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NASA’s Autonomous Landing and Hazard Avoidance Technology project has three core

functionalities, namely, Terrain Relative Navigation, Hazard Detection and Avoidance and

Hazard Relative Navigation. In this paper, we present a real time machine learning based

algorithm for Hazard Detection to be deployed during the landing phase. A computer vision

technique called Semantic Segmentation is used to classify safe and hazardous landing spots

for the spacecraft. Randomly sampled Lunar DEMs from the Lunar Reconnaissance Orbiter

mission of 2009 are used to train the convolutional neural network (CNN). The ground truth

is calculated according the mission requirements and use existing techniques to calculate slope

and roughness. Data augmentation techniques are then used to artificially create additional

DEMs by transforming the existing data set. The CNN is validated and testing using similarly

sampled DEMs. The results show that CNNs perform well for real time processing of spatially

correlated data and hence can be useful for performing Hazard Detection and autonomous

landing in future missions.

I. Introduction

The Hazard Detection System (HDS) is a primary component of the cross-NASA developed Autonomous Landing

and Hazard Avoidance Technology (ALHAT) sensor suite [1–4]. The objective of the HDS is to provide guidance,

navigation and control capabilities for the spacecraft to perform autonomous landing under robust lighting conditions.

Using active range sensors, the HDS generates a Digital Elevation Map (DEM) of the terrain which is then processed to

detect hazards on the landing area. In order to determine safe landing sites, the DEM is analyzed for candidate locations

that satisfy mission specifications such as geometric constraints, slope requirements, terrain roughness limits, etc. Since

the mission specifications are spatially correlated, convolutional neural networks (CNN) are effective in finding landing

sites which satisfy them. As we further complicate the mission specifications, evaluating each landing spot to satisfy

these specifications in real time becomes a computationally intensive task. Hence, CNNs can speed up the process

significantly by aggregating all the specifications into a neural network and evaluating the DEM as a whole. In this

paper, we present a robust learning algorithm to detect hazards and safe landing sites using CNNs. In particular, we use
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a machine learning technique called Semantic Segmentation to determine safe landing options by analyzing the DEM of

the Lunar surface.

Previous studies on Hazard Detection and Avoidance (HDA) have used passive optical sensors like cameras as well

as active sensors like LIDAR sensors. LIDAR based methods have become popular because they are robust to different

lighting conditions. The ALHAT sensor suite primarily uses LIDAR and other range sensors for the same reason. In

order to lower the computational costs, flash LIDAR sensors are used because of their ability to instantly measure the

surface heights rather than scan every position of the surface. Studies have been conducted to construct sensors to obtain

real time reliable DEMs [5–7].

Machine learning methods have been used in crater identification on the Lunar surface in the past [8–12]. CNNs

were used for learning the position and radius of the crater on the surface by analyzing the digital elevation map (DEM)

of the surface. The detected craters are used for Terrain Relative Navigation (TRN) wherein a comparison with an

existing map provides a position measurement used for navigation. In this paper, we present a CNN based method for

detecting hazardous areas for autonomous landing. Since, the HDA phase typically takes place between 0.5 − 2 km. A

number of tests for LIDAR based Hazard Detection have been performed in the past. For example, the ALHAT sensor

suite was fully integrated with the Morpheus vehicle and Hazard detection and precision landing was tested [13–16].

Semantic Segmentation is a method used in the computer vision community wherein a CNN is trained to identify

parts of the image and classify them into a set of predetermined classes. This technique excels at tasks like HDA because

of the strong spatial correlation between the pixels of the DEM used to determine the parameters of the surface. Safety

of the landing spot depends on parameters such as slope of the surface, geometry of the vehicle, surface roughness

and proximity to potential hazards. The CNN learns a probability of a position being hazardous and thresholds this

probability to obtain an inference.

