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NONLINEAR FILTERING OF LIGHT-CURVE DATA

Sehyun Yun∗and Renato Zanetti†

A particle filter with an expectation-maximization (EM) clustering algorithm for Gaussian
mixture models (GMMs) is proposed to simultaneously estimate the position, velocity, atti-
tude, angular rates, and surface parameters of a space object (SO) in the near-Geostationary
Earth Orbit (GEO). Recent work shows that the unscented Kalman filter applied to this
problem diverges due to information dilution in the presence of many uncertain states to be
estimated at once. The underlying reasons of the filter divergence have not yet been com-
pletely revealed. Under the scenario considered in this paper, it is demonstrated through
numerical simulation that the underlying reason for the filter divergence in SO tracking is
due to the severe nonlinearities of light-curve measurement data coupled with weak observ-
ability; rather than information dilution. In addition, two alternative estimation techniques
based on modifications of the extended Kalman filter (EKF) and unscented Kalman filter
(UKF) are introduced to reduce the computational burden while still mitigating filter diver-
gence.

INTRODUCTION

Space situational awareness (SSA) refers to a knowledge of our near-space environment, including the
tracking and identification of all space objects (SOs) orbiting Earth. This task encounters many challenges
and one of them is due to the fact that only a limited number of sensors are available to track and identify an
ever growing number of SOs. To extract as much information as possible from the sparse data, sophisticated
techniques need to be used to estimate and predict the states of SOs. Precise models of non-gravitational
forces acting on SOs are needed for accurate orbit prediction and propagation. Solar radiation pressure
(SRP) is the main non-gravitational force acting on SOs in the near-Geostationary Earth Orbit (GEO) and it
can be modeled using the shape and reflectivity properties of the body.1, 2

Light curve data, which is an object’s observed brightness, have been used to analyze attitude observability
and to estimate the shape and attitude of SOs.3–6 Since light curve observations are sensitive to the object’s
surface parameters, they can also be estimated from light curve data.7 Furthermore, it is shown that the
space object mass as well as the position, velocity, angle, angular velocity and surface parameters can be
estimated by fusing the two data types, the angles (line-of-sight) and apparent brightness magnitude of an
object.8 Estimation of this many parameters with relatively little observations variety, however, has been
shown to cause diverged in an Unscented Kalman filter when too many states with large uncertainty are
estimated simultaneusly.9 Ref. 9 attributes the divergence to information dilution.10

According to the information dilution theorem (IDT), when additional biases are added to an estimation
problem, it is possible that the uncertainties of the original states in the model increase.11 Moreover, filter
divergence may occur because the limited information is not being used in the most proper way.9 To re-
solve the information dilution problem in the context of SO tracking, multiple-model adaptive estimation
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(MMAE) and unscented Schmidt-Kalman filter were proposed to determine which states should be esti-
mated.12, 13 Ref. 12 quantifies system observability with the information matrix of an estimator and uses
the system observability to determine which states should be estimated and when sufficient information ex-
ists to estimate additional states. Ref. 13 uses an unscented Schmidt-Kalman filter algorithm based on the
physical relationship between SRP and ovserved albedo-area to find low observable states and to take only
their uncertainties without estimating them. Nevertheless, the underlying reasons of the filter divergence in
Ref. 9 have not yet been completely studied. In this paper, we demonstrate that the divergence does occurs
because of severe nonlinearities coupled with weak observability. The system is studied using three differ-
ent estimation techniques: a newly proposed modification of particle filter with Gaussian mixture models
(PFGMM),14 the truncated interval unscented Kalman filter (TIUKF),15 and the truncated extended Kalman
filter (TEKF).16

The first approach is a modification of Ref. 14 which employs an expectation-maximization (EM) clus-
tering algorithm for Gaussian Mixture models (GMMs). This modification overcomes issues encountered
when applying to this problem two existing particle/GMM hybrid algorithms, Refs. 17 and 14. Ref. 17
suggests a new sequential Monte Carlo algorithm which treats each particle of the distribution at the prior
time as a Gaussian component with a collapsed zero covariance matrix so that the Gaussian sum filter
(GSF) algorithm is used to calculate the posterior distribution. Still, a better GMM approximation of the
probability density function (PDF) can be thought by choosing nonzero optimal covariance for each of the
components. Ref. 14 introduces the particle Gaussian mixture filter (PGMF) and employs an ensemble of
randomly sampled states for the propagation of the conditional state probability density. The propagated
ensemble for representing the propagated PDF is clustered using K-means algorithm. While K-means is a
simple approach to clustering, it does not produce adequate results for the problem at hand. First, since the
K-means algorithm performs a hard assignment of data points to clusters, which means each data point is
associated uniquely with one cluster, it uses only the points in the same cluster to update each mean. Sec-
ond, the K-means algorithm does not account for covariance. The K-means algorithm can be interpreted as
a special case of GMMs clustering in which all mixture weights are equal and the covariance matrices of the
mixture components are given by ξI , where ξ is a variance parameter and I is the identity matrix. The EM
algorithm for GMMs used in this paper performs a soft assignment based on the posterior probabilities, thus
obtaining the proper covariance of the components. In addition, to this new nonlinear approach, the mod-
ified unscented Kalman filter (UKF) and extended Kalman filter (EKF) are shown to successfully mitigate
the filter divergence issues while reducing the overall computational complexity.

