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Abstract

In this paper, a modified kernel-based ensemble Gaussian mixture filtering (EnGMF)

is introduced to produce fast and consistent orbit determination capabilities in a sparse

measurement environment. The EnGMF is based on kernel density estimation (KDE)

to combine particle filters and Gaussian sum filters. This work proposes using Silver-

man’s rule of thumb to reduce the computational burden of KDE. Equinoctial orbital

elements are used to improve the accuracy of the KDE bandwidth parameter in the

modified EnGMF. A bi-fidelity approach to propagation and an adaptation algorithm

for selecting the appropriate number of particles are also applied to the EnGMF to re-

duce the computational burden with an acceptable loss in accuracy for long time prop-

agation. Through numerical simulation, the proposed implementation is compared to

state-of-the-art approaches in terms of accuracy, consistency, and computational speed.

Keywords: Low Earth orbit constellations, Kernel density estimation, Particle filter,

Gaussian mixture model, Bi-fidelity propagation, Adaptive algorithm

1. Introduction

In recent years, there has been an increasing interest in tracking an ever-growing

number of space objects (SOs) for collision avoidance and space domain awareness

∗Corresponding author
Email addresses: shyun@utexas.edu (Sehyun Yun), renato@utexas.edu (Renato Zanetti),

brandon.jones@utexas.edu (Brandon A. Jones)
1Postdoctoral Fellow, Department of Aerospace Engineering and Engineering Mechanics
2Assistant Professor, Department of Aerospace Engineering and Engineering Mechanics

Preprint submitted to Elsevier March 10, 2022



(DeMars et al., 2012; Pate-Cornell and Sachon, 2001; Castaings et al., 2015). As very

large, low earth orbit (LEO) constellations are being developed and launched, the risk

of collision in LEO keeps increasing because of a high density of SOs in this region.

The high number and density of LEO SOs require accurate orbit determination and

data association (National Research Council, 2012). Currently, only a limited number

of radar-based surveillance sensors are available and used to estimate the state of an

SO in LEO. The current approach to maintaining a LEO catalogue is not scalable to

tens of thousands of spacecrafts. The solution of this problem is either adding more

hardware (more tracking stations and/or clusters of supercomputers) or improving the

computational efficiency of tracking and data association software used to maintain the

catalogue.

A software-only solution is one in which the number of available measurements

per SO is reduced because the current surveillance network is tasked to acquire data

from many more SOs. It requires an efficient data association algorithm and an es-

timator able to extract as much information as possible from the sparse data. This

paper addresses the latter, and proposes an accurate and computationally fast nonlinear

estimation algorithm for orbit determination.

1.1. Overview of Estimators for Orbit Determination with Sparse Data Problem

For linear systems with linear measurements, the well-known Kalman filter (Kalman,

1960) provides a globally optimal solution, i.e., it extracts as much information from

the data as possible (in a minimum mean square error sense). In the presence of nonlin-

earities (either in the dynamics, the measurements, or both), a nonlinear filter is able to

produce a more accurate estimate than a linear one, i.e., extract more information from

the data. Radar measurements of range, range-rate, and angles to an SO are inherently

nonlinear. A nonlinear filter, therefore, will outperform a linear filter such as the ex-

tended Kalman filter (EKF) (Gelb, 1974) or unscented Kalman filter (UKF) (Julier and

Uhlmann, 2004) even in the presence of near-linear dynamics.

To cope with the sparse data problem, this paper compares two nonlinear algo-

rithms: the adaptive entropy-based Gaussian mixture information synthesis (AEGIS)

(DeMars et al., 2013) and the kernel-based ensemble Gaussian mixture filtering (En-
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GMF) (Anderson and Anderson, 1999). This work proposes new modifications to En-

GMF to greatly improve its computational complexity. Two implementations of the

UKF and the ensemble Kalman filter (EnKF) (Katzfuss et al., 2016) are also compared

to the proposed approach, representing the SO with both Cartesian and equinoctial

coordinates (Broucke and Cefola, 1972).

