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OBSERVABILITY ANALYSIS AND FILTER DESIGN FOR THE
ORION EARTH-MOON ATTITUDE FILTER

Renato Zanetti∗, and Christopher N. D’Souza†

The Orion attitude navigation design is presented, together with justification of the choice
of states in the filter and an analysis of the observability of its states while processing star
tracker measurements. The analysis shows that when the gyro biases and scale factors drift
at different rates and are modeled as first-order Gauss-Markov processes, the states are ob-
servable so long as the time constants are not the same for both sets of states. These results
are used to finalize the design of the attitude estimation algorithm and the attitude calibration
maneuvers.

INTRODUCTION

A variety of attitude estimation designs have been presented in the literature. Ref [1] provides an overview
of nonlinear attitude estimation methods. Two main approaches for Kalman-like estimation algorithms are the
additive extended Kalman filter [2] and the multiplicative extended Kalman filter (MEKF) [3]. Specialized
estimators exists for particular classes of problems, for example magnetometer-only attitude determination
[4] or angles-only attitude determination [5]. In this work quaternion “measurements” from the star tracker
are processed by the filter; some algorithm derived from the Denvenport’s q-method [6] is used in the star
tracker firmware to produce a quaternion, hence the q-method effectively functions as a preprocessor feeding
the attitude filter [7].

During Exploration Mission (EM) 1 and 2, the primary navigation source of the Orion vehicle in cislunar
space is given by ground updates provided by mission control and based on tracking the vehicle from ground
stations. Attitude determination, on the other hand, is done onboard and relies on star trackers and IMUs.
This paper details the design of the Orion attitude filter, which is an MEKF design. A feature of this design
is that propagation of both the state and the covariance is done analytically, no numerical methods such as
runge-kutta integrators or numerical evaluation of matrix exponentials occur. The only assumption made is
that the angular velocity is constant during some small time step. This assumption is not constraining because
the propagation step can be subdivided into arbitrarily small intervals down to the inertial measurement unit
(IMU) output rate (typically hundreds of Hertz). Modern strapdown gyros provide integrated angular velocity
(∆θ) over a small interval, therefore assuming the angular velocity is constant over this interval is a very
common approach employed in inertial navigation. Alternatively, several consecutive ∆θ samples can be
used to approximate the angular velocity as a polynomial. This second approach inevitably introduces an
additional delay into the system and it does not produce tangible benefits because of the very high output rate
of modern IMUs.

The second contribution of this work is a detailed analysis of the observability of the star tracker mis-
alignments, gyro biases and scale factors for the attitude filter. This is particularly important for the Orion
vehicle in light of the fact that the star tracker is located on the Crew Module Adapter (CMA), quite a dis-
tance away from the IMU (located on the Crew Module), and subject to flex motion due to thermal and crew
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module pressurization effects. Orion does not have an “optical bench” on which both the star trackers and the
IMUs are mounted. Hence, the resulting misalignments are likely significant error sources, furthermore the
ground-calibrations/measurements of the misalignments between the star trackers and the IMUs are likely not
sufficient for accurate attitude knowledge during the various phases of the Orion mission. The observability
analysis is done on the linearized system; this approach has been successfully applied to angles-only navi-
gation [8] and it is consistent with the choice of estimator, since the MEKF relies on linearization. It is also
true, however, that the ignored nonlinearities can, and often do, make the system observable even when the
linear criteria establishes it is not. It is the experience of the authors that in these situations the observability
gained from the nonlinearities is so weak that effectively the uncertainty does not decrease of any appreciable
amount and is typically overcome by errors due to unmodeled dynamics (process noise). An excellent refer-
ence that describes calibration of biases and misalignments of attitude sensors, as well as maneuvers needed
to observe such calibration parameters, is the survey paper by Pittelkau [9].

THE ANALYSIS MODEL

A three-dimensional parameterization of attitude is the so-called rotation vector φ [10] that has kinematics
(usually attributed to Bortz [11]) given by

φ̇ = ω − 1

2
ω × φ+

[
1− φ sinφ

2(1− cosφ)

]
φ× φ× ω

φ2
, φ = ‖φ‖ (1)

The cross product matrix is defined as

[v×]
∆
=

 0 −v3 v2

v3 0 −v1

−v2 v1 0


The internal gyro measurement is given by

ωm = (I3 + [sg\])ω + b + ν (2)

where b is the gyro bias, sg is the gyro scale factor expressed in terms of a diagonal matrix operator, I3 is the
3× 3 identity matrix, and ν represents the angle random walk. Like the cross product operator, the diagonal
operator on a vector, a, is defined as

[v\] ∆
=

 v1 0 0
0 v2 0
0 0 v3


and

[v\] w = [w\] v
[v\] [w\] = [w\] [v\]

for any vectors a and b.

A star tracker measurement is available and modeled with an angle bias, µ, which includes both internal
measurement biases and, more importantly, misalignments with respect to the IMU. Given the following state
vector

X =

 a
b
µ

 (3)

where a is an MEKF attitude error parameterization [12] and the star tracker measurement residual is ex-
pressed, in terms of a misalignment µ (or, equivalently, a bias) and white noise, η, as

ε = a + µ+ η (4)
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the measurement mapping matrix is

H =
[
I3 O3 I3

]
, (5)

where I3 is the 3× 3 identity matrix and O3 is the 3× 3 matrix of all zeros.

