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FAULT DETECTION AND ISOLATION STRATEGY FOR
REDUNDANT INERTIAL MEASUREMENT UNITS

Renato Zanetti,* Abran Alaniz,” Louis Breger, lan Mitchell,’ and Richard
Phillips?

Aerospace vehicle are often required to be two-fault tolerant in order to be man-
rated. This paper presents a two-fault tolerant fault detection and isolation algo-
rithm for a set of four redundant inertial measurement units (IMUs). The paper
derives the fault detection thresholds. The algorithm tests the IMU data after it
is processed by an infinite impulse response filter. Two tests are performed; the
first applies a low cut-off frequency filter to the data in order to detect biases and
slowly growing biases. The second test is performed with a high cut-off frequency
filter in order to detect off-nominal abrupt changes in IMU errors.

INTRODUCTION

The goal of this paper is to present a fault detection and isolation (FDI) strategy to determine
failures in one of a set of redundant inertial measurement units (IMUs). Two IMUs are needed to
detect a single failure, three to isolate it. The scope is different from much of the work existing
in the literature involving FDI in a single redundant IMU. The proposed algorithm is useful for
most man-rated aerospace vehicles (aircraft or spacecraft) that often require a two-fault tolerant
architecture.

This paper contributes a detailed derivation of how IMU errors are affected by processing IMU
errors through an infinite impulse response (IIR) filter, the need for the IIR filter is also explained.
Another contribution of this work is a novel fault detection decision logic. Finally this paper presents
in clear, coherent, and concise manner the design of a man-rated IMU FDI algorithm and justifies
all design decisions made.

FAULT VECTOR AND PARITY SPACE

In this section we briefly review the work by Sturza [1] and we make minor modifications to apply
it to our problem. Assume we have m redundant measurements ¢;, we model each as given by the
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sum of the true value of the measurement y; and the measurement error dy;. For the time being
assume the measurement is a linear function of the n dimensional state x, i.e. y = Hx. Following
Sturza’s derivation we define the generalized inverse H* and the parity matrix P

H* = (H'H)'HT (D)
P = null(HY)?T )

The parity matrix, P, has rank, m — n, dimensions of m — n X m, is unitary, and has the following
property:
PH=0

Matrix A maps the measurement space into the state space and the parity space, and is given by
H*
A=
The inverse map is easily obtained since

A7'=[H PT]

The parity vector p is defined as p = Py. The fault vector € is defined as the parity vector
transformed back to the measurement space

e=A"" [g] —P'Py =Sy

The fault vector has the useful property of being independent of the state, therefore
E{e} = SE{dy}

and
E{ee"} = SE {sydy'} ST
Finally, notice that no singular value decomposition is needed since null space computation is un-

necessary, this is due to the following property: S =1 — HH*.

Assume m = 4, n = 1 and the state is measured directly, i.e.

1 1 oY1
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for this case matrix S is simply given by

3 -1 -1 -1
1]-1 3 -1 -1
S*Z -1 -1 3 -1 @

-1 -1 -1 3



IMU FAULT DETECTION AND ISOLATION

The scope is to detect and isolate a failure in redundant IMU boxes, these checks are done at the
box level, that is: redundancy is not sought by skewing the IMUs and checking the measurements
at the axis level. There are two reasons for this choice. First is that internal IMU misalignments are
very small, much smaller than mounting errors, therefore the navigation system is more accurate
when navigating the IMU rather than the CG in vehicle-fixed coordinates such as the body frame.
By matching measurements from different IMUs to feed the navigation system, these measurements
will be affected by misalignments between the IMUs, therefore the solution will be less accurate.
We will use either all the information from an IMU or none.

It would still be possible to do IMU FDI by skewing the boxes and trying to detect failures
in the single axes rather the labeling the entire unit as failed. The problem with this approach
is that man-rated systems normally utilize navigation grade IMUs which run internally at a very
high rate, several times higher than the output provided. The output is then down-sampled and
compensated for coning and sculling, which means the measurement in each axis is a function of
the measurements in the other two axis.