The remainder of this paper is organized as follows. First, the dynamics and measurement models are
described and the filter states are presented. Then, the various nonlinear estimation techniques are introduced
in section III. In section IV, simulation results are shown using five filtering algorithms followed by some
concluding remarks on the methodology and results.

SYSTEM MODELS

In this paper, the inertial position and velocity of SOs are denoted by rI = [x y z]T and vI = [vx vy vz]
T,

respectively. The quaternion, which is based on the Euler axis of rotation n and rotation angle θ, is defined
as q =

[
sin(θ/2)nT cos(θ/2)

]T
=
[
%T q

]T and the angular velocity of the SO with respect to the inertial
frame, expressed in body frame, is denoted by ωBB/I = [ωx ωy ωz]

T.

Dynamics Model

The orbital dynamics of SO in Earth-centered inertial (ECI) coordinates are modeled by

r̈I = − µ
r3
rI + aIJ2 + aIsrp (1)
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where µ is the Earth’s gravitational parameter, r is the Euclidean norm of rI , aIJ2 is the gravitational pertur-
bation due to non-spherical nature of Earth, and aIsrp is the acceleration perturbation due to SRP.

The J2 perturbation acceleration equation computes the three component forces in the ECI frame.

ẍ = F
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)2(RE
r

)2
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where J2 is the second zonal harmonic coefficient and RE is the Earth’s equatorial radius. Higher order
spherical harmonics are neglected without loss of generality. At geosynchrounous distances, the J2 term
is almost negligible and higher order spherical harmonics are not needed to demonstrate the efficacy of the
proposed methodologies.
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Figure 1: Geometry of reflection

SRP represents the primary non-gravitational force acting on SOs in GEO and the acceleration due to
SRP is modeled using the shape of the body. In this paper, it is assumed that the shape model consists of
a finite number of flat facets; the ith facet is defined by a set of three orthonormal basis vectors uBu , uBv ,
and uBn expressed in the body coordinates. The unit vector uBn points outward normal of the facet, whereas
the vectors uBu and uBv lie in the plane of the facet. The geometry of the modeled reflection is shown in
Figure 1. The acceleration perturbation due to SRP is then given by:9

aIsrp =

Nfacets∑
i=1

aIsrp(i) (6)

aIsrp(i) = −
SFA(i)

(
uIn(i) · uIsun

)
mc

(
(1− sF0)u

I
sun +

(
2

3
dρ+ 2sF0

(
uIn(i) · uIsun

))
uIn(i)

)
(7)
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where Nfacets is the number of facets, SF is the solar flux, m is the mass of the SO, c is the speed of light,
and A(i) is the area of the ith facet. The unit vector uIn(i) is the normal vector pointing outward along the
ith surface and uIsun is the unit vector pointing from the SO to the Sun. Scalars s and d are the fraction
of the specular bidirectional reflectance Rs and the diffuse bidirectional reflectance Rd, respectively, where
s+ d = 1. F0 and ρ are the specular and diffuse reflectance of the facet i at normal incidence, respectively.

Since passive rotations are most commonly used in aerospace engineering applications,18 a passive rota-
tion matrix (which is the same as the direction cosine matrix, DCM) is used as the attitude matrix represen-
tation in this study. In the passive description, the relationship between the vector vB in the body frame and
the vector vI in the inertial frame is described by the attitude matrix A(q) such as

vB = A(q)vI (8)

and the attitude matrix can be parameterized in terms of the quaternion as follows:

A(q) = I3×3 − 2q[%×] + 2[%×]2 (9)

where

[a×] =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (10)

is the skew-symmetric matrix representation of the cross product for a vector a. The quaternion dynamic
equation is given by

q̇ =
1

2
Ω · q (11)

where

Ω =


0 ωz −ωy ωx
−ωz 0 ωx ωy
ωy −ωx 0 ωz
−ωx −ωy −ωz 0

 (12)

is the skew-symmetric form of the body rotation about the inertial frame. The angular velocity dynamic
equation is expressed as follows:

ω̇BB/I = J−1SO

(
TBsrp −

[
ωBB/I×

]
JSOω

B
B/I

)
(13)

where JSO is the inertia matrix of the SO and TBsrp is the total torque acting on the SO due to SRP in body
frame. The force due to SRP can be assumed to act on the centroid of each surface. Then, the total torque is
calculated by

TBsrp = m

Nfacets∑
i=1

[
lB(i)×

]
A(q)aIsrp(i) (14)

where lB(i) is the position vector from the center of the mass of the SO to the geometric center of the ith

facet in body frame.