Given the system dynamics

ẋ = Fx with x(t0) = x0 (6)

the state transition matrix can be expressed as

Φ̇(t, t0) = F Φ(t, t0) with Φ(t0, t0) = I (7)

where for constant dynamics matrix F , the state transition matrix Φ is expressed as a matrix exponential

Φ(t, t0) = eF (t−t0) = I + F (t− t0) +
1

2!
F 2(t− t0)2 +

1

3!
F 2(t− t0)3 + ... (8)

Given a system of the form

Φ̇∗(t, t0) = F Φ∗(t, t0) with Φ∗(t0, t0) = C (9)

the solution is

Φ∗(t, t0) = Φ(t, t0)C = eF (t−t0) C (10)

which can be easily verified by substituting Φ∗(t, t0) (found in Eq. (10)) into Eq. (9).

Observability Analysis

Consider the n-dimensional state x and the m-dimensional linear measurement y affected by additive
noise η.

y = Hx+ η

H is the m× n measurement sensitivity matrix. For the scope of this section the weights in the least-squares
solution are omitted, the results are identical in the weighted least-squares case (as long as the weighting
matrices are chosen non-singular). The optimal estimate of x based on y is given by

x̂ = HT (HHT )−1y

the system is observable when the inverse of the matrix in parenthesis exists; this condition is satisfied when
m ≥ n and H is of full column rank (i.e. rankH = n, this second condition implies the first). Naturally if
a column of H is composed of all zeros, the system is not observable and the component of the state vector
corresponding to the zero column is not-determinable from the measurement information. For example if
n = 3

x =

x1

x2

x3


and m = 4 with

H =
[
h1 0 h3

]
where hi are 4-vectors; it follows that

y = x1h1 + x3h3 + η

clearly x2 is not observable, it does not affect the measurement therefore cannot be inferred from it.
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Assume the state vector x is partitioned in three vector components

x =

x1

x2

x3


assume also H is rank deficient and all vectors v in the null space of H (i.e. Hv = 0) are of the form

v =

 w
−Aw

0


wherew has the same dimension as x1 andA is a matrix of appropriate dimensions. Under these assumptions
it follows that x1 and x2 are not individually observable but Ax1 +x2 is. More precisely, the components of
Ax1 and x2 that are not observable are those in the direction of w. Demonstrating this proposition is quite
simple. Define the following invertible matrix V

x′ =

x′1x′2
x′3

 = V x =

R O O
A I O
O O I

x =

 Rx1

Ax1 + x2

x3


matrix R is a rotation matrix such that Rw = e1, where e1 is the first element of the canonical base. The
inverse of V is given by

V −1 =

 RT O O

−ART I O
O O I


hence

0 = Hv = HV −1V v = H ′

e1

0
0

 .
This last equation informs us that x′2 = Ax1 + x2 is observable, while the very first component of x′ is not,
that is to say the component of x1 parallel to w is not observable. Repeating the same analysis with

x′′ =

 RA†x2

Ax1 + x2

x3


where ”†” represents the pseudo inverse such that A†Az = z, ∀z, shows that x2 is non-observable along the
direction of Aw.

When measurements y1, y2, etc. are available at different times t1, t2, ..., and the state is estimated at
time t0, the procedure is the same as above but H is replaced by an augmented measurement mapping matrix
constructed as [13]

Λ =


H1Φ(t1, t0)
H2Φ(t2, t0)

...
HMΦ(tM , t0)

 (11)

For a linear time invariant system, Λ being full rank in Eq. (11) is the usual condition to guarantee observ-
ability.

OBSERVABILITY DURING COASTS

During coasts, where ω ≈ 0, given the state vector Eq. (3) the dynamics partial matrix, F is

F =

 O3 −I3 O3

O3 O3 O3

O3 O3 O3

 (12)
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and the resulting state transition matrix is

Φ(t+ ∆t, t) = I3 + F∆t+
1

2
F 2∆t2 + · · · =

 I3 −I3∆t O3

O3 I3 O3

O3 O3 I3

 (13)

Therefore, H(t)Φ(t, t0) is

H(t)Φ(t, t0) =
[
I3 −I3 (t− t0) I3

]
(14)

Analyzing the observability of the system by processing a batch of measurements provides useful insights.
The batch of measurements produce a solution for the estimated state x̂(0) if and only if

rank(Λ) = rank


H

HΦ(t1, t0)
...

HΦ(tn−1, t0)

 = n (15)

Appling this to the ST/gyro full-state observability during coast conundrum, it follows that

rank(Λ) = rank

 I3 O3 I3
I3 −I (t1 − t0) I3
I3 −I (t2 − t0) I3

 = 6 (16)

which is rank deficient. This confirms the lack of observability of the gyro bias, star tracker misalignments
and the attitude during coasts, adding more measurements will not make the system observable. For any
3-dimensional vectors w