These two reasons led us to the following IMU FDI design choice: four IMUs are onboard the
vehicle, IMU FDI checks the four sets of measurements for consistency, if one set of measurements
does not match the other three the IMU is labeled as suspect and failed if the difference persists.
If another discrepancy arises between the remaining three boxes the fault can still be detected and
isolated. A third fault can only be detected.

Traditionally fault detection and identification is done separately [2], [3]. For example the Space
Shuttle checks every possible pair of measurements against each other; if they differ by more than a
threshold the fault is detected. A separate identification algorithm determines which IMU has failed
based on the detections from all the IMU combinations.

At the heart of the fault detection and identification is an algorithm which compares the fault
vector with the statistical noise level in that vector. Sturza states that a common choice for the
fault detection decision variable is the square magnitude of the fault vector. Assuming the errors
are Gaussian, the magnitude of the fault vector will have a y? distribution with m — n degrees of
freedom. The probability associated with the y? distribution then gives us the likelihood of false
alarm and of misdetection. If the vector exceeds the noise level by a prescribed amount we know
that with a certain probability, the apparent fault is not just due to an unlikely set of random noise
values. The fault vector and noise are viewed in null space which is free of the actual quantity being
measured so it cannot be driving the fault vector. The null space has fewer dimensions than the
measurement space so the faults in individual measurements projected into this null space cannot
all be mutually orthogonal. This fact contributes to the challenge of correctly identifying the fault
especially if its vector in null space is nearly parallel to that of another fault.

Both the Space Shuttle algorithm and the FDI approach just described have a clear separation
between fault detection and fault identification. A different approach is taken here, which makes
the fault identification trivial and combined with the fault detection algorithm.

We have four measurements ¢;, ¢ = 1,2,3,4, we model each as given by the sum of the true
value of the measurement y and the measurement error dy;. The errors are assumed independent
and identically distributed with zero mean and variance afj. We then do the following operation:

e1 = (351 — 2 — U3 — a)/V12 = (3dy1 — Sy2 — dy3 — 6ya)/V12



under normal circumstances €; is zero mean and has variance O'Z. If €; does not match its predicted
standard deviation we know a measurement is suspect. We similarly calculate

€3 = (303 — 1 — o — §4)/V12 = (38ys — dy1 — Syo — dys)/V12

€2 = (302 — 91 — U3 — §a)/ V12 = (30y2 — Sy1 — dys — 6y4)/V12
€4 = (301 — 91 — Y2 — ¥3)/ V12 = (30ys — 6y1 — dy2 — dy3)/ V12

under normal circumstances €s, €3, and €4 are also zero mean with variance 05. If a single fault

occurs the IMU associated with the highest value of ¢; is the culprit. Therefore the proposed al-

gorithm consists in checking all four ¢; against a user defined threshold, if the any of them exceed

the threshold, then a fault is detected and the identification occurs by simply determining which

component has the largest absolute value.

In order to reduce the probability of misdetection and false alarm, FDI does not permanently fail
a sensor because of a single threshold exceedance, rather a time window is used. The size of the
time window is dictated by a user-defined parameter N, every exceedance out of the last Nyeg; is
recorded. If a sensor has accrued at least N, exceedances out of the last Vi then the sensor is
marked as Probationary. If a sensor has accrued at least N,;; exceedances out of the last Ny then
the sensor is marked as Failed. Otherwise the sensors status is Nominal.

In order to implement the algorithms it is necessary to calculate the value of 05. This is addressed
in the next section.

IMU ERRORS

Navigation-grade IMUs usually measure integrated angular velocities w and integrated non-
gravitational acceleration a. We denote with y the general measured quantity (either angular veloc-
ity or acceleration) and with x the integrated measurement (either angle or velocity). We have that
the total cumulative IMU measurement is given by

t
%(t) = 1y + /0 y(t)dt 5)

where n,., is the readout noise, and y is given by

2

Y1 |y
y:(1+s+M)y+Q y% +A ||| +b+n 6)
Y3 |y3]

where y is the true value of acceleration or angular velocity, I is the identity matrix, S is a diagonal
matrix of scale factor errors, M is the matrix with misalignment and non-orthogonality errors, Q
is the matrix of quadratic errors, A is the matrix of scale factor asymmetry, b is a bias, and 7 is
white noise. All lower case bold quantities are three dimensional vectors, upper case bold are 3 x 3
matrices. Rather than producing an accumulated delta-v and delta-theta, IMUs often provide many
incremental samples