For linear measurements and dynamics, the UKF reduces to the Kalman filter and

is the optimal out of all linear estimators regardless of the probability distributions (in

a minimum mean square error, MMSE, sense). The UKF is typically more robust to

nonlinearities than the EKF (Julier and Uhlmann, 2004) but can still fail to produce an

adequate estimate in the case of high nonlinearities. The nonlinearities of orbital dy-

namics are easily mitigated by choosing to represent the SO’s state with an appropriate

set of orbital elements, for example equinoctial elements. Changes in these elements,

specifically the angle quantity, are linear, and variations due to nonlinear effects are

relatively small. This choice of coordinates, therefore, allows for accurate and com-

putationally inexpensive long time propagations of the mean and covariance matrix

(Junkins et al., 1996; Sabol et al., 2010), for example when using the unscented trans-

formation (UT). The price to pay for linear dynamics is typically an even more nonlin-

ear measurement model, which may cause UKF divergence in a scarce-measurement

environment, as shown in the numerical results section of this paper. In measurement-

rich environments, when long propagations are followed by dense measurements arcs,

a batch least-squares approach is often the preferred orbit determination solution (Tap-

ley et al., 2004), as it allows to extract more information from nonlinear measurements

than linear sequential filters. After processing the measurement batch, the mean and

covariance of the estimate can be propagated with the UT to start a new iteration.

Batch least squares does not provide full information about the probability distribution

function and it only returns the mean and covariance matrix and the underlying distri-

bution is typically assumed Gaussian, hence they work best when many measurements

are available such that after incorporating them all the resulting uncertainty is close

to Gaussian. Nonlinear recursive filters, on the other hand, approximate the optimal

MMSE estimator, which has the lowest square estimation error (on average), and pro-

vides a full description of the underlying PDFs. AEGIS and our proposed modification
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to EnGMF are two examples of nonlinear filters.

While this work focuses on the estimation problem, adding data association to a

single-target nonlinear filter is a problem of considerable current interest. Data as-

sociation and collision detection benefit from full knowledge of the PDF, which can

be approximated with AEGIS and the EnGMF but inevitably results in a Gaussian as-

sumption for linear estimators. As long as the PDF remains approximately Gaussian af-

ter measurement batches are incorporated, linear filters produce excellent performance.

Hughes and Alfriend (2020), for example, assumes that the initial orbit determination

solution is an estimate with a Gaussian distribution, and employs modified equinoctial

elements to propagate the state and associate a sequence of observations to an SO using

the Mahalanobis distance.

The AEGIS method is based on the standard Gaussian sum filter (GSF) (Sorenson

and Alspach, 1971; Alspach and Sorenson, 1972). The GSF is a nonlinear estimator

for nonlinear systems and it has been applied to SO tracking applications (Horwood

and Poore, 2011; Horwood et al., 2012). To deal with multimodal and non-Gaussian

distributions, the GSF approximates the probability density functions (PDF) as a Gaus-

sian mixture model (GMM). The GSF provides a nearly optimal solution when enough

components are taken and each Gaussian component has a small enough covariance

matrix such that the nonlinear dynamic and measurement functions can be accurately

approximated to linear functions in the support of each Gaussian component. In the

presence of a Gaussian prior and a nonlinear measurement, the GSF outperforms linear

filters when the prior is approximated by many Gaussians of smaller covariance such

that the measurement is approximately linear in their support.

One of the limitations of the standard GSF is that the weights of the Gaussian com-

ponents remain the same during nonlinear propagations. Several studies recently have

been proposed to address this issue and improve the standard GSF algorithm to better

account for nonlinear dynamics (DeMars et al., 2013; Terejanu et al., 2011; Tuggle and

Zanetti, 2018). One of these approaches is AEGIS, which splits the Gaussian compo-

nents to reduce the effects of nonlinearities of a dynamical system during the prediction

of state uncertainty (DeMars et al., 2013).

Another approach to nonlinear filtering is sequential importance sampling with re-
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sampling (SISR), commonly known as particle filters (PFs) (Arulampalam et al., 2004).

