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Abstract— This work develops a new recursive Bayesian esti-
mation algorithm for gamma-distributed random variables. The
time prediction and measurement update steps are developed,
and both are shown to have analytic closed formed solutions
under certain conditions. Furthermore, the update is shown to
be unbiased, this is theoretically guaranteed by the choice of
estimator and demonstrated numerically through Monte Carlo
methods with a simple example.

I. INTRODUCTION

Strictly positive random variables are of interest in many
situations such as, mass, temperature (in Kelvin), or length.
In the field of simultaneous localization and mapping, au-
thors such as Engel ef al or Marcus and Zanetti estimate
the strictly positive depth of features in camera images [1],
[2]. Whatever the application, these variables are generally
estimated through some form of Bayesian estimation, or
recursive Bayesian estimation for situations with multiple
measurements and/or dynamics [3]. In cases with linear and
gaussian systems, this estimator takes the form of the Kalman
Filter [4]. Real systems are never truely linear and gaussian,
however assumptions of linearity and gaussianity result in
adequate performance for a large number of problems. A
variety of nonlinear extensions of the Kalman Filter such
as the Extended Kalman Filter (EKF) [5] have been created
in case nonlinearities are large enough to preclude use of a
traditional Kalman Filter.

The gaussian distribution has a domain of (—eo, ), mak-
ing it ill-posed for representing the distribution of strictly
positive random variables. Govaers and Alqaderi have pre-
viously identified this limitation and developed a novel
Bayesian recursion filter for gamma-distributed random vari-
ables [6]. The filter they propose is biased, but they also
propose a correction that, at the cost of a higher estimation
error variance, produces an unbiased estimator. Our previous
work [2] developed an update formula when the measure-
ments are functions of the inverse of a Gamma-distributed
random variable.

This paper presents a novel recursive Bayesian filter for
Gamma-distributed random variables. The choice of estimate
is the one satisfying the Minimum Mean Square Error criteria
[3] which assures its unbiasedness. A simple numerical
example is provided, and Monte Carlo analysis shows that
the estimator is unbiased and consistent.
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This paper focuses on the estimation of the unknown
outcome of a Gamma-distributed random variable via noisy
measurements of it. As such, this work differs from the
existing literature on estimating the parameters (shape and
scale/rate) of a Gamma distribution from several samples
drawn from it [7], [8].

II. FORMULATION OF THE PROBLEM

We primarily concern ourselves with positive random
variables whose probability density functions are represented
with the gamma distribution. The gamma distribution for a
random variable, x, can be defined by two parameters, shape,
o, and rate, 3, as shown in Equation (1).

9 (v p)= P ™ (1)
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where I'(+) is the gamma function. The mean and variance
of x are:

Ep] = % 2
varfx] = % 3)

We intend to recursively estimate a dynamic state x; given
measurements y; which arrive at each discrete time-step ;.
Equation (4) represent the time-evolution of x;, with the
caveat that it always remains positive. The time evolution
process may also be corrupted by stochastic noise, v;, with
a known distribution, p,,(v;). The typical assumption that x;
and v; are independent is made.

xiv1 = f(xi, vi) 4

The measurement process, Equation (5), produces a mea-
surement, y; at each time-step and is corrupted by stochastic
noise, w;, with a known distribution, pwi(w,-). It is also
assumed that x; and w; are independent.

yi = h(x;,w;) (5)

Our goal is to produce a recursive Bayesian estimate of x;,
X;. This estimate is a function of the posterior distribution,
Dy, (x:]Y;), which is the distribution of x; conditioned on all
measurements up to and including the /. As a shorthand
notation, we denote this sequence of measurements Y;.