173
Aik = i(tk) - i(tkfl) = Mrok — Nrok—1 + / S’(t)dt (N

tk—1



The measurement error Jy is given by

Y3 1|
by =y -y=(S+M)y+Q|u3| +A |lwel| +b+n ®)
Y3 |y3]
with the following definitions:
S = [s\] )
M = [mx] + [nx*] (10)
Q = [q\] (11)
A = [a\] (12)
i O —ms me9
[mx] = ms 0 —mi (13)
—MmMy mi 0
i 0 nsy n9
nx] = [ng 0 m (14)
_ng ni 0
[y1 0 0
y~\=10 32 0 (15)
L 0 0 Y3
[|y1
Iyl = |yl (16)
|3

we have that
Sy = [yNJs = [yxIm+ [y«ln+ [y~]Pa+ [[y[Na+ b+ 0+ (Nor — Mor_1)/At (A7)

where At is the time over which y is calculated, i.e. ¥ = Ax/At. Assuming all errors are uncor-
related from each other and that all error covariance matrices are of the form o2I we have that the
3 % 3 covariance matrix of the measurement error is given by

R, =} [y~]? — o[y x|? + only+]? + g [y~\]* + oo ly~JP + [of + (07/AL) + (207,/A)]T

(18)
0727 is the spectral density of the random walk 1 [4]. The low frequency errors (either constants
or slowly varying errors) are unaffected by the choice of At, the random walk is scaled by the
inverse of At and the readout error is scaled by the square of the inverse of At. Therefore larger
At will make the low frequency errors dominant while shorter time intervals will exacerbate the
contribution of the noises.

Notice that some authors prefer to define the non-orthogonality matrix as

0 ng no
[nx] = [0 0 mny
0 0 O

in which case the factor multiplying o2 would be different.



AVERAGING AND FILTERING

As mentioned in the previous section, different choices of At will enable detecting different error
sources. The control loop is usually fed by filtered IMU outputs with a small time constant of the
filter in order to suppress high frequency noise. The navigation solution on the other hand, integrates
IMU data in between measurement updates, hence is more sensitive to higher than nominal biases,
especially when external measurements are not available (e.g. blackouts). An especially important
error to be detected are slowly growing biases, as they can potentially make the navigation solution
slowly diverge without being detected by internal measurement residual checks. Therefore we pro-
pose to test data on two different intervals, a longer one meant to test the data going to navigation
and a shorter one, meant to test the data going to controls.

A possible approach is to accumulate [V samples (/V being a different number for the control and
for nav) each spanning a time interval At;, i.e.

1 : Axk

TN 42 At
k=i—N

Yi

with this choice in the error equations Eq. (18) and Eq. (37) we will have At = N At,;. This choice
however, would require to store the last N incremental outputs of the IMU, or at least accumulate
them and store them as lower frequency data.

For the remainder of this section we define the input uy, as

. AXk
A

ug

Infinite Impulse Response Filter
The general second order IIR filter used has the form
Yi = a1yi—1 + a2y 2 + fou; + Biu;—1 + Sou; o

as long as a2 + 4o # 0 this recursion equation can be written in diagonal state-space form

. . P1 0 1
Zp+1 = Az, + Bug = |:0 p2:| zp + |:1:| ug (19)
yi = Cz +Dui = [c1 2] 2 + Bouy, (20)

where p; = (a1 £+ /a3 + 4ay)/2 and
~ Bop? + Bipi + B2 o
Ci = JF
Pi—Dpj

We have that s = —p1p2 and a; = p; + p2. The solution of the difference equation is given by

k—1 k-1
yi =Duy + C > AM T Bu; = foup + D (ep) T+ caph 7y @1
=0 J=0

As long as both poles have magnitude less than one the series is convergent. In order for the
coefficients to add to one the following condition must be satisfied

1—ar—a=PFo+ B1+ P



or equivalently
C1 C2

n —1.
1—p1 1-—po

Bo +

Notice that a first order filter can be retrieved by setting avs = B2 = 0. In this case one pole is
zero as is its corresponding coefficient c;.