PFs are known to suffer from degeneracy with near-deterministic dynamics, i.e., with

little process noise. As orbital dynamics is well characterized, a particle filter imple-

mentation of orbit determination inevitably requires low process noise. Modifications

have been investigated to improve the standard SISR methods such as the bootstrap

particle filter (BPF), auxiliary particle filter (APF), and regularized particle filter (RPF)

(Doucet et al., 2001) by combining particle filters and GSF (Anderson and Anderson,

1999; Yun and Zanetti, 2019; Raihan and Chakravorty, 2018; Yun and Zanetti, 2020;

Liu et al., 2016). For example, the sequential Monte Carlo filtering with Gaussian mix-

ture model (SMCGMM) proposed in Yun and Zanetti (2019) assumes that each par-

ticle of the pre-propagation distribution to be a Gaussian component having a zero or

small covariance matrix. Raihan and Chakravorty (2018) and Yun and Zanetti (2020)

integrate a PF with a clustering algorithm (e.g., K-means algorithm or expectation-

maximization (EM) algorithm) to approximate the prior distribution with a GMM. Al-

though clustering to form the GMM provides an accurate solution for a highly nonlin-

ear system, it is computationally expensive and not of practical use for tracking large

LEO constellations.

Other examples of hybrid PF/GSF algorithms include Anderson and Anderson

(1999) and Liu et al. (2016), which approximate each propagated particle as a Gaus-

sian component with a non-zero covariance matrix calculated by bandwidth selection

for kernel density estimation (KDE). KDE is a non-parametric technique to estimate

the PDF of a random variable (Scott, 1992). The KDE algorithm with a Gaussian ker-

nel is similar to the EM clustering algorithm in that they construct a GMM using the

particles. However, in the KDE algorithm, every particle is considered as a Gaussian

component to establish a GMM whereas EM clustering algorithm groups several parti-

cles into each Gaussian mixture components. An adaptable bandwidth selection suffers

from a high computational cost similar to the clustering algorithms presented in Raihan

and Chakravorty (2018) and Yun and Zanetti (2020).
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1.2. Contributions of This Work

In this paper, a modification to the EnGMF algorithm is proposed to efficiently

track SOs in LEO with short and sparse observation data. A key element of the En-

GMF algorithm is the determination of the covariance matrix of each Gaussian com-

ponent in a GMM. The covariance matrix is determined by the bandwidth parameter

of a kernel function. Although the optimal bandwidth parameter can be obtained us-

ing a data-driven method (Park and Marron, 1990; Jones et al., 1996), this approach

is computationally expensive. Alternatively, we can compare the simulation results

of a system using a range of the bandwidth parameter (Liu et al., 2016) and tune this

parameter according to the system. In this paper, we propose an approach to achieve

a near-optimal bandwidth parameter with a low computational cost for orbit determi-

nation with sparse observation data. We achieve this by computing the bandwidth of

a Gaussian kernel in the KDE algorithm with Silverman’s rule of thumb (Silverman,

1986) to reduce the KDE computational burden. Moreover, a bi-fidelity approach to

propagation (Jones and Weisman, 2019) and an adaptive algorithm are applied to the

modified EnGMF to reduce its computational cost. The bi-fidelity approach uses both

high- and low-fidelity models to maximize the accuracy of orbit uncertainty propa-

gation, while minimizing computational cost for the propagation of the EnGMF. The

choice of the number of particles is also one key parameter of the EnGMF to reduce

the computational cost. Thus, an adaptive algorithm for selecting an appropriate num-

ber of particles is used for the EnGMF based on convergence assessment (Elvira et al.,

2017). The contributions of this paper can be summarized as follows:

• A modification to the EnGMF algorithm is proposed to efficiently track SOs in

LEO with short and sparse observation data.

• A bi-fidelity propagation approach is included in the EnGMF algorithm to reduce

its computational cost.

• An algorithm to autonomously adapt the number of EnGMF particles is proposed

to reduce its computational cost.