Measurement Model

Angle data in the form of azimuth (az) and elevation (el) are measures used to estimate the states of SO.
The angle observation equations are expressed as follows:

az = tan−1
(
ρE
ρN

)
(15)

el = sin−1
(
ρU

‖dI‖

)
(16)
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where ρEρN
ρU

 =

1 0 0
0 cos(π2 − λ) sin(π2 − λ)
0 − sin(π2 − λ) cos(π2 − λ)

 cos(π2 + θ) sin(π2 + θ) 0
− sin(π2 + θ) cos(π2 + θ) 0

0 0 1

dI (17)

where dI is the position vector from an observer to the SO, ‖ · ‖ means the Euclidean norm, θ and λ are
the sidereal time and geodetic latitude of the observer, respectively, and [ρE ρN ρU ]T is the position vector
converted from the inertial to the local system coordinates (East-North-Up).

Along with the azimuth and elevation, the light curves, which are the time-varying apparent brightness
measurements of the SO, are also used. The apparent brightness magnitude measured by the observer is
computed by

mapp = −26.7− 2.5 log10

∣∣∣∣∣∣
Nfacets∑
i=1

fr(i)A(i)
(
uIn(i) · uIsun

) (
uIn(i) · uIobs

)
‖dI‖2

∣∣∣∣∣∣ (18)

where -26.7 is the apparent magnitude of the Sun, uIobs is the unit vector pointing from the SO to the
observer, and fr(i) is the bidirectional reflectance distribution function (BRDF) for the ith facet. The BRDF
models light distribution of a surface due to incident light and it is a function of two directions, one toward
the light source and one toward the observer.5, 19 The BRDF can be decomposed into a specular component
and a diffuse component as follows:

fr(i) = sRs(i) + dRd(i) (19)

The specular reflectance is mirror-like and the diffuse reflectance is Lambertian which means that light is
equally reflected in all directions. These bidirectional reflectances are calculated differently for the various
models. In this paper, we use a modified version of the Phong model with a simple form of a non-Lambertian
diffuse reflectance.19 Under the flat facet assumption, the specular bidirectional reflectance is given by

Rs(i) =

√
(nu(i) + 1) (nv(i) + 1)

8π

(
uIn(i) · uIh

)nu(i)(uI
u(i)·uI

h)
2
+nv(i)(uI

v(i)·uI
h)

2

uIn(i) · uIsun + uIn(i) · uIobs − (uIn(i) · uIsun)
(
uIn(i) · uIobs

)F (i)

(20)
where nu(i) and nv(i) are the anisotropic reflectance properties of the ith surface along the uBu (i) and uBv (i)
directions, respectively. Without loss of functionality, in this study they are assumed to be set equal to each
other for the sake of simplicity (nu(i) = nv(i) = n(i)). Then, Eq. (20) is simplified as follows:

Rs(i) =
(n(i) + 1)

8π

(
uIn(i) · uIh

)n(i)
uIn(i) · uIsun + uIn(i) · uIobs − (uIn(i) · uIsun)

(
uIn(i) · uIobs

)F (i) (21)

where uIh is the normalized half vector which bisects the angle between uIsun and uIobs:

uIh =
uIsun + uIobs
‖uIsun + uIobs‖

(22)

and the Fresnel reflectance F (i) is approximated as

F (i) = F0(i) +

(
1

s
− F0(i)

)(
uIsun · uIh

)
(23)
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The diffuse bidirectional reflectance is calculated as follows:

Rd(i) =
28ρ

23π
(1− sF0)

[
1−

(
1− u

I
n(i) · uIsun

2

)5
][

1−
(

1−
uIn(i) · uIobs

2

)5
]

(24)

The apparent magnitude is measured differently mainly depending on the SO attitude and it has the highest
value when the surface normal vector uIn and the half vector uIh are in the same direction. The various
values of apparent magnitude depending on the SO attitude are analyzed in Ref. 3.

Filter States

In this paper, it is assumed that the shape of the SO is a cube and each facet of it has the same BRDF
surface parameters. The area and mass of the SO are assumed to be known. In addition, the specular
reflectance F0 and diffuse reflectance ρ at normal incidence can be set to be equal to each other because
the difference between specular and diffuse reflectance can be expressed by specular s and diffuse fraction
parameter d. Thus, the three unique surface parameters to be estimated are n. ρ, d, and the obey the
following constraints:

n < 0, 0 ≤ ρ ≤ 1, 0 ≤ d ≤ 1, s+ d = 1

Therefore, the state vector utilized is:

x =

[
qT

(
ωBB/I

)T (
rI
)T (

vI
)T

n ρ d

]T
(25)

NONLINEAR ESTIMATION TECHNIQUES FOR HIGHLY NONLINEAR SYSTEMS

This section presents the three different estimation algorithms used to analyze the problem at hand: parti-
cle Gaussian mixture filter with an EM algorithm, truncated interval unscented Kalman filter, and truncated
extended Kalman filter.

Particle Gaussian Mixture Filter with an EM Algorithm

The particle filter (PF) with an EM clustering algorithm for GMMs is proposed in this section. A recur-
sive algorithm is used, i.e. knowledge of the distribution p(xk−1|yk−1) at the prior time is assumed and
approximated by N identically distributed (i.i.d.) samples x(i)

k−1 such that

p(xk−1|yk−1) ≈
N∑
i=1

1

N
δ(xk−1 − x

(i)
k−1) (26)

where k is an integer that indicates the discrete time step, y is a measurement vector, and δ(·) is the Dirac
delta function. As in the bootstrap particle filter,20 a set of samples at the next time step is generated using
the Markov transition kernel p(xk|xk−1). Throughout this research, SRP and J2 are the only perturbations
included and additional process noise is neglected. This is a particularly challenging assumption, as particle
filters typically rely on process noise to overcome impoverishment.