From Eq. (21) it follows immediately that the contribution of the random walk to the total error
in Eq. (18) is given by

2 — k—j k—j—1\2 2 CQ C% C1C2 072; 072,
+ Clp J— + CQp J <18 + + 2 > - 1
]Z;( 1 ) Atl 0 1-— p% 1-— P12 Ati Atn
(22)
where the right hand side is the sum of the series as k — oc.
To calculate the contribution of the readout noise we notice that
< k—1 k—2
k—1 k—j— k—j—1 k—j— k—j—2
507_50 +, (e1py 77 + cop) )At - Z (c1py 7% + caph )At
7=0 j=—1
X h2 X
. k -1 k—j— k—j— 2} j
= Bp— — -1 -1 — (23
Bo AL + (a1 +e 50) A T 2 {Cl(pl P72 eape — 1)ph Al (23)

therefore the contribution of the readout noise to the total error in Eq. (18) is given by

(pl - 1)( b2 — 1) ro 02
A2 Atg @4

— D2 + 2c1c0

91 —
2
c1+co— Bo)? 4 Ly
{50 (c1+ 2 50) 11-1— 21+2 1—pip2

First Order Filters

Two simple cases are worth investigating. The simplest first order filter is given by

yi=ayi1+Bu=8Y oy (25)

for 0 < a < 1 the series o converges to 1/(1 — ), in order for this filter to produce an expo-

nentially weighted average all the weights must sum to one, i.e. we must choose 5 = 1 — «. This
choice implies that all bias errors remain unchanged using this filter or using a regular average as in
Eq. (18) and Eq. (37). The random walk contribution to the total error in Eq. (18) is given by

i—1 2 2 2 2

2 2% n 2 2k 91 (1—a)* o3 l—a oy
== 7%7 —

B Za —a)?) a At, | 1—a® A, 1+adt

k=0

Set a = (At — At;)/(Aty + At;), noticing that 8 = (1 — ) = 2At;/(Atq + At;) and (1+«) =
2Atq/(Aty 4+ At;) the random walk contribution can be expressed as
2 2

11—« Op 2At; On 0‘30

1+alAt;  2At, Aty At




hence using this first order filter we need to replace At — At in the random walk contribution of

Eq. (18) and Eq. (37).

Eq. (25) can be rewritten as

Z

. o X3 . lezk
=(1 a)[mi AJ (1—a) Z

the contribution of the readout noise to the total error in Eq. (18) is therefore given by

o2, (1—a)to? 9 o2, 4(Aty +3AL)
1— ro _ (1 — 92 _ ro __ & ?
(- A2 T Tma ae - TR Rs = T AR O

i—1
1—0( Zakxzk Xi—k—1
k=0

In the common case where At, > At; we have that

4(Ata —|—3Ati)o_2 - 0‘30
(Ao + A6)7 70~ YA

Another simple first order filter is given by
i—1

yi = oayi-1+ Bui+ Bui 1 = Bu; + Bla+1) Y o uy,
k=1

in order for the weights to asymptotically add to one the following condition is necessary:

20=1-a.

The random walk contribution is given by

1—2 2 2 2
2 2 2 2k %7 2 ol+a oy o 2 0y
(5 +8(1+a) Za )At <B +h 1—a> A - T oA A

=0

Substituting Eq. (26) we obtain

where Atg = At;/p.