• The proposed EnGMF is compared to the UKF, EnKF, and AEGIS method
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through numerical simulation in terms of accuracy, consistency, and computa-

tional speed.

1.3. Outline

The remainder of this paper is organized as follows. First, the dynamics and mea-

surement models are described and the coordinate systems are presented. Then, the two

nonlinear estimation techniques, the AEGIS and a modified EnGMF, are introduced in

section III and an adaptive EnGMF with bi-fidelity propagation algorithm is presented

in section IV. In section V, simulation results are shown using the proposed algorithms

followed by some concluding remarks on the methodology and results.

2. System Models

2.1. Dynamics Model

The inertial position and velocity of an SO are denoted by rI = [rx ry rz]
T and

vI = [vx vy vz]
T. The orbital dynamics of an SO in Earth-Centered Inertial (ECI)

coordinates are given byṙI
v̇I

 =

 vI

− µ
r3 r

I + aINS + aI3B + aIdrag + aIsrp

 (1)

where µ is the Earth’s gravitational parameter and r is the Euclidean norm of rI . aINS

is the gravitational perturbation due to non-spherical effect of the Earth gravity, aI3B in-

dicates the third-body perturbations of the Moon and the Sun, and aIdrag and aIsrp rep-

resent the acceleration perturbation due to atmospheric drag and solar radiation pres-

sure (SRP), respectively. For this study, the EGM2008 (Pavlis et al., 2008) gravity

model is used for the Earth and 70× 70 degrees and order are applied for gravity mod-

eling, and the planetary and lunar ephemeris DE430 (Folkner et al., 2009) is selected

to compute the location of the Moon and the Sun. The 70 × 70 gravity field is selected

to match one traditional definition of high fidelity propagation for LEO objects in the

context of space situational awareness (Weedon and Cefola, 2010), but can be varied

based on required prediction accuracy and computation constraints.
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The primary non-gravitational force acting on SOs in low earth orbit (LEO) is the

drag force. The drag acceleration due to atmospheric density relies upon the drag

coefficient, the cross-sectional area of an SO face perpendicular to velocity vector, and

the height of an SO above the Earth’s surface. The acceleration due to drag is then

given by

aIdrag = −1

2
Cd

A

m
ρd‖vrel‖vrel (2)

where Cd is the drag coefficient, m and A are the mass and cross-sectional area of the

SO, respectively, ρd is the atmospheric density at altitude of the SO, ‖ · ‖ means the

Euclidean norm, and vrel is the atmosphere-relative velocity vector. For computing the

atmospheric density, the exponential density model is employed in this study (Vallado,

1997).

The acceleration due to SRP depends on the shape of an SO and the cannonball

model, i.e., spherical object, is assumed in this paper. The acceleration perturbation

due to SRP is then given by

aIsrp = −SFACRu
I
sun

mc
(3)

where SF is the solar flux, m is the mass of the SO, c is the speed of light, CR is the

coefficient of reflectivity, uIsun is the unit vector pointing from the SO to the Sun in the

ECI frame.

2.2. Measurement Model

The four-dimensional measurement vector yk at time tk contains range, range-rate,

right ascension and declination of the observed SO as seen by a ground-based radar sen-

sor. The range ρrange and range-rate ρrangerate measurements are calculated along the

line of sight (LOS) between the ground-based radar and the SO. The relative position

vector ρI = [ρx ρy ρz]
T between the SO and a ground station rIS coordinatized in ECI

is given by:

ρI = rI − rIS (4)
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The error-free range measurement is given:

ρrange = ‖ρI‖ = ‖rI − rIS‖ (5)

By differentiating Eq. (5) with respect to time, the error-free range-rate measurement

is obtained as follows:

ρrangerate =

(
rI − rIS

)T (
vI − vIS

)
‖rI − rIS‖

(6)

where vIS is the time rate of change of the ground station position vector with respect

to the inertial frame.