Λ

 w0
−w

 = 0

which means the attitude error is not distinguishable from the star tracker misalignment in any direction, their
sum is observable but their individual values are not. This insight, while previously known, is extremely
important for the design of the Orion attitude filter. Since the star tracker is mounted on the CMA, its mis-
alignment with respect to the IMU is probably going to vary during flight due to flexible motion, thermal
expansion, thruster firings, etc. At this point in time it is not clear the amount of flex the system will experi-
ence, nor the time constants that will govern the motion of the CMA with respect to the crew module. During
long coast periods, as the alignment between IMU and star tracker changes, the estimation algorithm is not
able to distinguish between them, as a consequence the attitude estimate degrades and becomes biased by the
same amount of the misalignment change. A well-tuned filter will recognize such a behavior and produce
an estimation error covariance consistent with the greater uncertainty. To tune the filter it is necessary to
correctly model the dynamics of the relative alignment; however, due to the complexity and uncertainty of
the system, producing an accurate model is challenging and probably will be achieved only after flight data is
collected during the first exploration mission. Since the filter cannot distinguish between the two quantities
it applies the measurement correction based on its knowledge of the relative uncertainty between the two.
Hence, mis-modeling the alignment uncertainty could result in the filter erroneously applying the measure-
ment update. To avoid this potential issue, the Orion attitude filter will not process star tracker measurements
during long coast periods. This decision will be re-evaluated after alignment data is collected from EM1
which will allow for better knowledge of the dynamics of the alignment between the IMU and star tracker.

Notice that process noise is not included into this analysis. Process noise causes past measurements to be
de-weighted with respect to more current measurements. This fact does not change the theoretical observ-
ability of the linear systems.

Consider a linear system with H =
[
1 1

]
and measurement error variance R = 1, in the absence of

dynamics, the two states cannot be distinguished from each other since their sum is measured. Assume the
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initial state estimate has estimation error covariance given by P0 = I2. Processing the measurement the
updated covariance becomes

P1 =

[
2/3 −1/3
−1/3 2/3

]
therefore the correlation coefficient between the two elements of the state vectors jumps from 0 to -0.5. If
another independent, identically distributed (iid) measurement becomes available, the covariance after the
second update is

P2 =

[
3/5 −2/5
−2/5 3/5

]
and the correlation coefficients becomes -2/3. Another update and the diagonals of the covariance become
4/7 and correlation coefficient becomes -3/4. Another update and the diagonals are 5/9 and the coefficient
-4/5. Then 6/11 and -5/6, followed by 7/13 and -6/7, and so on. After enough measurements the correlation
coefficient approaches -1 and the covariance approaches

Pn =

[
1/2 −1/2
−1/2 1/2

]
from this point on, further measurements will not produce any improvement since

K = HPT /(HPHT +R) =

[
0
0

]
the effects of the non-observable system are now clear, in the absence of process noise, an infinite number
of measurements does not result in zero uncertainty, rather results in the states being completely correlated.
Since the measurements are iid, the covariance after n updates is given by

Pn = P0 − P0H(HP0H
T +

1

n
R)−1HTP0 (17)

lim
n→+∞

Pn = P0 − P0H(HP0H
T )−1HTP0 (18)

Eq. (18) simply states that in the absence of process noise all the measurement noise eventually averages
out, and therefore the system is equivalent to processing a single perfect measurement. Three cases may
arise. If H is not of full row rank a steady state solution does not exist. This makes sense because a non-
full-rank H implies that the measurements are linear combinations of each other, a solution is not possible
when measurements are perfect and combinations of each other. The second case is when H is square
and full rank (i.e. invertible), in this case limn→+∞ Pn = O (the proof can be done by first showing that
limn→+∞HPnH

T = O). Finally when H is of full row rank but not square limn→+∞HPnH
T = O but

this does not imply limn→+∞ Pn = O.

In general, when the system is observable, the algebraic Riccati equation has at least one finite solution
(the weaker condition of detectability is sufficient) even in the presence of process noise. The quantity Hx is
always observable because is measured directly, hence limn→+∞HPnH

T is always finite in a LTI system.
In the presence of process noise HPnHT converges to a finite number, however, when the system is not
observable HPnHT could converge while individual components of P are diverging.

In order to better illustrate this consider a MEMS gyro with angular random walk (ARW) of 0.2 deg/
√

hr
(1σ), and bias standard deviation 0.5 deg/hr. The star tracker measurement has an accuracy of 100 arcsec
(3σ) and an initial misalignment of 0.1 deg (3σ). The misalignment is randomly drifting with power spectral
density 0.001 deg/

√
sec. The initial covariance of the 9 state filter is diagonal with initial attitude uncertainty

of 0.1 deg (3σ). Figure 1 shows the performance of a multiplicative extended Kalman filter (MEKF) under this
scenario. It can be seen that the attitude error drifts driven by the star tracker/IMU misalignment drift. Making
the star tracker measurement more accurate does not improve the attitude uncertainty, nor does reducing the
gyro’s ARW. A reduction of the ARW on the other hand does improve gyro bias estimation convergence.
The performance of the estimation of the gyro bias is equivalent to that in Figure 2(b). Because of the non-
observable misalignment, the attitude estimation error is significantly higher than the no-misalignment case
illustrated in Figure 2. The sum of the attitude and misalignment error converges to a steady state uncertainty
very similar to Figure 2(a).
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(a) Attitude Error and 3σ Predicted Uncertainty (b) Misalignment Error and 3σ Predicted Uncertainty

Figure 1. Estimation Error During Coast

(a) Attitude Error and 3σ Predicted Uncertainty (b) Gyro Bias Error and 3σ Predicted Uncertainty

Figure 2. Estimation Error During Coast Without any ST/IMU Misalignment

Gauss-Markov Gyro Bias and ST Misalignments

Instead of modeling the gyro bias and Star Tracker misalignments as constants, they can be modeled as
first-order Gauss-Markov processes. Given the state vector Eq. (3), the dynamics partial, F is

