides around Φ = 0 and θ = 0, we get to:

cos
Φ

2
=

cos θ2√
cos2 θ

2 + cos2 γ sin2 θ
2

(Taylor Series on both sides) (85)

1− Φ2

8
≈ 1− cos2 γ

θ2

8
(86)

Inspecting Eq. 86, we can approximate Φ ≈ θ · cos γ. Therefore, we have that E[Φ] = E[θ]E[cos γ] = 0
and E[Φ2] = E[θ2]E[cos2 γ] = 1

3σ
2
θ .

If we assume the model:

Φi = Φ0 + Ω∆ti =
[
1 ∆ti

] [Φ0

Ω

]
, (87)

and using the result from Theorem 4 for the distribution of Φ̂i ∼ N
(
Φi,

1
3σ

2
θ

)
, then we can perform the least

squares estimation:

X̂ ,

[
Φ̂0

Ω̂

]
=
(
HTP−1

Φ H
)−1

HTP−1
Φ Φ̂, (88)
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where:

H ,

[
1 · · · 1

∆t1 · · · ∆tn

]T
, Φ̂ ,

[
Φ̂1 · · · Φ̂n

]T
, PΦ , diag

(
1
3σ

2
θ , · · · , 1

3σ
2
θ

)
. (89)

The covariance matrix of the estimate X̂ is given by:

cov[X̂] =
(
HTP−1

Φ H
)−1

=
1

3
σ2
θ

(
HTH

)−1
. (90)

Algorithm Summary

In this section, we summarize the algorithm steps for QuateRA.

1. Construct the measurement matrix Q̄ as in Eq. 49 and calculate Z̄ = Q̄Q̄T .

2. Compute the SVD Z̄ = ÛΣ̂ÛT . The plane of rotation is defined by the first two columns of Û =[
û1 û2 û3 û4

]
.

3. The optimal axis of rotation is defined as in Eq. 75: ω̂ = û2 ⊗ û−1
1 .

4. Compute the optimally estimated quaternions q̂i, i ∈ {1, · · · , n} on the plane P̂(û1, û2) using Eq. 76.

5. For each quaternion q̂i on the plane P̂(û1, û2), compute the quaternion angle within the plane Φ̂i using
Eqs. 78-81.

6. Estimate the angular velocity Ω̂ and its associated covariance using Eqs. 88 and 89.

QuateRA Analysis

In this section, we provide some analysis and insights about the derivation of QuateRA.

First of all, our algorithm pursues the minimization of the TLS cost function (Eq. 51). In order to use such
cost function, we assumed that it wasn’t necessary to normalize the measured quaternions into a form whose
covariance is the identity matrix. Our assumption was based on the fact that the normalization would just be
approximately a vector scaling. This approximation could have dangerous implications, since classical TLS
formulation assumes measurements whose covariance are of the type σ2I , with some σ ∈ R>0 [29]. This
means that our assumption could jeopardize the final results, including the strong consistency (asymptotic
unbiasedness) property related to TLS problems. However, as we will show in our Monte Carlo analysis,
QuateRA is close to unbiased for the noise values under consideration.

An assumption made in QuateRA is that x ,
(
q̄Ti û1

)2
+
(
q̄Ti û2

)2 ≈ 1, which implies a small angle
approximation for the quaternion measurement noise of Eq. 29. This approximation is used to reach the final
optimization problem (Eq. 71), which has a closed form solution through SVD (no need for any iterative
nonlinear programming). The downside of this approximation is that we cannot guarantee that the SVD
solution is also the minimizer for the original TLS cost function Eq. 51 under high measurement noise. It is,
however, still the maximizer for the cost function of Eq. 68.