Along with the range and range-rate, angle data in the form of right ascension α

and declination δ are measured to estimate the states of the SO. The error-free angle

observation equations are described as follows:

α = tan−1

(
ρy
ρx

)
, δ = sin−1

(
ρz
‖ρI‖

)
(7)

All measurements are corrupted by zero-mean, Gaussian noise. In this study, light

travel time delay and measurement biases are not considered.

2.3. Coordinate systems

The dynamic equations of the SO presented above are expressed in Cartesian co-

ordinates, which results in nonlinear differential equations. Alternatively, equinoctial

orbital elements (Broucke and Cefola, 1972) offer a near-linear dynamics. The Keple-

rian motion is exactly linear, and nonlinearities arise only due to perturbations such as

non-central gravity and drag. The equinoctial orbital elements are expressed as func-
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tions of the Keplerian orbital elements as follows:

a = a

h = e sin (ω + Ω)

k = e cos (ω + Ω)

λ0 = M0 + ω + Ω

p = tan (i/2) sin (Ω)

q = tan (i/2) cos (Ω)

(8)

where a is the semi-major axis, e is the eccentricity, i is the inclination, Ω is the lon-

gitude of the ascending node, ω is the argument of periapsis, and M0 is the mean

anomaly.

3. Estimation Techniques

This section reviews the AEGIS and introduces the proposed nonlinear estimation

algorithms to cope with the sparse data problem: a modified EnGMF.

3.1. Adaptive Entropy-based Gaussian Mixture Information Synthesis

AEGIS uses an entropy-based method to detect nonlinearity of a dynamical sys-

tem during the prediction of state uncertainty and then applies a splitting technique to

decrease the approximation error caused by truncating the nonlinear functions of the

system to low-order. The AEGIS method is based on the standard GSF which is a

nonlinear estimator. In the GSF, non-Gaussian PDFs are approximated as a GMM as

follows:

p(x) =

N∑
i=1

ω(i)n(x;µ(i), P (i)) (9)

where x is a random variable, p(x) is the PDF of x, N is the number of all Gaussian

components, n(x|µ, P ) represents the Gaussian PDF with mean µ and covariance P ;

and µ(i), P (i), and ω(i) are the means, covariance matrices, and weights of the ith

Gaussian component. The PDF normalization and positivity properties lead to the
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following constraints on the weights:

ω(i) ≥ 0, ∀i
N∑
i=1

ω(i) = 1 (10)

The performance of the GSF mainly depends on both the number and the weights of the

components of a GMM; however, both of them are held constant during the propagation

step. To improve the standard GSF algorithm to better adapt to nonlinearities of the

system, the AEGIS approach allows for the modification of the Gaussian components

over the propagation step based on two main mechanisms.

The first step of AEGIS is to monitor the nonlinearity of the dynamics using a

property derived from the differential entropy for linearized dynamical systems. The

differential entropy of a continuous random variable x is defined as follows (DeMars

et al., 2013):

H(x) = −
∫
S

p(x)log (p(x)) dx = E{−log (p(x))} (11)

where S is the support set. In this paper, all logarithms are assumed to be natural. The

analytic solution of the differential entropy for a multivariate Gaussian distribution is

then expressed as follows:

H(x) =
1

2
log|2πeP | (12)

where P is the covariance matrix and | · | represents the matrix determinant. By taking

a derivative with respect to time for Eq. (12), the time rate of the differential entropy

for a linearized dynamical system is obtained as follows (DeMars et al., 2013):

Ḣ(x) = trace{F (µ(t), t)} (13)

Therefore, the entropy value for a linearized system can be calculated by numerically

integrating Eq. (13) with an appropriate initial condition, which requires only the eval-

uation of the trace of the dynamics Jacobian. On the other hand, a nonlinear determina-

tion of the differential entropy can be evaluated via Eq. (12) by a nonlinear implementa-

tion of the integration of the covariance matrix; for example, unscented transformation
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is one of the most popular and effective methods for moment evaluation. Any deviation

between the linear and nonlinear values of the entropy then indicates that nonlinearity

is impacting the Gaussian component. As a result, the difference between the linearized

and nonlinear predictions of the entropy can be monitored without the full solution to

both the linearized and nonlinear predictors. In other words, when the difference be-

tween these values of entropy exceeds a preassigned threshold, a splitting algorithm is

applied to the Gaussian component during a propagation. A smaller threshold leads to

more frequent splitting during the propagation.