F =

 O3 −I3 O3

O3 − 1
τb
I3 O3

O3 O3 − 1
τµ
I3

 (19)

and the resulting state transition matrix is

Φ(t, t0) =


I3 τbI3

(
e
− 1
τb

(t−t0) − 1
)

O3

O3 I3e
− 1
τb

(t−t0)
O3

O3 O3 I3e
− 1
τµ

(t−t0)

 (20)
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With this H(t)Φ(t, t0) is

H(t)Φ(t, t0) =
[
I3 τbI3

(
e
− 1
τb

(t−t0) − 1
)

I3e
− 1
τµ

(t−t0)
]

(21)

To study the observability of the discrete case

Λ =


I3 O3 I3

I3 τbI3

(
e
− 1
τb

(t1−t0) − 1
)

I3e
− 1
τµ

(t1−t0)

I3 τbI3

(
e
− 1
τb

(t2−t0) − 1
)

I3e
− 1
τµ

(t2−t0)

 (22)

Generally Λ is of full rank and hence all the states are observable. As τµ becomes large, e
− 1
τµ

(t2−t0)
=⇒ 1

and the systems goes back to the unobservable constant star tracker misalignment case. While under the
assumption of the errors being first order Gauss-Markov processes the system is observable, in practice this
observability is very weak for large time constants and likely overwhelmed by process noise. Process noise
degrades knowledge of the states over time, hence even an observable state can have an uncertainty that grows
over time if the information gained through measurement updates is not enough to overcome the increase in
uncertainty due to process noise. More importantly, in order for the system to be observable, τµ needs to be
known, which is not the case for the Orion vehicle.

OBSERVABILITY DURING ATTITUDE MANEUVERS

The results of the observability analysis during coasts dictate the choice of not processing star tracker
measurements during most of these epochs. This section focuses on the observability of the states while
slewing the vehicle. This analysis aids the selection of the number of states in the filter. For all that follows,
it is assumed that the angular velocity, ω, is constant. Typically a vehicle equipped with a reaction control
system (RCS) like Orion, performs attitude maneuvers by firing the RCS jets to initiate the angular rate along
the principal rotation axis, then the vehicle is controlled to slew at a constant angular velocity until the desired
attitude is reached, finally the RCS jets are used to terminate the the slew.

Observability of Constant Gyro Bias and Star Tracker Misalignment

This sub-section assumes that the gyro bias and star-tracker-to-IMU misalignment states are (unknown)
constants which are to be estimated. In such a case, given the state vector in Eq. (3), the dynamics partials
are (see Ref. [14] for the kinematic equation of the MEKF attitude error [12])

F =

 −[ω̄×] −I3 O3

O3 O3 O3

O3 O3 O3

 (23)

The state transition matrix is given by

Φ(t+ ∆t, t) =

 Φ11 Φ12 O3

O3 I3 O3

O3 O3 I3

 (24)

The following identities are used

[ω×]2 = [ω×][ω×] = ωωT − |ω|2I3 (25)

[ω×]
n+2

= −|ω|2[ω̄×]n (26)

[ω×]
3

= −|ω|2[ω̄×] (27)

[ω×]
4

= −|ω|2[ω̄×]2 (28)
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hence the even powers are symmetric and can be expressed in terms of [ω̄×]2 and the odd powers are skew
symmetric and are expressed in terms of [ω̄×].

Using the following definitions

|ω| ∆
=

√
ω2
x + ω2

y + ω2
z (29)

[ω̄×]
∆
=

1

|ω|
[ω̄×] (30)

∆θ
∆
= |ω|∆t (31)

∆t
∆
= t− t0 (32)

matrix Φ11 is given by

Φ11(t, t0) = I3 − [ω̄×] sin ∆θ + [ω̄×]2 (1− cos ∆θ) (33)

which is a well known result. All the components of the state transition matrix are obtained analytically, such
as

Φ12(t, t0) = − 1

|ω|
[
I3∆θ + [ω̄×] (cos ∆θ − 1) + [ω̄×]2 (∆θ − sin ∆θ)

]
(34)

which can be found in [15, p. 258]

From Eqs. (23) - (24), Φ11 and Φ12 are required to satisfy the following equations:

Φ̇11 = −[ω×]Φ11, with Φ110
= I3 (35)

Φ̇12 = −[ω×]Φ12 − I3, with Φ120
= O3 (36)

Indeed, Eqs. (33) and (34) do satisfy the above differential equations (Eqs. (35) and (36)) and hence comprise
the closed-form state transition matrix.

The discrete observability condition requires that

Λ =

 I3 O3 I3
Φ11(t1, t0) Φ12(t1, t0) I3
Φ11(t2, t0) Φ12(t2, t0) I3

 (37)

be of full rank. However Λ has rank equal to 6. Notice that Φ11(t, t0)ω = ω, therefore

Λ

 ω0
−ω

 = 0

which results in the attitude error and star tracker misalignment not being distinguishable along the direction
of the constant angular velocity. Define two unit vectors i2 and i3, such that ω̄, i2, and i3 form an orthonormal
triad. Then:

Φ12(t, t0) (|ω|i2) = − [i3(cos ∆θ − 1) + i2 sin ∆θ] = (Φ11(t, t0)− I3) i3

therefore

Λ

 i3
|ω|i2
−i3

 = 0

hence a combination of the attitude error and misalignment in the i3 direction is not distinguishable from the
gyro bias in the i2 direction. Similarly

Λ

 −i2
|ω|i3

i2

 = 0
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A slew that varies the direction of the angular velocity makes the system observable. A direct consequence
of this fact is that when turning to and from a maneuver execution attitude, it is desirable that Orion does not
take the shortest “eigenaxis” turn, but varies the direction of the angular velocity in order to be able to estimate
all components of the misalignment between star tracker and IMU. The proposed concept of operation is to
slew to the maneuver attitude to gain observability and then process star tracker measurements for some time.
The slew back to “tail-to-sun” also improves observability and star tracker measurements will be processed
for some time during “tail-to-sun”.