The quaternion averaging problem described in Ref. [17] is a special solution for the problem herein
presented. Note the similarity between the cost function in Eq. 69 with respect to Eq. 12 within Ref. [17]
when all the weights are unity. This implies that û1 has the geometric meaning of an average quaternion
among all the measurements.
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QUATERA MONTE CARLO ANALYSIS

This section provides a Monte Carlo analysis of QuateRA, endorsing the statistical properties derived in
the previous sections. We perform extensive simulations for multiple values of n (number of measurements)
and σθ (standard deviation for the angle in the noise quaternion).

In all simulations, we used an angular velocity with magnitude Ω = 0.1rad/s, direction −→ω =
1√
3

[
1 1 1

]T
, and measurements are taken once every 0.1 seconds. The standard deviation for the mea-

surement noise are chosen† as σθ = 1°, σθ = 2°, σθ = 3°, σθ = 4°, and σθ = 5° (large values, when
compared to star-tracker technology). The number of measurements range from n = 5 to n = 50 in incre-
ments of 5. Each Monte Carlo result is obtained after nMC = 10000 executions. We denote −→ω⊥ ∈ S2 as an
arbitrary unit vector perpendicular to −→ω , i.e., −→ω T−→ω⊥ = 0.

In order to evaluate the AOR estimation, we calculate the mean and standard deviation of the estimated

AOR −̂→ω along −→ω⊥. Defining −̂→ω
T

i as the estimation of −→ω at the ith Monte Carlo trial, and ei⊥ , −̂→ω
T

i
−→ω⊥ as

the respective projected error, then the mean µ⊥ and variance σ2
⊥ for ei⊥ is calculated as:

µ⊥ ,
1

nMC

nMC∑
i=1

ei⊥, σ2
⊥ ,

1

nMC − 1

nMC∑
i=1

(
ei⊥ − µ⊥

)2
. (91)

A sample mean around µ⊥ = 0 indicates that the AOR is an unbiased estimator. The standard deviation
has to belong to the range 0 < σ⊥ ≤ 1/

√
3 ≈ 0.5774, where σ⊥ → 1/

√
3 indicates that the estimator is

obtaining solutions uniformly distributed in the unit sphere (see Appendix A). In our experience, the AOR
estimator provides acceptable estimates when σ⊥ ≤ 0.1. Figure 1 presents the Monte Carlo results for the
AOR estimation, indicating that the estimator is asymptotically unbiased (as usual in TLS problems) and that
the standard deviations satisfy σ⊥ ≤ 0.1 for a sufficiently large set of measurements. For instance, one would
need approximately n = 12 measurements if σθ = 1°, n = 20 for σθ = 2°, n = 25 for σθ = 3°, n = 30 for
σθ = 4°, and n = 35 for σθ = 5°.

Figure 1. Sample Mean and Standard Deviation of the projection of the estimated
AOR along a direction perpendicular to the true AOR. Results are shown as a function
of the number of measurements (x axis) and the standard deviations σθ (different
plots).

In order to evaluate the AVM estimation, we define the AVM error as eiΩ , Ω̂i − Ω, where Ω̂i is the
†Note that the values chosen for σθ are extremely large when compared to Star Tracker technology. The analysis of this section would

be quite uninteresting for σθ values expected for Star Trackers, since QuateRA’s performance would not change much as a function of
the number of measurements n.
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estimated AVM for the ith Monte Carlo execution. We calculate the mean µΩ and variance σ2
Ω of eiΩ as:

µΩ ,
1

nMC

nMC∑
i=1

eiΩ, σ2
Ω ,

1

nMC − 1

nMC∑
i=1

(
eiΩ − µΩ

)2
. (92)

Figure 2 shows that the mean error µΩ converges to zero as the number of measurements n increase. The
standard deviation also decreases as n increases. One should be aware that these solutions only make sense
if the AOR make sense, i.e., if σ⊥ is small enough (we determine heuristically that σ⊥ ≤ 0.1 is a reasonable
rule of thumb).

Figure 2. Sample Mean and Standard Deviation of the estimated AVM error. Results
are shown as a function of the number of measurements (x axis) and the standard
deviations σθ (different plots).