Once the nonlinear effects have been detected from the first step, a splitting algo-

rithm is applied to mitigate the effects by replacing a Gaussian component with several

Gaussian components. For the univariate case, each Gaussian component can be de-

composed into 3 components using splitting libraries which are shown in Table 1. The

splitting technique for a univariate case with splitting library can be then extended to

the multivariate case by considering the principal directions of the covariance matrix.

The details of the algorithm are explained in DeMars et al. (2013). After the propa-

gation, the posteriori mean and covariance matrix, and mixture weights are obtained

using the measurement update of the standard GSF.

Table 1: Three-component splitting library

i ωi µi σi
1 0.2252246249 -1.0575154615 0.6715662887
2 0.5495507502 0 0.6715662887
3 0.2252246249 1.0575154615 0.6715662887

When allowing the number of Gaussian components to grow unbounded, AEGIS

is an accurate and consistent estimator. In this work we are interested not only in

estimation accuracy, but also in computational efficiency to maintain custody of a very

large number of SOs. The proposed solution to achieve this balance of performance

versus accuracy is introduced next.

3.2. Modified Kernel-Based Ensemble Gaussian Mixture Filtering

As a recursive algorithm, the knowledge of the distribution p(xk−1|yk−1) at the

prior time is assumed and approximated by N independent and identically distributed

12



(i.i.d.) samples x(i)
k−1 such that

p(xk−1|yk−1) ≈
N∑
i=1

1

N
δ(xk−1 − x(i)

k−1) (14)

where k is an integer that indicates the discrete time step, y is a measurement vector,

and δ(·) is the Dirac delta function. Following the same procedure as the BPF (Arulam-

palam et al., 2002), a set of samples at the next time step is obtained using the Markov

transition kernel p(xk|xk−1). The Markov kernel indicates the dynamics of a system

and all estimators use the true dynamic model without process noise in this paper.

The next step is to convert the samples into Gaussian mixtures using KDE. In other

words, each particle is considered as a Gaussian component with non-zero covariance.

The approximated GMM of the propagated samples is then expressed as follows:

p(xk) ≈
N∑
i=1

1

N
n(xk;x

(i)
k|k−1, B) (15)

where the bandwidth matrix B is can be calculated by (Liu et al., 2016)

B = βP̂k|k−1 (16)

where β is the bandwidth parameter, 0 ≤ β ≤ 1, and P̂k|k−1 is the sample covariance

matrix calculated from the particles. The Gaussian components’ means are the parti-

cles x(i)
k|k−1 and all GMM weights are equal to 1/N . The covariance matrix of each

Gaussian component is determined by the bandwidth parameter. The larger bandwidth

parameter β, the smaller the probability assigned to the particle and vice versa.

Finally, we can incorporate the measurement information by updating the means,

covariance matrices, and the weights of all N Gaussian components in the same way

as the measurement update of the GSF.N i.i.d. samples are then drawn from the GMM

approximation of the posterior distribution. These samples are used as a starting point

for the next iteration. The details of the measurement update of the GSF and the method

to draw N i.i.d. samples from a GMM are explained in Yun and Zanetti (2019).

In the EnGMF algorithm, it is crucial to choose the most appropriate bandwidth
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which determines the performance of the filter. Bandwith selection is an accuracy

vs. computational cost trade off, with the most accurate algorithms numerically solving

an optimization problem. In this paper, we propose to use Silverman’s rule of thumb

(Silverman, 1986) to estimate the bandwidth (i.e., covariance) matrix BS as follows:

BS = βSP̂ =

(
4

nx + 2

) 2
nx+4

N−
2

nx+4 P̂k|k−1 (17)

where nx is the dimension of the state. We can, therefore, obtain a near-optimal band-

width parameter for orbit determination with sparse observation data without the need

of performing any numerical optimization. If the sampling distribution were Gaussian,

Silverman’s rule of thumb would provide the optimal bandwidth parameter based on

the mean integrated square error (MISE) as a performance criterion (Silverman, 1986).