The next step is to cluster the data into Gaussian mixtures using an EM clustering algorithm. The EM
algorithm for GMM approximates the PDF of xk by combining several Gaussian components having differ-
ent means, covariance matrices, and weights. With the i.i.d. data set, the likelihood function for the GMM
is expressed by

p(xk|π, µ,Σ) =

N∏
i=1

K∑
j=1

πjn(x
(i)
k |µj ,Σj) (27)
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where K is a preassigned number of clusters, n(x|µ,Σ) represents the Gaussian PDF with mean µ and
covariance Σ; and µj , Σj , and πj are the means, covariance matrices, and weights of the jth Gaussian
component. The PDF’s normalization and positivity properties lead to the following constraints on the
weights:

πj ≥ 0, ∀j
K∑
j=1

πj = 1 (28)

The goal of the EM clustering algorithm is to maximize the likelihood function with respect to the cluster-
ing parameters which are means and covariance matrices of the components, as well as the weights. The
algorithm is summarized as follows:

1. Initialize the means µj , covariance matrices Σj and weights πj , and evaluate the initial value of the
log likelihood.

lnp(xk|π, µ,Σ) =
N∑
i=1

ln

 K∑
j=1

πjn(x
(i)
k |µj ,Σj)

 (29)

2. (E step) Evaluate the responsibilities using the current clustering parameter values.

γ(z
(i)
j ) = p(z

(i)
j = 1|x(i)

k ) =
πjn(x

(i)
k |µj ,Σj)∑K

m πmn(x
(i)
k |µm,Σm)

(30)

where γ(z
(i)
j ) is the responsibility of a sample i with respect to a jth Gaussian distribution.

3. (M step) Estimate the new clustering parameters using the current responsibilities to maximize the
likelihood. (The following equations are derived in Ref. 21)

µj =

∑N
i=1 γ(z

(i)
j )x

(i)
k∑N

i=1 γ(z
(i)
j )

(31)

Σj =

∑N
i=1 γ(z

(i)
j )(x

(i)
k − µj)(x

(i)
k − µj)

T∑N
i=1 γ(z

(i)
j )

(32)

πj =
1

N

N∑
i=1

γ(z
(i)
j ) (33)

4. Evaluate the value of the log likelihood and check for convergence of it. If the convergence criterion is
not satisfied, replace the old clustering parameters with the new ones and return to step 2.

In this paper all components of the GMM are taken with the same covariance matrix, this assumption
avoid the GMMs from being too overlapped, while not enforcing hard clustering as in K-means.

Finally, we can incorporate the measurement information by updating the means and covariance matrices
of all K components using Kalman measurement update. The mixture weights need to be updated as well
using the components likelihood functions. We then draw N i.i.d. samples from the posterior distribution;
from these samples, we construct a Bayesian estimate and use them as a starting point for the next iteration.
The details of the measurement update and the method to draw N i.i.d. samples from a GMM are explained
in Ref. 17.

Two approaches to enforce the surface parameters constraints are evaluated. The first approach is to
modify them to unconstrained proxy values. For this study, the same conversion equation used in Ref. 9 is
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applied to convert the surface parameters to the corresponding proxy value and vice versa:

p1 = ln(n), n = exp(p1) (34)

p2 =
1

2
ln
(

ρ

1− ρ

)
, ρ =

1

2
(tanh(p2) + 1) (35)

p3 =
1

2
ln
(

d

1− d

)
, d =

1

2
(tanh(p3) + 1) (36)

Alternatively, rather than transforming the surface parameters, we can modify the filter to exploit the addi-
tional information on the constraints and improve the performance of the filter. In this paper, we use the
modified rejection-sampling approach which enforces the constraints by simply discarding the particles vi-
olating them in the prediction step. Although the number of total samples will be reduced, it is shown that
the algorithm maintains the generic properties of the PF.22

The filter’s density, under the assumption of a perfect clustering scheme, converges in probability to the
true filter density.14 The other two approaches studied are based on the constrained UKF and EKF with the
PDF truncation approach, which are computationally cheaper and will be presented in the following two
subsections.

Truncated Interval Unscented Kalman Filter

The UKF is a linear estimator for nonlinear systems which employs statistical linearization of nonlinear
functions through a set of sigma points.23 The most common schemes to calculate sigma points effectively
employs the Gaussian approximation.24 The truncated interval unscented Kalman filter (TIUKF) is used in
this study to include the inequality constraints on the surface parameters. The TIUKF is composed of two
parts: the interval constrained approach which enforces the sigma points interval constraints and the PDF
truncation approach which truncates the PDF at the constraint edges.15, 25, 26

The generic nonlinear dynamics is given by

xk+1 = fk(xk) + νk (37)

where k is the time step, xk is an nx × 1 vector, fk is some nonlinear function, and the process noise νk is
zero-mean white noise, albeit in this application it will be taken as zero. The measurement is

yk = hk(xk) + ηk (38)

where yk is a measurement vector, hk is some non-linear function, and ηk is the measurement noise con-
sisting of a zero-mean, white sequence with covariance matrixRk, independent from the initial distribution
of x0. In addition, assume that the state vector satisfies the interval constraint as follows:

bk ≤ xk ≤ ck (39)

where bk ∈ Rnx and ck ∈ Rnx are known vectors. If the state vector xi,k, where i = 1, · · · , nx, is
one-sided, we set bi,k = −∞ or ci,k =∞.