Observability of Gauss-Markov Gyro Bias and Gauss-Markov Gyro Scale Factor and Gauss-Markov
Star Tracker Misalignment

An important trade is whether to include the gyro scale factor as a state in the filter; it is well known
that during constant rate maneuvers the gyro scale factor cannot be discerned from the gyro bias [9]. In
this sub-section it is assumed that the gyro bias and gyro scale factor states as well as the IMU/Star Tracker
misalignments are first-order Gauss-Markov processes which are to be estimated. An analytical solution to
the State Transition Matrix is used which, to the best knowledge of the authors, is an original contribution of
this paper. The angular velocity is given by

ωm = (I3 + [sg\])ω + b + ν (38)

where ω is the true angular velocity, ωm is the measured angular velocity, b is the gyro bias, sg is the gyro
scale factor and ν represents the angle random walk. The state vector is given by

X =


a
b
sg
µ

 (39)

and the system dynamics partials are

F =


−[ω×] −I3 −[ω\] O3

O3 − 1
τb
I3 O3 O3

O3 O3 − 1
τsg
I3 O3

O3 O3 O3 − 1
τµ
I3

 (40)

Φ11, Φ12, and Φ13 are required to satisfy the following equations:

Φ̇11 = −1

2
[ω×]Φ11, with Φ110

= I3 (41)

Φ̇12 = −1

2
[ω×]Φ12 − Φ22, with Φ120

= O3 (42)

Φ̇13 = −1

2
[ω×]Φ13 − [ω\] Φ33, with Φ130

= O3 (43)

The remaining non-zero elements of the state transition matrix are found to be:

Φ22 = I3e
− t−t0τb (44)

Φ33 = I3e
− t−t0τsg (45)

Φ44 = I3e
− t−t0τµ . (46)

As before Φ11 is

Φ11(t, t0) = I3 − [ω̄×] sin ∆θ + [ω̄×]2 (1− cos ∆θ) (47)
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The solution for Φ12 is given by

Φ12(t, t0) = τbI3

(
e
−∆t
τb − 1

)
− |ω|τ2

b

1 + |ω|2τ2
b

[ω̄×] (cos ∆θ − 1) +
|ω|τ2

b

1 + |ω|2τ2
b

[ω̄×]2 sin ∆θ

+
τb

1 + |ω|2τ2
b

[ω̄×]2 (cos ∆θ − 1) +
τb

1 + |ω|2τ2
b

[ω̄×] sin ∆θ

+
|ω|2τ3

b

1 + |ω|2τ2
b

[ω̄×]2
(
e
−∆t
τb − 1

)
+

|ω|τ2
b

1 + |ω|2τ2
b

[ω̄×]
(
e
−∆t
τb − 1

)
(48)

Having found the solution to a matrix differential equation of the kind

Ẋ(t) = AX(t) + αI, X(t0) = O (49)

it is simple to shown that the solution to

Ẏ(t) = AY(t) + αB, Y(t0) = O (50)

when Ḃ = O, is given by
Y = XB. (51)

With this in hand, the solution for Φ13 is easily found to be

Φ13(t, t0) =

{
τsgI3

(
e
− ∆t
τsg − 1

)
−

|ω|τ2sg
1 + |ω|2τ2sg

[ω̄×] (cos ∆θ − 1) +
|ω|τ2sg

1 + |ω|2τ2sg
[ω̄×]2 sin ∆θ

+
τb

1 + |ω|2τ2
sg

[ω̄×]2 (cos ∆θ − 1) +
τsg

1 + |ω|2τ2
sg

[ω̄×] sin ∆θ

+
|ω|2τ3

sg

1 + |ω|2τ2
sg

[ω̄×]2
(
e
− ∆t
τsg − 1

)
+

|ω|τ2
sg

1 + |ω|2τ2
sg

[ω̄×]

(
e
− ∆t
τsg − 1

)}
[ω\] (52)

Of course, if τsg = τb, then

Φ13(t, t0) = Φ12(t, t0)[ω\] (53)

Gyro misalignment and nonorthogonality errors are not considered in this analysis. However notice that
they can both be expressed (to first order) as M(ω)ε, where M(ω) is a matrix function of the angular
velocity and ε is the error (either misalignment or nonorthogonality). For example the contribution of the
misalignment error µ is [ω×]µ, hence the state transition matrix used to calculate the attitude error generated
by a misalignment is