However, it may result in conservative (large) estimates when the distribution is not

close to Gaussian. This is a very desirable feature, since inaccuracies results in con-

servatism rather than over-confidence and divergence. The flow chart of the modified

EnGMF for orbit determination is described in Figure 1.

4. Adaptive EnGMF with Bi-Fidelity Propagation

This section presents the bi-fidelity propagation (Jones and Weisman, 2019) and

an adaptive algorithm for selecting an appropriate number of particles being applied

to the EnGMF to reduce the computational burden while guaranteeing accuracy and

consistency.

4.1. Bi-Fidelity Orbit Uncertainty Propagation

This research focuses on the use of the bi-fidelity approaches (Narayan et al., 2014;

Zhu et al., 2014) to reduce the computational cost of the EnGMF. The bi-fidelity ap-

proach leverages both high- and low-fidelity models to reduce the cost of orbit un-

certainty propagation with an acceptable loss of accuracy in the prediction step of the

proposed filter.

As in the EnGMF, this process starts from the knowledge of the prior distribution

p(xk−1|yk−1) which, for the sake of simplicity, is considered as a multivariate Gaus-
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Initialize particles

Propagate the particles 
using the dynamics

Calculate the bandwidth matrix of 
the Gaussian components

using Silverman's rule of thumb

Incorporate measurement information 
in the same way as the measurement 

update in the GSF 
(Each Gaussian component is updated 

using the UKF)

Draw N i.i.d. particles 
from the posterior PDF

Measurement

Figure 1: The flow chart of the modified EnGMF for orbit determination

sian distribution with mean x̂k−1|k−1 and covariance P xxk−1|k−1. This prior distribution

is approximated by N i.i.d. samples and each sample is drawn from the distribution as

follows:

xk−1(ξ(i)) = x̂k−1|k−1 +
(
P xxk−1|k−1

)1/2

ξ(i) (18)

where ξ(i) indicates the random inputs to the system which follows a standard mul-

tivariate normal distribution. A set of low-fidelity samples xL(ξ) ∈ X in the state

space X is then generated using a low-fidelity propagator. Given a set of random inputs

Ξ = {ξ(i)}Ni=1, the low-fidelity propagated samples are represented by the matrix

XL(Ξ) ≡
[
xL(ξ1) · · · xL(ξN )

]
∈ Rna×N (19)

In the case of orbit-state uncertainty propagation, na should be increased by consider-

ing the state trajectory, i.e., xL(ξ) should be the state vector x0(ξ) propagated to the
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time of interest t using the low-fidelity propagator (Jones and Weisman, 2019). The

samples then define a subset of X

XL(Ξ) ≡ span
(
XL(Ξ)

)
= span

[
xL(ξ1) · · · xL(ξN )

]
⊆ X, (20)

which is a function of Ξ. The matrix XH(Ξ) and space XH(Ξ) for the high-fidelity

samples also follows a similar definition. Based on the stochastic collocation method

(e.g., see Chapter 20 of (Ghanem et al., 2017)), we approximated the propagated sam-

ples via the surrogate

xL(ξ) ≈ x̂L(ξ) =

r∑
l=1

cl(ξ)xL(ξ̄
l
) (21)

where cl are expansion coefficients, ξ̄l are the random inputs for the collocation points

(or called as important points) in the expansion, and r is the rank of the surrogate

with r � N . The set of the random inputs corresponding to the collocation points,

Ξ̄ ≡ {ξ̄l}rl=1, is identified using the low-fidelity model. We then approximate the

high-fidelity samples via

xH(ξ) ≈ x̂H(ξ) =

r∑
l=1

cl(ξ)xH(ξ̄
l
) (22)

To summarize, in the bi-fidelity approach, the low-fidelity samples are used to calculate

the coefficients cl and the important points ξ̄l. This approach includes three assump-

tions (Zucchelli et al., 2021):

• XL(Ξ) allows for identifying the r samples required for Eq. (22),

• The r high-fidelity samples produce a sufficiently accurate basis for xH(ξ) ≈

x̂H(ξ), and

• Coefficients cl of the expansion in Eq. (21) are sufficiently accurate to be lever-

aged in Eq. (22).