The readout noise contribution is derived from

~1
yi = (a+ 1) *xg + B(a® — 1) Z ab-2Zick

At;

that results in a contribution given by

2 2
ro

2 = 2
At Atﬂ

/82

(26)



this form of the first order filter is particularly simple because it has the exact same structure as the
conventional average and the only substitution is Atg — At. Therefore the same effect of a moving
average filter is obtained without the need to store a lot of past data. Once again the filter has the
form

yi = ayi-1+ Bu; + Bui
with 3 = At;/Atgand o = 1 — 28 = (Atg — 2At;) /At

THREE ADDITIONAL ERROR SOURCES

Three additional sources of error are lever arm correction inaccuracies due to the IMUs not being
co-located, time-tag differences, and alignment mounting errors of the boxes.

The IMU outputs are not perfectly synchronized, therefore when comparing the measurements
an additional error source is due to this error discrepancy. Let’s define a common time £y and the
time of the measurement from the i-th IMU as ¢;, then the error due to time discrepancy is given by

OYidi = Yi — Yo = yi(ti — to) = yi 0t; (27)

The alignment mounting errors dcx; behave in a similar manner as the internal misalignment
errors, therefore we have that

6yalign,i = _[Yi X](saz (28)

In order to compare the acceleration of the redundant IMUs it is necessary to bring all the mea-
sured accelerations to a common location rg. The acceleration ag; at the common location is
calculated from the acceleration a; of the i-th IMU and its location r;.

ag; = a; — {{wx]? + [wx]} (r; — ro) (29)
Therefore the error due to the uncertainty in the IMU location, dr; is given by

6ayoc; = — {[wx]? + [wx]} dr; (30)

The total error associated with an IMU measurement is given by the sum of the contributions in
Eq. (17) and the three errors above

6Ytot = 5y + 5Ytd + 5yalign + (5Yloc (31)

where the location error applies to accelerometers only. The 3 x 3 covariance matrix is given by

R, = ol[y~]? —onlyx]* + only+]> + of [y~* + oy P + [0f + (00/Aty) + (207,/AL2,)]T
+ [wx]}

vy ")o? — o2[yix]? + {[wx]? + [wx]} {fwx]? o? (32)

FAULT DETECTION AND ISOLATION STRATEGY

From Eq. (32) it is clear that to calculate the covariance of the IMU measurement errors covari-
ance it is necessary to use the IMU measurement itself. This creates a problem because in order to
check if the measurement is good we need its covariance and in order to calculate the covariance we
need to use the measurement. It is assumed that only one fault at the time occurs, this assumption



could be relaxed by testing the three possible combinations of three IMUs (i.e. 1,2, and 3; 1,2, and
4; 2, 3, and 4) rather than testing all four at once. Under this alternative strategy if only one IMU
fails then two of the three checks will fail. If two IMUs fail simultaneously then checking them by
pairs is necessary to isolate the fault. This alternative strategy makes the FDI algorithm consider-
ably more complex, in addition the chances of more than one IMU soft failures at the same time are
quite small, therefore an algorithmic assumption (and possibly limitation) is that only one failure at
the time will occur.

Since only one IMU failure can occur at one given time the IMU measurement error covariance is
calculated using the IMU measurement that is closest to the average of all IMU measurements. It is
assumed that the faulty IMU will be the outlier, therefore by choosing the middle one for covariance
computations we are guaranteed not to pick the faulty one. Once four IMUs are tested we have that

Yavg = 0-25([[y 1l + [ly2ll + llysll + yall) (33)

and the IMU used to calculate the error covariance in Eq. (32) is the closest one to ¥4, i.€.
min (1)) — aug)* (34)

After the first IMU failure the same procedure is followed with the remaining three IMUs. The
IMU used to calculate the covariance is the mid-value. After a second failure we can still perform
a test to detect a third failure; this failure however cannot be isolated. Because it is not possible to
calculate the mid value of only two IMUs the test will need to be performed twice, once calculating
the covariance with each IMU; if either of the tests does not pass, a failure is declared [5].

When no prior failure occurs four IMU measurements are tested. There are three possibilities of
how to test these measurements. The first option is to compare the vector measurement directly.
After expressing the measurements in the same coordinate system the following quantities are cal-
culated together with the covariance in Eq. (32).