Given an nx × nx error covariance matrix P xxk|k, we generate the 2nx + 1 sigma points Xk|k holding

bk ≤ Xj,k|k ≤ ck, j = 0, · · · , 2nx. (40)

To satisfy the inequality constraints, the sigma points are chosen as follows:

Xk|k = x̂k|k11×(2nx+1) + [0nx×1, θ1,kcol1 [Sk] , · · · , θ2nx,kcol2nx [Sk]] (41)
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where x̂k|k is the a posteriori state estimate which is assumed to satisfy the interval constraints at time instant
k, 11×(2nx+1) is an indicator function,

Sk =

[(
P xxk|k

)1/2
−
(
P xxk|k

)1/2]
, (42)

and
θj,k = min

(√
nx + λU , Θ1, Θ2

)
, for j = 1, · · · , 2nx (43)

where, for i = 1, · · · , nx,

Θ1 = min
j:S(i,j),k>0

(
∞,

ci,k − x̂i,k|k
S(i,j),k

)
, Θ2 = min

j:S(i,j),k<0

(
∞,

bi,k − x̂i,k|k
S(i,j),k

)
, (44)

and λU = α2 (nx + κ) − nx is a scaling parameter. The constant α determines the spread of the sigma
points around x̂k|k and it is usually set to a small positive number (10−4 ≤ α ≤ 1). κ is a secondary scaling
parameter which is usually set to 3 − nx. Based on the above sigma points, the associated weights are
computed as follows:

Wm
0 = ek, W c

0 = ek +
(
1− α2 + β

)
(45)

Wm
j = W c

j = dkθj,k + ek, for j = 1, · · · , 2nx (46)

where the constant β is used to include prior knowledge of the distribution of x, and

dk =
2λU − 1

2 (nx + λU )
(∑nx

j=1 θj,k − (2nx + 1)
√
nx + λU

) (47)

ek =
1

2 (nx + λU )
− 2λU − 1

2
√
nx + λU

(∑nx
j=1 θj,k − (2nx + 1)

√
nx + λU

) (48)

The derivation of the weights equations is described in Ref. 25.

Figure 2 illustrates how the sigma points of the TIUKF are chosen compared to the sigma points of the
conventional UKF in two dimensional system. When the scaling parameters are α = 1, β = 2, and κ = 1,
and the interval constrains are bk = [3 2]T and ck = [8 8]T, the mean and covariance matrix of the TIUKF
are obtained as follows:

x̂UKF =

[
4
4

]
⇒ x̂TIUKF =

[
4.3717
4.2587

]
(49)

P̂ xxUKF =

[
3 0
0 3

]
⇒ P̂ xxTIUKF =

[
1.7122 0.0962
0.0962 1.8456

]
(50)

With the above sigma points, the time update equations are the same as the conventional UKF:

Xj,k+1|k = fk(Xj,k|k), j = 0, · · · , 2nx (51)

x̂k+1|k =

2nx∑
j=0

Wm
j Xj,k+1|k (52)

P xxk+1|k =

2nx∑
j=0

W c
j

[
Xj,k+1|k − x̂k+1|k

] [
Xj,k+1|k − x̂k+1|k

]T (53)
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(a) Sigma points and weights of UKF
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(b) Sigma points and weights of TIUKF

Figure 2: Comparison of the sigma points and weights in UKF and TIUKF

where x̂k+1|k is the a priori state estimate and P xxk+1|k is the a priori state estimation error covariance. With
the propagated estimates x̂k+1|k and P xxk+1|k, a new set of sigma points Xk+1|k of the TIUKF which satisfy
the interval constraints and the corresponding weights are recalculated. Then, the measurement update
equations are expressed as follows:

Yj,k+1|k = hk+1(Xj,k+1|k), j = 0, · · · , 2nx (54)

ŷk+1 =

2nx∑
j=0

Wm
j Yj,k+1|k (55)

P yyk+1|k =

2nx∑
j=0

W c
j

[
Yj,k+1|k − ŷk+1

] [
Yj,k+1|k − ŷk+1

]T
+Rk (56)

P xyk+1|k =

2nx∑
j=0

W c
j

[
Xj,k+1|k − x̂k+1|k

] [
Yj,k+1|k − ŷk+1

]T (57)

x̂k+1|k+1 = x̂k+1|k + P xyk+1|k

(
P yyk+1|k

)−1 (
yk+1 − ŷk+1

)
(58)

P xxk+1|k+1 = P xxk+1|k − P
xy
k+1|k

(
P yyk+1|k

)−1 (
P xyk+1|k

)T
(59)

where P xxk+1|k+1 is the a posteriori state estimation error covariance, P yyk+1|k is the measurement residual
covariance, and P xyk+1|k is the cross covariance.