III. METHODOLOGY

In general, recursive Bayesian estimation can be formu-
lated exactly without approximations when the distribution
of x; is a conjugate prior of the likelihood function, L(x;]y;) =
Py (vilx;). If h(-) can be inverted such that w; = ™! (y;,x;),
the likelihood can be easily found through a transformation
of random variables [9] approach as shown in Equation (6).

o~ (vixi)

o | P (h™" (vi,x1)) (6)
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Whenever p,,(x;) is a conjugate prior to L(x;|y;), Bayes
Rule, Equation (7), can be applied to produce a gamma-
distributed posterior and an exact recursive filter can be
formulated.

p(xz‘Yz) —_ L(xl|yl)p(xl|Yl*1) (7)
J L(xilyi) p(xilYi-1)dx;

Our filtering algorithm consists of a prediction step that
maps the state forward in time and an update step which
incorporates the current measurement. The recursion is ob-
tained by starting the next prediction step with the post-
update distribution.

A. Predict

We begin with a gamma distribution representing the
distribution of estimate of random variable x;_; condi-
tioned on measurement sequence Yi_i, py, ,(xi—1]Yi—1) =
9 (xi—15 ®_1)i-1, Bi—1)i—1)- The prediction of the distribution
at time ¢ may be found through integration as:

p(xilYio1) Z/P(xi,xl'—ﬂYi—l) dxi_y )
:/P(xi|xi71,Yi71) pxic1|Yic1) dxici (9)

The above integral is typically not solvable in closed form,
unless very specific assumptions on the transitional density,
p(xilx;—1), are made. In this work we concentrate on the
following propagation model:

Xi = Vi—1Xi-1 (10)
where v;_; > 0.

v;_1 can either be deterministic or a random vari-
able. When it is deterministic the transformed ran-
dom variable is also Gamma-distributed as x;; | ~
9 (xi; Qi_1ji-1, Bi_w_l/vi,l). This can be proven using the
moment generating function (MGF) of a gamma-distributed
random variable. We provide the MGF of a generic gamma-
distributed random variable, y, in Equation (11)

y~9(a, B)
(11)

The distribution of x; for deterministic v;,_; can be found
by inspecting the MGF of x;.

Mxi(t) :Mviqxiq (t) (12)
—E |:et(Vi—1xi—l):| —E |:e(”’i71)xi—l:| (13)
:Mxi—l(vi—lt) (14)
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= 16
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By recalling that the moment generating function uniquely
determines the distribution we can conclude that x;;_; ~
G (x5 Q—1)i-1, Bi-1ji1/vi1)-

Alternatively, v; can be a random variable independent
from x;. In this case, p(x;|¥;—1) is not generally a gamma
distribution. However, we will approximate it as one through
a moment matching procedure. Let a; = E[v;] and define
vi = a; + 6v; where 8v;_1x;_| is a zero-mean process noise
term. The propagation can then be rewritten as

Xi= a1 Xi—1+0vi_1 Xi_1 (17)

As previously mentioned, the exact value of p(x;|¥;_1) is
often not obtainable in closed form and/or not a gamma
distribution. We require the mean and variance of x; in
Equation (17) to moment match. The mean and variance of
the product of two independent random variables v;_; and
x;—1 is found according to Equations (18) and (19).

Evi—1xi-1] = E[vi-1]E[xi-1] (18)

varlvi1xio1] = v JERZ ] — (Evici)Eli])® (19)

Once the mean and variance have been found, the pa-
rameters 0;;_; and f;_; of the time-propagated gamma
distribution are chosen such that the mean and variance of
p(xilYi-1) = 9 (xi; &ji—1, Bji—1) match the values calculated
with Equations (18) and (19).

Regardless of the method used, we arrive at a gamma
distribution which exactly or approximately represents the
distribution of x; conditioned on measurement sequence Y;_.

p(xilYio1) =9 (xi; i1, Biji—1) (20)

B. Update

We begin with a  gamma-distributed  state,
Xi ~ 9 (xyi—1; i1, Biji—1), which is conditioned on
all previous measurements up to and including y;_;. We
assume the state observations are themselves positive
quantities and we model them as

2y

Yi = WX

where w; is a random variable independent from x; and
distributed as an inverse gamma, w; ~ % ! (w;; Oy, , Bw;). The
inverse gamma distribution is a two parameter distribution
family which is closely related to the gamma distribution. If



wi~ G (xi; @y, Bu,)s 1/ Wi ~ G (wis @, B,;)- The distribu-
tion is provided for reference in Equation (22).