3y1 —y2—y3—Yy4)
=@By2—y1—y3—

€= (
€ = ( 4
€3=(3ys—y1—y2—
€1=(

)
4)
3y4a—YyY1—Y2—Y3)

y
y

EEE

We can then set thresholds to detect failures based on the following positive, scalar quantities
e R, (35)

As previously mentioned, testing the vector measurements necessitates that they are expressed in
a common coordinate system and therefore mounting errors between the IMUs will be part of the
error making the errors larger and hence making other faults harder to detect. This is a good strategy
if mounting errors or internal misalignments need to be included in the FDI tests.

If mounting errors and internal misalignments are not part of the classes of faults to be tested
by FDI, the second option is to test the measurements’ magnitudes. The error of ||y|| can be ap-
proximated to first order as (y'dy/||y||). Therefore, ignoring higher order contributions we have

10



that

oty =" Ry y)/lIyl? (36)
=02+ a2) (i +ys +u3) /Iy + 200 (yivs + vivs + w3u3)/ lylI*+
+ ool + S + ) /Ilyll® + of + 0b /Aty + 207,/ AL}, + o7 (¥ y)? /Iy P+
qg\J1 Y2 T Y3 Yy Op Op n Oro ro TO\Y'Y y
. T .
+ory" ([wx]? + [wx]) (wx]* + [wx]) y/ly? (37

The contribution of the internal misalignments and mounting errors are absent from Eq. (37). We
perform the tests on

l€il/ )y (38)
where
1 = Bllyill — ly2ll = llysll — llyal)v12 (39)
e2 = Bllyzll — Iyl = llysll — llyal)v12 (40)
es = Bllysll — lyill = llyzll — llyal)v12 41)
ea = Blyal — lly1ll = ly2ll — llysl)v12 (42)

The third option is to test ||y;||? rather than ||y;|| this saves computing a few square roots.
We will proceed with option number two.

Table 1 contains the FDI algorithm for both gyros and accelerometers.
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Table 1. IMU FDI Algorithm

if four non-failed IMUs then
calculate the four ¢; as in Egs. (39)-(42)
determine the mid-value out of y; using Egs. (33) and (34)
use the mid-value of y; to calculate the error variance as in Eq. (37)
end if
if three non-failed IMUs then
calculate the three ; using the unfailed measurements as €; = (2||y;|| — |ly;ll — llyx|)v6
determine the mid-value of the unfailed y;
use the mid-value of y; to calculate the error variance as in Eq. (37)

end if
if two non-failed IMUs then
calculate € = (||y:|| — ||y;||)v/2 using the unfailed measurements

calculate the error variance Jﬁyi” as in Eq. (37) for both unfailed measurements
utilize the smaller of the two variances in the following checks
end if
if |€Z|/U\\y|| >THRESHOLD then
set the exceeding-threshold flag corresponding to the max value of ¢; to one
if more than N,,..;, exceedances out of Ny.s; then
declared suspect the IMU corresponding to the unsuccessful test
end if
if more than Ny,;; exceedances out of Ny then
declare failed the IMU corresponding to the unsuccessful test
end if
end if

SIMULATION RESULTS

The following simulation results implement the above algorithm on a vehicle with a set of four
redundant IMUs. One IMU is forced to fail 40sec into the simulation by introducing a small growing
bias in the gyro signal. As the bias increases the low cut-off frequency gyro test begins to show
suspect measurements as shown in Figure 1. Figure 2 shows the status flag for IMU4 ultimately
switching to 2 indicating a failure has occurred. The fault vectors for each test are shown in Figure
3, large values near the end of the simulations are due to the vehicle landing.

12
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Figure 3. Fault Vector

CONCLUSIONS

An IMU fault detection and isolation strategy is introduced to support autonomous man-rated
vehicles. The need of infinite impulse response (IIR) filters is explained and a detailed derivation
show the effect these IIR filters have on the measurement errors. Dynamic thresholds are calculated
from the filtered IMU measurement errors. A strategy to declare a fault is outlined based on a
moving window approach. The number of threshold violations over the last /V; measurements is
stored. The number of allowed violations is a design parameter that is determined based on the
desired probabilities of misdirection and false alarm. A numerical simulation is used to validate the
proposed approach.
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