Φφµ(t, t0) =

{
τµgI3

(
e
− ∆t
τµg − 1

)
−

|ω|τ2µg

1 + |ω|2τ2µg

[ω̄×] (cos ∆θ − 1) +
|ω|τ2µg

1 + |ω|2τ2µg

[ω̄×]2 sin ∆θ

+
τb

1 + |ω|2τ2
µg

[ω̄×]2 (cos ∆θ − 1) +
τµg

1 + |ω|2τ2
µg

[ω̄×] sin ∆θ

+
|ω|2τ3

µg

1 + |ω|2τ2
µg

[ω̄×]2
(
e
− ∆t
τµg − 1

)
+

|ω|τ2
µg

1 + |ω|2τ2
µg

[ω̄×]

(
e
− ∆t
τµg − 1

)}
[ω×] (54)

and the state transition matrix used to calculate the attitude error generated by a nonorthogonality is obtained
in a similar manner

Matrix H(t)Φ(t, t0) is found to be

H(t) Φ(t, t0) =
[

Φ11(t, t0) Φ12(t, t0) Φ13(t, t0) Φ44(t, t0)
]

(55)
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The discrete observability condition requires that

Λ =


I3 O3 O3 I3

Φ11(t1, t0) Φ12(t1, t0) Φ13(t1, t0) Φ44(t1, t0)
Φ11(t2, t0) Φ12(t2, t0) Φ13(t2, t0) Φ44(t2, t0)
Φ11(t3, t0) Φ12(t3, t0) Φ13(t3, t0) Φ44(t3, t0)

 (56)

be of rank 12. If τsg = τb, then we can write Λ as

Λ =


I3 O3 O3 I3

Φ11(t1, t0) Φ12(t1, t0) Φ12(t1, t0) Φ44(t1, t0)
Φ11(t2, t0) Φ12(t2, t0) Φ12(t2, t0) Φ44(t2, t0)
Φ11(t3, t0) Φ12(t3, t0) Φ12(t3, t0) Φ44(t3, t0)




I3 O3 O3 O3

O3 I3 O3 O3

O3 O3 [ω\] O3

O3 O3 O3 I3

 (57)

The third column of the first matrix in Eq. (57) is identical to the third and hence the rank is, at most, 9.
Notice that for any vector v

Λ


0

[ω\]v
−v
0

 = 0

which results in the gyro bias and scale factor not being individually observable while b+[ω\] sg is. Typically
τsg and τb are both large numbers, hence the system is weakly observable, if at all. Appropriate persistence
of excitation conditions will make the system observable [9]. However this analysis shows that when gyro
biases and scale factors have different stability time constants (e.g. one of them is not a constant) then their
contributions can be distinguished from each other as long as the angular velocity has non-zero components
in all three IMU sensitive axis. While a constant angular velocity with non-zero components in all three
IMU axis will make the IMU error observable, the attitude error and the star tracker misalignment will not be
completely distinguishable without variations in the angular velocity vector.

FILTER DESIGN

In the prior sections an analytical formulation for the state transition matrix was introduced, the rationale
behind the decision to not process measurements during long coast segments was presented, the need to
perform slews by varying the angular velocity direction was discussed, and the observability of the states was
derived. To finalize the algorithm design an analysis of the number of states in the filter is needed, and in
particular the sensitivity to the gyro scale factor errors.

A vehicle like Orion typically keeps its attitude rate within 0.025 deg/s while holding attitude and has
a slew rate of less than 1 deg/s. Typical gyros for this type of applications have an angular random walk
around 0.01 deg/

√
hr, a bias of 0.02 deg/hr, and scale factors 15 parts per million, all 1σ values. Slewing with

variable angular velocity is typically not supported because it will increase complexity and fuel usage without
any tangible benefits. Using the above numbers, a 1σ scale factor causes an error of 0.025 15

106 deg/s = 0.0014
deg/hr, more than an order of magnitude less than the actual bias. This fact suggests that the gyro scale
factors are candidates to be removed from the filter, sensitivity analysis is done to confirm this fact. From the
observability analysis done above, the scale factors contributions can be potentially accounted for together
with the gyro bias state. It might seem that this can be done when slews always occur at about the same rate
and when the two quantities have similar time constants, an error budget provides the data to decide wether
to keep or remove the gyro scale factors states.

Error budgets break down the contributions of all error sources to the navigation error. For this particular
analysis we are interested in the contributors to the total attitude estimation error. For this analysis the initial
attitude uncertainty standard deviation is 0.033 deg. The simulation runs for 1500 seconds, for the first 1200
seconds the vehicle is coasting (a nominal residual rate of 0.02 deg/s is simulated), the estimation algorithm
starts processing star tracker measurements after 1100 seconds and continues until the end. The initial 1100
seconds of simulation are there to build correlations between gyro errors and attitude error. At 1200 the
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vehicle starts rolling at a rate of 1 deg/s. At 1300 seconds the vehicle stops rolling and starts pitching at a
rate of 1 deg/s. At 1400 seconds the vehicle returns to coasting flight. Table 1 shows the star tracker and gyro
errors used in the simulation (all values are 1σ per axis). Table 2 and Fig. 3 show the attitude error budget with
contributions from measurement noise, Angular Random Walk (ARW), Misalignment Walk (MW), attitude
Initial Condition, gyro bias, gyro scale factors, and misalignment initial condition. The error budget shows
that the gyro scale factor contribution is as big as that of the bias. The reason for this is that during long coasts
the attitude and bias errors correlate, therefore the gyro bias is estimated when star tracker measurements are
processed. The gyro scale factors on the other hand, correlate with the attitude error during slews, which are
relatively slow and short, therefore the scale factors are very weakly observable; yet it is a significant enough
contributor.