Oy, —Ohy.—1 _ .
B ﬁ ilw' i e ﬁw,-/wl
pW,-(Wi) :g l(wi; aW,‘aﬁW,‘) = t lr(%Vi) (22)
Our observation model differs from the traditional zero-
mean additive noise model. As an aside, we show that the two
models are more similar than they may appear. Let E[w;] = b;,
then the proposed measurement model hence reduces to

yi =bi xi+x; Ow; (23)

where dw; = w; —E[w;] is zero-mean. In this alternative form,
x;0w; can be thought of as additive, zero-mean noise. The
model in Equation (21) has been chosen for mathematical
convenience.

We aim to apply Bayes Rule, Equation (7), to find the
posterior. First, we note that 4(-) can be inverted as

yi

i

wi=h""(x;,yi) = (24)

We can now find L(x;|y;) with a transformation of random
variables approach [9] shown in Equation (6),

8h*‘ Vi, Xi _
L(xilyi) = ’8()/) pwi (A" (visxi))

_ d i —1
= ’ayixi Pw; (h (y”xz))

1 _
= ;pwi (h ! (yivxi))

Oty
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Next, we perform a direct multiplication of L(x;|y;) and
p(xjji—1) to find the numerator in Bayes Rule. Note the de-
nominator is a normalizing constant to ensure the distribution
integrates to one and thus does not need explicit calculation.
We are able to claim

p(xilyi) o< L{xilyi) p(xiji—1) (26)
o ﬁvgi-wi (yi/x;)~ %=L Pwiilvi ﬁiﬁi‘jlxa"“*'7'e*ﬁi\f*1)"’ o
x () I(ai-1)
o ;A () (28)
From this we can conclude
p(xilyi) =9 (xiis ojis Bigi) (29)
where
Offj; = Oy, + 01 (30)
and
Bii = @:' + Biji-1 (31)

Having found the posterior distribution py, (x;|¥;) any
choice of Bayesian estimator is possible, such the Maximum

A Posteriori [3] or the Minimum Mean Square Error Esti-

mate, i.e. the conditional expectation. We propose using the

latter to achieve an unbiased estimate, hence X; is given by

& =E[x|v] = Kiji

1 1 ] —

Biji

As previously mentioned, the filter proposed in [6] is

biased, and we can use their same approach to show the

unbiased nature of the proposed method. Supposed the state

is static x; = x¢ Vi and that N i.i.d. measurements are applied
recursively, then

(32)

N
i = 0+ Y oy = 0+ Na,

(33)
i=1

N ﬁw N 1
Boi=Bo+Y, = =Bo+Bv) — (34)

=1 Vi i=1Yi

Taking the limit as N — oo and noticing that y; = w;xo
Ooji —> Nay, as N — oo 35)
Nl N N
fop > Py L PuNaw Naw o 36)
xo =wi xo PBw X0

Finally, the estimate is unbiased since it averages to the true
state:

. Oy

x,-:‘B—:xo as N — oo
ili

1V. EXAMPLE

We consider a random sequence x; which is initial
distributed according to xop ~ ¥ (xo; 0, o). The variable
evolves deterministically through time as shown in Equation
37).

(37

Xp = CXi—

Provided ¢ > 0, it can be shown that the predicted dis-
tribution of x;; | from the distribution of x; ;; | is given
by

P (xilYio1) =9 (x5 o_1ji—1, Bim1ji1 /) - (38)

At each time-step, we receive a measurement, y;, which
has been corrupted by inverse gamma multiplicative noise,
wi ~ 9 (x;; O, Bw,), as shown in Equation (39).