We then perform the PDF truncation process. The constrained state estimate is the mean of the truncated
Gaussian PDF at the constraint edges. The state estimate is normalized in a way that its components are
statistically independent of each other to reduce computational effort to determine the truncated PDF. Then
the part of the Gaussian PDF which is outside of the constraints is removed. After all the constraints are
sequentially applied to the corresponding component, we then revert the normalization process to obtain the
constrained state estimate. The details of the algorithm are explained in Refs. 16 and 26.
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Truncated Extended Kalman Filter

The EKF is a nonlinear approximation of the Kalman filter that can be applied to nonlinear systems using
the same Kalman filtering framework. Given the system model, Eq. (37) and Eq. (38), the time update
equations are described as follows:

x̂k+1|k = fk(x̂k|k) (60)

P xxk+1|k = FkP
xx
k|kF

T
k (61)

Fk =
∂fk(x)

∂x

∣∣∣∣
x=x̂k|k

(62)

where Fk is the Jacobian of the dynamics evaluated at the posterior mean x̂k|k. The measurement update
equations are:

x̂k+1|k+1 = x̂k+1|k +Kk+1

(
yk+1 − hk+1(x̂k+1|k)

)
(63)

P xxk+1|k+1 = P xxk+1|k −Kk+1Wk+1K
T
k+1 (64)

Kk+1 = P xxk+1|kH
T
k+1W

−1
k+1 (65)

Wk+1 = Hk+1P
xx
k+1|kH

T
k+1 +Rk+1 (66)

Hk+1 =
∂hk+1(x)

∂x

∣∣∣∣
x=x̂k+1|k

(67)

where Hk+1 is the Jacobian of the measurement evaluated at the prior mean x̂k+1|k, Kk+1 is the Kalman
gain, and Wk+1 is the measurement residual covariance. The PDF truncation step which is explained in the
previous subsection is then applied to the truncated extended Kalman filter (TEKF).16

Despite of the additional information on the constraints, the severe nonlinearities of the system can lead to
divergence of the TEKF. For example, the approximation error caused by truncating the nonlinear functions
to the first-order (e.g. Eq. (62) and Eq. (67)) can be significant. It is well-known that when measurement
noise is small while the a priori uncertainty of the state estimate is relatively large, nonlinear effects van
become very significant.27, 28

To analyze nonlinear effects on the measureme nt update in detail, a Gaussian second-order filter is
considered which includes the second-order terms in the Taylor series expansion.27 The Kalman gain and
measurement residual covariance in the Gaussian second-order filter are expressed as follows:

K2nd
k+1 = P xxk+1|kH

T
k+1

(
W 2nd
k+1

)−1
(68)

W 2nd
k+1 = Hk+1P

xx
k+1|kH

T
k+1 +Rk+1 +Bk+1 (69)

where matrix Bk+1 is the contribution of the second-order effects and the ijth component of Bk+1, under
the Gaussian approximation, is given by

Bij,k+1 =
1

2
trace

(
∂2hi,k+1(x)

∂x∂xT

∣∣∣∣
x=x̂k+1|k

P xxk+1|k
∂2hj,k+1(x)

∂x∂xT

∣∣∣∣
x=x̂k+1|k

P xxk+1|k

)
(70)

where hi,k+1 is the i-th component of hk+1(xk+1). Comparing the measurement residual covariance for the
EKF in Eq. (66) with the measurement residual covariance for the Gaussian second-order filter in Eq. (69)
and observed the Gaussian second-order filter gain is smaller than the standard EKF gain when the contri-
bution of the second-order term is significant. Consequently, the state estimation error covariance (Eq. (64))
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of the standard EKF decreases more quickly than the actual state error covariance when the contribution of
the second-order term is not negligible.

The Gaussian second-order filter is rarely used in practice due to its reliance on the Gaussian approxima-
tion, an alternative method to compensate for the high-order effects that allows for tuning are implemented
in this paper: Lear’s underweighting method.28 Lear’s approach to underweighting the measurement is to
add a percentage of the a priori estimation error covariance to the measurement residual covariance:

WU.W
k+1 = Hk+1P

xx
k+1|kH

T
k+1 +Rk+1 + βUWHk+1P

xx
k+1|kH

T
k+1 (71)

where βUW is a tuning parameter. The additional term, βUWHk+1P
xx
k+1|kH

T
k+1, in the measurement residual

covariance decreases the Kalman gain, thus reducing the state estimate and a posteriori state estimation error
covariance update.