We denote the average estimated covariance for Ω̂i as σ̂2
Ω, where the covariance is estimated using Eq. 90.

Figure 3 shows the average percentage error PEΩ of the estimated standard deviation σ̂Ω w.r.t. the sample
standard deviation σΩ: PEΩ , σ̂Ω−σΩ

σΩ
. Figure 3 indicates that the estimated standard deviation is consistent

with the sample standard deviation provided that the number of measurements n is large enough. If we desire
|PEΩ| < 3%, Figure 3 shows that one needs n > 10 if σθ = 1°, n > 15 if σθ = 2°, n > 20 if σθ = 3°,
n > 25 if σθ = 4°, and n > 35 if σθ = 5°.

Figure 3. Percentual error of the average estimated standard deviation for Ω̂i w.r.t.
the sample standard deviation for Ω̂i. Results are shown as a function of the number
of measurements (x axis) and the standard deviations σθ (different plots).

CONCLUSIONS

This work presented a batch estimation procedure for the determination of a constant angular velocity from
quaternion measurements. In the constant angular velocity scenario, we show that the orientation quaternion
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evolves without departing from a fixed plane of rotation. With this insight, we are able to estimate the axis of
rotation. Given the plane of rotation, the quaternions can be reprojected onto this plane, being parametrized
as a single evolving angle on the plane. The angular velocity magnitude is then estimated from the evolution
of the quaternion angle on the plane.

We motivate our solution by contrasting the Least Squares solution with the Total Least Squares one for the
trivial problem of estimating translational velocity from cartesian position measurements. The Least Squares
(LS) solution is the best estimator for this case (in the Minimum Mean Squared Error sense), but the Total
Least Squares (TLS) performs asymptotically similar to LS as the number of measurements increase. We
were able to propose a TLS-based estimator for determining constant angular velocity from n orientation
measurements, whose performance is acceptable for large sample sets. Since there is no LS solution to the
same problem (to the best of our knowledge), we can’t verify that the TLS solution performs as well as the
LS one as n increases.

As we show in our Monte Carlo section, the performance of the Quaternion Regression Algorithm (Quat-
eRA) is a function of n and the expected amplitude of the measurement noise. Our results indicate asymptotic
unbiasedness of QuateRA, and we are able to accurately determine the standard deviation of the AVM es-
timation for sufficiently large sample sets. For a fixed σθ, one can determine the meaning of sufficiently
large by stating desired values for σ⊥ (the standard deviation of the estimated axis projected along a direction
perpendicular to the true angular velocity direction), σΩ (standard deviation of the estimated angular velocity
magnitude), and expected bounds for |PEΩ|.

Our earlier contributions have already demonstrated the application of preliminary versions of QuateRA for
estimating a non-constant angular velocity. These works made use of adaptive sliding windows to estimate the
time-varying Axis of Rotation (AOR), while the Angular Velocity Magnitude (AVM) was either estimated
through a lowpass-filtered dirty derivative or through a modified MEKF. These works introduced tuning
parameters for adapting the size of the sliding window and for tuning the AVM estimator. In contrast, the
current work presents a method for estimating the AVM that is free of tuning parameters, and it does produce
a covariance estimate for the AVM (provided a sufficiently large sample set). These contributions are relevant
for the overall problem of estimating a time-varying AOR without the need for heuristic tuning.

We should highlight that a weakness within QuateRA is that we were not able to determine the covariance
associated with the estimated AOR. Classically, it is possible to estimate asymptotic covariances for TLS
solutions provided that the solution is unique. As shown in Theorem 2, the TLS solution for this problem
is not unique and we cannot determine the covariance of û1 and û2 using classical methods in TLS. Since
the AOR estimate is determined from û1 and û2, computing the covariance of the estimated AOR is not
trivial. Deriving the AOR covariance would be a meaningful contribution for future work. Alternatively,
practitioners can estimate the AOR covariance through Monte Carlo simulations as follows: given a sensor
with measurement noise covariance σ2

θ , the covariance of the AOR can be recorded into a lookup table as a
function of the number of measurements n (similar to what was done in Figure 1).