Yi = WiX; 39)

The likelihood, L(x;|y;), has been derived previously and
can be found according to Equation (25). Through applica-
tion of Bayes Theorem, it can be shown that the posterior,
Dx, (x:]Y;), is proportional to

O+ -1 =1 —x; ﬁ%”#ﬁ;l i—1
i e (_,v, =i ) 40)

P (xilY;) o< x

Since all other terms are constant with respect to the

random variables and all probability density functions inte-

grate to one, we can conclude that the posterior is a gamma
distribution defined as

Px(xilY;) =G (xi3 0 + 0y 1 l;w +Bic1ji-1)- @D
1



With these results, we are able to exactly represent a
recursive Bayesian estimator. Evaluation of the conditional
mean during either the prediction or update phase of the
recursion results in an unbiased prediction or estimate of x;.

To demonstrate this fact, we use a Monte Carlo simulation.
We draw Nyc i.i.d. samples of xyp and propagate them
through time from i =0 to i = 10 according to Equation (37).
At each time-step, we draw independent noisy measurements
according to Equation (39). All paremeters used to define the
distributions and propagation are shown in Table L.

TABLE I
MONTE CARLO PARAMETERS

Parameter | Value

Nuc 1E6
o 10.0
Bo 10.0
oy 22.0
B 21.0

¢ 1.10

A Bayesian estimator is initialized based on the dis-
tribution of xp. Each measurement is used to generate a
distribution of the state estimate at the current time-step
according to Equation (41). A numerical estimate of the
state, X;, can be found by calculating the expectation of
this distribution according to Equation (2). Likewise, the
estimated variance, 6,»2, was found with Equation (3). The
distribution is transformed into a prediction at the next time
step according to Equation (38).

At each time-step, the estimate error can be found accord-
ing to Equation (42). The mean and variance of the errors
across all Monte Carlo runs for each time-step are calculated.
From the variance positive and negative 3¢ deviation bounds
can be found. Figure 1 shows the error at each time step for
all Monte Carlo runs. Also plotted are the mean error and
430 bounds along with the mean estimated +30 bounds
which are derived from the estimated variance, 67.

e =xi—%i (42)

Figure 1 demonstrates that the Bayesian update derived
in this work is unbiased for all time-steps (estimation error
is zero mean). Furthermore, the error variance and mean
estimated variance overlap, indicating a consistent filter
which accurately predicts its own performance.

To further evaluate filter performance, the performance
of an Extended Kalman Filter (EKF) applied to this same
problem is shown in Figure 2. The estimated variance found
by the EKF is very close to the estimated variance of our
method due to the fact that the EKF essentially performs
moment matching on the mean and variance of the posterior
in the update phase. However, the actual performance of the
EKF is worse than its predicted performance. Hence the EKF
is an overconfident inconsistent estimator.

Table II shows the accuracy of the two methods in terms
of Root Sum Squared (RSS) error.
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Fig. 1. Demonstration of filter performance during Monte Carlo simulation.
Filter is shown to be unbiased and consistent. Note that estimate 30 grows
with time due to system dynamics.
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Fig. 2. Comparison between the recursive gamma filter (top) and an EKF
(bottom). Note that 10 values of the EKF’s estimate match the 1o values
of the gamma filter. However, the EKF is inconsistent.

TABLE I
FILTERS PERFORMANCE

RSS Error of Gamma Filter:
RSS Error of EKF:

0.5109
0.5542

V. CONCLUSION

We have presented a recursive Bayesian estimator for
Gamma-distributed random variables. We have theoretically
proven this estimator is unbiased for the static case, and
shown it is unbiased and consistent through Monte Carlo
for the dynamic case. In addition, we have also shown clear
performance benefits compared to the EKF for the dynamic
case.

In the course of our derivation we have made several



assumptions about the form of the system dynamics and
measurement function. These assumptions can likely be
relaxed to include additional models. In particular, all that
is required for the update is that the predicted distribution is
a conjugate prior to the likelihood. The gamma distribution
is known as being conjugate prior to several distributions.
This fact can be used to relax assumptions on the form of
the measurement function and the measurement noise. These
topics will be explored in a future work.
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