A popular technique called data augmentation is used to prevent the network from overfitting the training data,

a popular technique used is data augmentation. The DEM collected from the Lunar Reconnaissance Orbiter (LRO)

mission is used in this paper. Existing training data is transformed using geometric transformations like rotation by a

multiple of 90◦, vertical and horizontal flipping, transposing operation, and addition of Gaussian noise, to artificially

construct additional training data. This artificial data is augmented to the training set to train a network which is robust

to sensor noises and different topographies that may appear in the DEM.

This paper presents a machine learning methodology for Hazard Detection and Avoidance for precision landing

on the Lunar surface. The mission specifications for a typical Lunar landing mission is described in Section II. The

data preparation methods for creating the training, testing and validation data sets from the LRO mission is described

in Section III. The data augmentation methods are described in Section III.B. The neural network structure and the

training methodology is detailed in Section IV. We finally showcase our results on the testing data set in Section V.
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Parameters Requirements
Heading of the spacecraft < ±10◦ from the vertical

Slope < 5◦

Proximity to hazards > footprint size and system uncertainties
Landing position error < 100m
DEM Processing time < 5 seconds
Surface feature size < 20cm

Table 1 Mission specifications for a safe landing spot on the Lunar surface.

II. Specifications
Table 1 presents the mission specifications given in the ALHAT project for HDA. The main parameters considered

when deciding safety precautions are the slope, geometry of the spacecraft and its landing pads, and the size of the

features on the surface. Computational complexity is also a constrained since the DEMs have to be processed and used

for navigation. The intended or the preplanned landing site must not be too far from the calculated landing site. Hence,

safe landing spots closer to the intended landing site will be preferred.

In this paper, proximity to the intended landing site is considered. The aim is to find all the safe landing spots and

then post-processing may be used to determine proximity to the planned landing spot.

III. Data Preparation

A. Ground Truth

For this study we use the DEM data collected during the LRO mission which started in 2009 [17]. A large DEM of

the Lunar surface spanning between the equator and 15◦ north latitude and longitude between 30◦ and 60◦ is used for

creating the training set. Smaller areas of size (400, 400) pixels are then randomly sampled from this dense DEM. Each

pixel represents the height of that position on the surface. The sampled DEM simulates a scan generated during the

HDA phase of the spacecraft descent phase. Existing algorithms from the literature are then applied which calculate the

slope of the terrain at a particular spatial position. In our case, a third order difference method is used to calculate the

partial derivatives in a global x and y direction [18]. This is given by

fx =
(zSE − zSW +

√
(2)(zE − zW ) + zNE − zNW )

(4 + 2
√

2)g
(1)

fy =
(zNW − zSW +

√
(2)(zN − zS) + zNE − zSE )

(4 + 2
√

2)g
(2)

wherein, zA denotes the elevation of the neighboring position on the map in the A direction and g is the spatial

resolution of the DEM. The slope of the surface at a spatial position is calculated according to
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θ = tan−1( f 2
x + f 2

y ) (3)

The slope is thresholded according to the specifications and a binary map is generated with the flat and rough

patches labeled as 1’s and 0’s respectively. An imbalanced or sparse binary map populated primarily with 0’s or 1’s is

an outlier for training and hence, the training set was constrained to have between 25 − 75% flat areas. The obtained

map represents a high resolution slope map of the terrain. A median filter is then applied of appropriate size to remove

obstacles from the map which are smaller than the size given in the mission specifications. A minimum filter of an

appropriate size is then applied which ensures that the landing spot is away from the hazardous areas on the surface.

Figure 1 shows two examples of the sampled DEM and the binary map showing safe and hazardous areas.

Fig. 1 The above figures exemplifies the training data set containing the sampled DEM on the left as the input
and the processed DEMmask on the right as the output. The safe areas are in white and hazardous ones are in
black.

B. Data Augmentation

A data augmentation technique is applied for increasing the size and diversity of the training dataset. An output

preserving input transformation is applied to the input data and the transformed input data is augmented to the training

set. Another type of data augmentation used applies the same geometric transformation to the inputs and outputs and

augments the data to the training dataset. We use the fast image augmentation technique called Albumentations [19] in
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our method. Using data augmentation allows the trained network to be robust to errors in the DEM and allows the

network to learn from a rich dataset.