SENSOR ERROR TYPE 1σ VALUE

Star Tracker to IMU Misalignment 0.333 deg
Misalignment Drift 0.001 deg/s
Star Tracker Measurement Noise 100 arcsec
Gyro Bias 0.01 deg/hour
Gyro Scale factor 15 ppm
Gyro Noise (ARW) 0.007 deg/

√
hour

Table 1. Sensors errors

Time (s) 3σ Attitude Error Contributors (deg)
Meas. Noise ARW MW Att. IC Bias SF Mis. IC RSS

0 0 0 0 0.2997 0 0 0 0.2997
200 0 0.0148 0 0.2997 0.0050 0.0002 0 0.3001
400 0 0.0210 0 0.2997 0.0100 0.0004 0 0.3006
600 0 0.0257 0 0.2997 0.0150 0.0005 0 0.3012
800 0 0.0297 0 0.2997 0.0200 0.0007 0 0.3018

1000 0 0.0332 0 0.2997 0.0249 0.0009 0 0.3026
1100 0.0025 0.0345 0.0030 0.2967 0.0271 0.0010 0.0298 0.3015
1200 0.0110 0.0359 0.0133 0.2954 0.0295 0.0011 0.0299 0.3012
1300 0.0253 0.0184 0.0377 0.1086 0.0127 0.0054 0.0110 0.1461
1400 0.0313 0.0105 0.0487 0.0116 0.0028 0.0050 0.0012 0.0606
1500 0.0268 0.0144 0.0487 0.0106 0.0042 0.0049 0.0011 0.0590

Table 2. Attitude Error Budget

In view of this fact the state in the filter as chosen as the attitude error, gyro bias, gyro scale factor, and the
star tracker to gyro misalignment:

x̂ =
[
âT b̂T ŝT µ̂T

]T
(58)

The filter propagates using the gyro during long coast times. Calibration maneuvers are initiated periodically
to calibrate the star tracker misalignment. Some time before the calibration maneuvers and for some time
after they are concluded, star tracker measurements are being processed by the filter. Measurement updates
during these pre-maneuvers coast times collapse the star tracker misalignment uncertainty down to the attitude
knowledge uncertainty and potentially estimate the gyro bias.

The gyro measurement ∆θ̃j is a rotation vector (an integrated angular velocity compensated for coning)

13



Figure 3. Attitude Error Budget

and is accumulated by the filter at the gyro output rate ∆tj as follows

qaccum,j = q
(
∆θ̃j − b̂k∆tj

)
⊗ qaccum,j−1 (59)

where the subscript k designates the last navigation filter call time which is at a slower rate than gyro ac-
cumulation, ⊗ is the quaternion multiplication such that quaternion compose in the same order as attitude
matrices, and q(·) is the function that returns a quaternion from another attitude parameterization. Eq. (59)
is only valid when the gyro bias is either constant or its time constant is several orders of magnitudes greater
than the filter call rate, otherwise the estimated gyro bias needs to be propagated at the IMU rate as well

b̂kj = e−∆tj/τb b̂kj−1 (60)

The state transition matrix is propagated at either the fast IMU rate, ∆tj , or the slower filter call rate, ∆tk,
and is given by

Φ(tk+1, tk) =


Φ11(tk+1, tk) Φ12(tk+1, tk) Φ13(tk+1, tk) O3

O3 e−∆tk/τbI3 O3 O3

O3 O3 e−∆tk/τsI3 O3

O3 O3 O3 e−∆tk/τµI3

 (61)
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where

∆θk = θ
(
qaccum,k ⊗ q∗accum,k−1

)
(62)

∆θk = ‖∆θk‖ (63)

[ω̄k×] =
1

∆θk
[∆θk×] (64)

ωk = ∆θk/∆tk (65)
Φ11(tk+1, tk) = I3 − [ω̄×] sin ∆θk + [ω̄×]2 (1− cos ∆θk) (66)

and

Φ12(tk+1, tk) = τbI3

(
e−∆tk/τb − 1

)
− ∆θ τ2

b

1 + ∆θ2
k τ

2
b

[ω̄k×] (cos ∆θk − 1) +
∆θ τ2

b

1 + ∆θ2
k τ

2
b

[ω̄k×]
2

sin ∆θk

+
τb

1 + ∆θ2
k τ

2
b

[ω̄k×]
2

(cos ∆θk − 1) +
τb

1 + ∆θ2
k τ

2
b

[ω̄k×] sin ∆θk

+
∆θ2 τ3

b

1 + ∆θ2
k τ

2
b

[ω̄k×]
2
(
e−∆tk/τb − 1

)
+

∆θ τ2
b

1 + ∆θ2
k τ

2
b

[ω̄k×]
(
e−∆tk/τb − 1

)
(67)

Φ13(tk+1, tk) =
{
τsI3

(
e−∆tk/τs − 1

)
− ∆θ τ2

s

1 + ∆θ2
k τ

2
s

[ω̄k×] (cos ∆θk − 1) +
∆θ τ2

s

1 + ∆θ2
k τ

2
s

[ω̄k×]
2

sin ∆θk

+
∆θ2 τ3

s

1 + ∆θ2
k τ

2
s

[ω̄k×]
2
(
e−∆tk/τs − 1

)
+

∆θ τ2
s

1 + ∆θ2
k τ

2
s

[ω̄k×]
(
e−∆tk/τs − 1

)
+

τs
1 + ∆θ2

k τ
2
s

[ω̄k×]
2

(cos ∆θk − 1) +
τs

1 + ∆θ2
k τ

2
s

[ω̄k×] sin ∆θk

}
[ωk\] (68)

function θ(·) returns a rotation vector from another attitude parameterization and superscript “∗” indicates
the quaternion conjugate. The state and covariance P propagation are given by

q̂bi(tk+1) =
(
qaccum,k ⊗ q∗accum,k−1

)
⊗ q̂bi(tk) (69)

b̂(tk+1) = e−∆tk/τb b̂(tk) (70)