Another approach to make the filter more robust in the presence of high uncertainty and nonlinearities is
the consider Kalman filter.29 The effects of highly nonlinear states of the system can be “considered” only,
meaning the states are not updated in the filter. In other words, we only update the state estimates which are
not highly nonlinear and the corresponding error covariance based on the uncertainty of the highly nonlinear
states. The consider Kalman filter algorithm and derivation are explained in Ref. 29. In this paper, both
methods are applied to the TEKF only when the contribution of the a priori estimated state uncertainty to the
residual covariance is much larger than the measurement noise covariance, i.e. Hk+1P

xx
k+1|kH

T
k+1 � Rk+1,

which is a strong indicator that nonlinear effects might become important.28

NUMERICAL RESULTS

For the state estimation problem described in section , we adopted the scenario used in Ref. 9 to investigate
the divergence and accuracy achievable by recursive estimators, i.e. non-batch. Ref. 9 suggests divergence
is due to information dilution, another possible cause is severe nonlinearities coupled with poor observability
of the system.

In the simulation, a SO is in geosynchronous with the following orbital elements: a = 42, 364.16932 km,
e = 0, i = 30◦, M0 = 91◦, and ω = Ω = 0. The simulation epoch is 15-March-2010 at 04:00:00 UT.
The shape of the SO is cube with side length 1m and a mass of 2kg. Apparent brightness magnitude and
angle measurements are simulated using a ground station located at the top of Haleakala in Maui (latitude =
20.71◦, longitude = −156.26◦, and altitude = 3.5086km). Measurements are corrupted by additive zero-
mean Gaussian white noise with standard deviations of 0.1 for the brightness magnitude and 10 arc-seconds
on the azimuth and elevation observation. Both measurements are available every 2 seconds for two hours.
The changes we made in this simulation scenario is that (1) we used the azimuth and elevation observations
for angle data instead of right ascension and declination observation and (2) we did not consider thermal
radiation pressure (TRP) in the dynamics. The details of the initial truth state, the initial estimated state, and
the initial uncertainty are listed in Table 1.

The first goal is to investigate whether information dilution alone can cause divergence, or if a nonlinear
filter can be successfully applied to this problem. Many nonlinear algorithms such as various flavors of the
particle filter as well as PGMF from Ref. 14 and the sequential Monte Carlo filter from Ref. 17 were used
and they all diverged. These failures are due to the high nonlinearities of the light-curve data combined with
the absence of process noise. However, the modified PGMF algorithm proposed here, named PFGMM1,
is able to prevent the divergence of the state. Figure 3 shows the position, attitude, and surface parameter
errors with the corresponding 3σ predictions when PFGMM1 is used. Notice that proxy values are used in
order to estimate the surface parameter without any constraint on their values. All errors are consistent with
the uncertainties, meaning that the filter does not diverge. From the analysis, it is shown that it is the severe
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State Initial Truth Initial Estimate Uncertainty

q

0.754 0.695

3.33 deg
0.133 0.134
0.000 0.010
0.643 0.706

ωBB/I (rad/s)
0.00200 0.00212

1.16 × 10−4-0.00100 -0.00106
0.00500 0.00506

rI (km)
-739.4 -789.4

10036682.9 36732.9
21178.9 21278.9

vI (km/s)
-3.0669 -3.0169

0.10-0.0464 0.0536
-0.0268 -0.0768

n 150 120 30
ρ 0.40 0.10 0.30
d 0.70 1.00 0.30

Table 1: Initial conditions

nonlinearities coupled with the weak observability of the system that leads to divergence, not information
dilution. The PFGMM uses 3 clusters with 10,000 particles and for this and all subsequent filters the
modified Rodrigues parameters (MRPs) are used to define the local error for the attitude estimation.

The simulation is conducted with the five nonlinear filters described in the previous section: (1) the
particle filter with Gaussian mixture models (PFGMM) without the constraint information (PFGMM1), (2)
the PFGMM with the constraint information (PFGMM2), (3) the TIUKF, (4) the TEKF with underweighting
(TEKF1), and (5) the TEKF with considering parameters (TEKF2).

The introduction of proxy surface parameters, while making the state space unconstrained, adds more
nonlinearities to the systems. Alternatively, the constraint can be used as additional information in the
modified rejection-sampling algorithm, we denote this filter as PFGMM2. The time history of the state
errors and respective 3σ predicted performance when using the PFGMM2 with the modified rejection-
sampling approach is depicted in Figure 4. Since the constraint information is added to the estimator, it can
be seen that the PFGMM2 has the better performance than the PFGMM1.

The two nonlinear filter proposed (PFGMM1 and PFGMM2) establish that information dilution due to
few measurements and many estimated quantities does not necessarily cause filter divergence, and that
treating constraints as source of information improves the performance of the filter. The next objective of
this investigation is to design a consistent linear estimator, i.e. Kalman filter, which, while producing less
accurate estimates than the nonlinear filters above, still produces a consistent, non-diverging solution. The
algorithms used are the modifications of the UKF and EKF described in the previous sections.