IV. Learning Framework
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Fig. 2 The figure above describes the topology of the network. Yellow layers: convolutional layers with ReLU
activation, Red layers: Max Pooling layers, Blue layers: Upsampling layers, Green layers with connections:
Concatenations or skip connections, and Purple Layer: Sigmoid Layer.

A fully connected convolutional neural network is constructed. The architecture used in this framework is similar to

the UNet Neural Networks used for biomedical representation [20]. The idea behind using the UNet architecture is to

reduce the dimensionality of the input DEM and retain the essential data from the DEM using the first half of the UNet,

and then projecting this essential information back onto the DEM. The size of sampled DEMs, (400, 400), is the input

and the binary map generated above is the output to the neural network. The input DEM is first centered and normalized

before training since only the relative values of the elevations affect the measure of safety of a landing spot. All the

layers expect for the final layer use the Rectified Linear Unit (ReLU) as the activation function [5]. Since, the output is

to constrained between 0 and 1, a Sigmoid activation layer is applied at a last layer to that effect. The network also

includes residual or skip connections between lower and higher layers wherein a lower layer is concatenated as is to a

higher layer of the network [21]. This facilitates free flow of gradients without passing through the nonlinear layers.

Dropout layers are included within the model to prevent overfitting [22]. The loss function used for training is the Dice

loss L(·, ·) [23] defined as

L(Ypred,Ytrue) = 1 −
2 sum(Ypred&Ytrue) + s

sum(Y2
pred
+ Y2

true) + s
(4)

wherein s = 1 in our case, allows for unstable data which are mostly made up of zeros. Here, sum(·) represents the

sum of all the elements of the matrix. Note that this function counts the number of matching hazardous pixels from the

predicted output to the ones from the ground truth. The value of the Dice loss lies between 0 and 1 for all values of the

inputs. This is a popular choice of loss function for training semantic segmentation models.
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We use the Adam optimizer [24] with β1 = 0.9 and β2 = 0.999 for training the network. The validation set is

created in a similar way as the training set and the network is trained till the validation loss stops improving. Early

stopping was used to stop the training when the loss on the validation set stopped improving for 7 straight epochs. The

network is evaluated on the testing set sampled randomly from the large DEM and the Dice coefficient metric is used for

evaluating the performance. The Dice coefficient, which is 1 − Dice loss, determines the degree of similarity between

the predicted and the ground truth.

V. Results
The accuracy and loss history for the training and validation set is given in the Figure 3. The dice loss and coefficient

were used to evaluate the loss and accuracy respectively. A few example outputs from the testing phase are given in

Fig. 4. The dice coefficient for the testing set was evaluated with the ground truth for 100 sampled DEMs. The mean

dice coefficient was found to be 0.83 ± 0.05, where a value of 1 denotes perfect matching of the ground truth and the

predicted.
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Fig. 3 The dice loss coefficient and the dice loss respectively on the training and validation set.
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Fig. 4 The columns above denote the sampled DEM, the processed ground truth, the network output and
the thresholded output are given in the figure. The third column generated by the learnt neural network is
thresholded to give the fourth column. It is important to note that the values at which the network outputs are
thresholded maybe different in each case.
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VI. Conclusion
A deep learning algorithm called semantic segmentation popularized in computer vision applications is used for

identifying safe landing spots on the Lunar surface. The digital elevation map (DEM) from the Lunar Reconnaissance

Orbiter (LRO) is used to train a convolutional neural network (CNN) to learn the probability of landing spot being

hazardous. Existing algorithms are used to analyze the DEM for find safe landing spots which satisfy the mission

specifications. A UNet-like neural network architecture is trained to learn the safe landing spots given the DEM as the

input. After testing the trained CNN on the randomly sample DEMs from the Lunar surface, it was found that the CNN

gives an average accuracy of 83%. The Dice coefficient metric was used for comparison between the predicted and the

ground truth. Future work includes choosing a single best safe landing spot which is close to the intended landing spot.

This may be done by either by clustering the CNN output or by including the intended landing spot in the training itself.
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