ŝ(tk+1) = e−∆tk/τs ŝ(tk) (71)

µ̂(tk+1) = e−∆tk/τµ µ̂(tk) (72)

P−k+1 = Φ(tk+1, tk)P+
k Φ(tk+1, tk)T + Qk (73)

Qk =


QARW∆tk O O

O σ2
bb(1− e−2∆tk/τb)I O O

O O σ2
ss(1− e−2∆tk/τs)I O

O O O σ2
µµ(1− e−2∆tk/τµ)I

 (74)

where QARW is the gyro angular random walk and σ2
bb, σ2

ss, σ2
µµ are the gyro bias, scale factor, and star

tracker to gyro misalignment steady-state variances. The measurement update is given by

x̂−k =
[
0T b̂(tk)T ŝ(tk)T µ̂(tk)T

]T
(75)

εk = a
(
qbi,meas(tk)⊗ q(−µ̂k)⊗ q̂∗bi(tk)

)
(76)

H =
[
I O O I

]
(77)

Kk = P−k HT
(
HP−k HT + Rk

)
(78)

P+
k = (I−KkH)P−k (I−KkH)T + KkRkK

T
k (79)[

âT
k b̂(tk)T ŝ(tk)T µ̂(tk)T

]T
= x̂−k + Kkεk (80)

q̂bi(tk) = q(âk)⊗ q̂bi(tk) (81)
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where Rk is the star tracker measurement error covariance and a(·) is the function that returns the attitude
parameterization a from another parameterization. Our choice of attitude error parameterization is four times
the modified Rodrigues parameters [12] which we will refer to as scaled MRPs.

NUMERICAL EXAMPLE

This section presents the results of a Monte Carlo simulation used to test the proposed design. The initial
attitude uncertainty standard deviation is 0.033 deg, in order to simulate the effects of long coast flights prior
to measurement acquisition, the initial attitude estimation error is correlated to the initial gyro bias estimation
error with a correlation coefficient ρφb = −0.9. The simulation runs for 500 seconds, for the first 200 seconds
the vehicle is coasting, the estimation algorithm starts processing star tracker measurements after 100 seconds
and continues until the end. At 200 the vehicle start rolling at a rate of 1 deg/s. At 300 seconds the vehicle
stops rolling and starts pitching at a rate of 1 deg/s. At 400 seconds the vehicle returns to coast flight. Table 1
shows the star tracker and gyro errors used in the simulation (all values are 1σ per axis). Figs. 4 and 5 show
the performance of the filter. It can be seen that the actual errors match the uncertainty predicted by the filter.

(a) Attitude Error and 3σ Predicted Uncertainty (b) Misalignment Error and 3σ Predicted Uncertainty

Figure 4. Attitude and Misalignment Estimation Errors, 100 Monte Carlo Runs

(a) Gyro Bias Error and 3σ Predicted Uncertainty (b) Gyro Scale Factor Error and 3σ Predicted Uncertainty

Figure 5. Gyro Estimation Errors, 100 Monte Carlo Runs

When star tracker measurements become available at 100 seconds of simulation time the star tracker mis-
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alignment errors collapse to the attitude knowledge uncertainty and are negatively correlated. Only a very
tiny improvement in gyro bias error is observed in spite of the fact that the gyro bias is observable. Initially,
when the gyro bias and the star tracker misalignment are uncorrelated the star tracker misalignment error is
very large keeping the gain extremely small. Once the star tracker misalignment and the attitude error build
up correlations, the observability is driven by the tiny de-correlation that occurs during propagation as the
attitude error increase due to gyro bias error. As the attitude error decreases during slews, so does the gyro
bias steady state value. The results show that the gyro scale factor uncertainty is not decreasing, as expected,
however the state is important to correctly condition the covariance since it is a non-insignificant contributor
to the total attitude error.

CONCLUSIONS

The design for the Orion Cislunar Attitude Filter is being solidified based upon an extensive observability
analysis. In particular, the selection of filter states and dynamics has been informed by an analysis of perfor-
mance during coast and during attitude maneuvers. Filter performance and error budgets analysis have driven
the design to selecting attitude errors, gyro bias, gyro scale factors and star tracker-to-gyro misalignment as
elements of the state space to be estimated. The gyro and star tracker parameters are modeled as first-order
Gauss-Markov random processes. Insight into the observability of the state-space was gained by performing
a detailed analytic observability analysis. Concept of operations are developed based on the results of this
observability analysis.

The performance analysis demonstrates that, as expected, during coasts the gyro bias and attitude errors
correlate so that when star tracker measurements are processed, the gyro bias is well estimated. Conversely,
during attitude maneuvers the gyro scale-factors correlate with attitude errors; however, the estimation of
scale-factor errors is slow. Yet, this particular error is a significant contributor to the total attitude errors and
hence is included in the filter state space.
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