Another interesting path for future work would be to expand QuateRA for different measurement weights.
Also, we have assumed that the axis of the noise quaternion is distributed in a uniform spherical distribution,
whereas this is not always true. For instance, Star Trackers typically have different covariances associated
with the roll, pitch and yaw directions. Hence, it would also be meaningful to adapt QuateRA to accommodate
for a more accurate measurement model.

APPENDICES

APPENDIX A: STATISTICS OF THE SPHERICAL UNIFORM DISTRIBUTION

In this section we prove that if e ∈ S2 is a unit vector uniformly distributed in the 3-D unit sphere, then:
E[e] = 0 and E[eeT ] = 1

3I .

Assume a unit radius sphere and a cylinder of radius r = 1 and height h = 2. According with Archimedes’
Hat-Box Theorem [9], if we slice both the cylinder and the sphere at the same height as shown on Fig. 4,
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then the lateral surface area of the spherical segment (S1) is equal to the lateral surface area of the cylindrical
segment (S2).

S1 S2

Figure 4. Illustration of Archimedes’ Hat-Box Theorem.

More specifically, the surface area S of the cylinder parametrized with radius r = 1 and height h = 2
is the same as the unit-radius sphere, i.e, S = 4π. A commonly used method [30] to generate uniformly
distributed samples on a sphere e ∈ S2 is to uniformly sample a point in the cylinder through a height value
z ∼ U [−1, 1], and an angle value φ ∼ U [−π, π], and then map it to the sphere through the transformation:

e =
[√

1− z2 cos(φ)
√

1− z2 sin(φ) z
]T
. (93)

The transformation of Eq. 93 guarantees that areas in the cylinder are preserved in the sphere after the
projection. Therefore, if a random variable is uniformly distributed in the prior space (cylindrical space),
then it should still be uniformly distributed in the posterior space (spherical space).

Denoting Pz(x) and Pφ(x) as the probability distributions of the scalar variables z and φ respectively,
then:

E[z] =

∫ 1

−1

xPz(x) dx =
1

2

∫ 1

−1

x dx =
1

4
x2
∣∣∣1
−1

= 0, (94)

E[z2] =

∫ 1

−1

x2Pz(x) dx =
1

2

∫ 1

−1

x2 dx =
1

6
x3
∣∣∣1
−1

=
1

3
, (95)

E[1− z2] = 1− 1

3
=

2

3
, E[cosφ] = 0, E[sinφ] = 0, E[cosφ sinφ] = 0 (96)

E[cos2 φ] =

∫ π

−π
cos2 xPφ(x) dx =

1

2π

∫ π

−π
cos2 x dx =

1

8π
(2x+ sin 2x)

∣∣∣π
−π

=
1

2
(97)

E[sin2 φ] =

∫ π

−π
sin2 xPφ(x) dx =

1

2π

∫ π

−π
sin2 x dx =

1

8π
(2x− sin 2x)

∣∣∣π
−π

=
1

2
(98)

Therefore, given that z and φ are independently distributed, we have that:

E[e] =

E[
√

1− z2 cos(φ)]

E[
√

1− z2 sin(φ)]
E[z]

 =

E[
√

1− z2]E[cos(φ)]

E[
√

1− z2]E[sin(φ)]
E[z]

 =

0
0
0

 , (99)

E[eeT ] = E

 (1− z2) cos2 φ (1− z2) cosφ sinφ (1− z2)z cosφ

(1− z2) cosφ sinφ (1− z2) sin2 φ (1− z2)z sinφ
(1− z2)z cosφ (1− z2)z sinφ z2

 =
1

3
I. (100)
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