The TIUKF uses the following tuning parameters: α = 0.8, β = 3, and κ = 3, for its sigma points
spread. The underweighting tuning parameter for the TEKF with underweighting approach (denoted as
TEKF1) is βUW = 2.0. The third and last linear estimator considered is the TEKF with considering pa-
rameters (denoted as TEKF2) which treats the surface parameters (since they are highly nonlinear states
in the system) as considered states when high nonlinearities are detected. High nonlinearities are declared
when Hk+1P

xx
k+1|kH

T
k+1 > 3Rk+1 in the brightness magnitude measurement only, as it is the nonlinear

measurement that causes divergence.
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Figure 3: Position, attitude, and parameter errors with the PFGMM without the constraint information
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Figure 4: Position, attitude, and parameter errors with the PFGMM with the constraint information
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Figure 5: Position, attitude, and parameter errors with the TIUKF

0 20 40 60 80 100 120
-100

0

100

 X
 (

k
m

)

Position errors with 3  envelope

0 20 40 60 80 100 120
-200

0

200

 Y
 (

k
m

)

0 20 40 60 80 100 120

Time (min)

-200

0

200

 Z
 (

k
m

)

0 20 40 60 80 100 120
-2

0

2

 R
o

ll
 (

d
e
g

) Attitude errors with 3  envelope

0 20 40 60 80 100 120
-2

0

2

 P
it

c
h

 (
d

e
g

)

0 20 40 60 80 100 120

Time (min)

-2

0

2

 Y
a
w

 (
d

e
g

)

0 20 40 60 80 100 120
-20

0

20

n

Surface parameter errors with 3  envelope

0 20 40 60 80 100 120
-0.2

0

0.2

0 20 40 60 80 100 120

Time (min)

-0.2

0

0.2

d

Figure 6: Position, attitude, and parameter errors with the TEKF with underweighting
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Figure 7: Position, attitude, and parameter errors with the TEKF with considering surface parameters

The simulation results of the three linear filters are shown in Figure 5 to Figure 7. Comparing the error
and covariance of all the cases, the performance of those filters is comparable to that of the PFGMMs, yet
at a reduced computational cost. Based on the criterion, Hk+1P

xx
k+1|kH

T
k+1 > 3Rk+1, the TEKF1 used

the underweighting parameter as follows: βUW = 2.0 for t ≤ 16 and βUW = 0 for t > 16, where t is
the simulation time. With the same criterion, the TEKF2 considers surface parameters when t ≤ 48 and
estimates all the states for the rest of the time. Since the PDF truncation step was performed in the TEKF
with the methods to compensate for the high-order effects, the uncertainties of the surface parameters and
associated states (i.e. attitude) eventually converge to slightly smaller values than those of the PFGMM1.

Table 2 lists the time-averaged root mean square error (RMSE) for a single simulation. The best per-
formance is obtained with the PFGMM2 when comparing the time-averaged RMSE. In terms of the RMS
attitude, angular velocity, and parameter errors, the TEKFs have the better performance than the PFGMM1,
which indicates it is possible to improve the PFGMM by increasing the number of particles and clusters.
While an increases in the number of particles and clusters might improve the PFGMM, such an increase
would increase the computational cost substantially. The computation time for filtering run in MATLAB on
a 3.2 GHz hexa-core Windows operation system is also presented in Table 2. In terms of computation time,
the TEKFs are the best performers while retaining roughly the same accuracy as the PFGMMs.

CONCLUSIONS

This paper presents a detailed study of the estimation of the translational and rotational states of near-
geosynchronous objects from bearing angles and light curve data. Three parameters of the highly nonlinear
light curve measurements are also estimated. The high nonlinearity and weak observability of the system
makes this problem particularly challenging for recursing filtering algorithms.
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Filter

Time-averaged RMSE
Computation

Position
(m)

Velocity
(m/s)

Attitude
(deg)

Angular
velocity
(deg/hr)

Parameter Time (s)

PFGMM1 26383.9 22.3130 2.4399 19.9157 8.7214 4090.9011
PFGMM2 22208.3 15.6344 0.7056 7.6407 8.0329 4292.7190
TIUKF 45548.6 21.1789 3.0219 46.9340 10.1084 158.0590
TEKF1 33062.5 22.9153 1.1209 9.1540 8.4212 127.8666
TEKF2 29865.8 22.3357 0.7939 8.9834 8.5570 127.8417

Table 2: RMSE for a single simulation

A novel approach to nonlinear estimation combining particle filter and Gaussian sum filter using an
expectation-maximization clustering method is proposed. The advantage of this algorithm is it gives a more
accurate Gaussian mixture model representation of the prior probability density function over an exiting
related approach by using soft clustering. The soft-clustering approach allows the filter to converge, while
a similar existing algorithm using K-means clustering diverges under the conditions of the example studied.
The soft clustering works in a way that each point is assigned to all the clusters with different weights or
probabilities, thus obtaining the proper covariance of the components. By designing a consitent filter with
the same members of the state space and same measurements, it is shown that dilution of information is not
a cause of divergence per-se, rather divergence of prior approaches are due to the severe nonlinearities of
the system coupled with large initial uncertainties and weak observability.

Finally, three linear estimators were designed and shown to provide good performance. The truncated
interval unscented Kalman filter uses the constraint information in the time and measurement update steps
and truncates the probability density function after the measurement update. The truncated extended Kalman
filter includes not only the probability density function truncation approach but also two extra methods
to compensate nonlinear effects. Although all filters have comparable accuracy performance in the test
performed, the truncated extended Kalman filter is preferable from a computational standpoint from all
other methods.
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