Jones and Weisman (2019) demonstrated through several Earth-orbit test cases that

these three assumptions are reasonable in the context of orbit determination.
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The coefficients cl and important points ξ̄l are jointly computed and identified in a

single algorithm using the following optimization problem:

Ξ̄ = arg min
Ξ

inf
y∈XL(Ξ)

‖xL(ξ)− y‖ (23)

By solving the optimization problem in Eq. (23), we build a space with basis vectors

xL(ξ̄
l
) for l = 1, · · · , r which minimizes the distance between the points in XL(Ξ)

and the space XL(Ξ̄); however, it is generally not tractable (Zhu et al., 2014). A

greedy algorithm is therefore used to generate Ξ̄ by leveraging a solution to the pivoted

Cholesky decomposition (Zhu et al., 2014)

[
XL
]T
GL
[
XL
]

= ATLLTA (24)

whereGL is a Gramian matrix generated viaXL(Ξ) andA is a pivot matrix that orders

the samples based on the distance defined in Eq. (23). The details of the algorithm are

explained in Zhu et al. (2014). The coefficients c = [c1, · · · , cr]T are then generated

via

LLTc = g (25)

where

gl =
〈
xL(ξ),xL(ξ̄

l
)
〉
, l = 1, · · · , r, (26)

and < ·, · > indicates the discrete inner product. Note that a fixed value of r is re-

quired for solving Eqs. (24)-(26), and it is autonomously obtained using the procedure

described in Jones and Weisman (2019).

4.2. Adapting the number of particles

Along with the bi-fidelity approach, an adaptive approach is also used to reduce the

computational cost of the proposed algorithm. The EnGMF can extract as much infor-

mation as possible from the sparse data when each Gaussian component has a small

enough covariance matrix such that the nonlinearity of the measurement function can

be accurately approximated to a linear function for the likely realizations of each Gaus-

sian component. In the EnGMF, each Gaussian component has the same covariance
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matrix and its magnitude decreases as the number of particles becomes larger, thus the

more particles the more accurate the EnGMF performance. This study employs an al-

gorithm to adaptively select an appropriate number of particles, the adaptation rule is

based on the convergence assessment method (Elvira et al., 2017).

The adaptive algorithm is based on the predictive PDF of the observations of the

EnGMF

p(yk|Y k−1) =

∫
p(yk|xk)p(xk|Y k−1)dxk

≈
N∑
i=1

p(yk|x
(i)
k )p(x

(i)
k |Y k−1)

=
1

N

N∑
i=1

n
(
yk;hk

(
x

(i)
k|k−1

)
, H

(i)
k BSH

(i)T
k +Rk

)
(27)

where H(i)
k is the Jacobian of the measurement evaluated at the prior mean x(i)

k|k−1 and

Y k−1 is the collection of all measurement vectors up to and including the current time,

Y k−1 = y1, · · · ,yk−1. The approximated predictive observation PDF converges al-

most surely to the true one as the number of particles tends to infinity (Moral, 2004).

Based on this convergence assessment, the algorithm for adapting the number of parti-

cles is described below.

The first step is the generation of C fictitious observations at each time step k,

{ỹ(j)
k }Cj=1, using Eq. (27). To generate fictitious observations ỹ(j)

k , we follow these

two steps:

1. Draw C samples u(j) from the discrete uniform distribution {1, 2, · · · , N}.

2. For each j, draw ỹ(j)
k from the GMM

1
N

∑N
j=1 n

(
yk;hk(x

(u(j))
k|k−1), H

(u(j))
k BSH

(u(j))T
k +Rk

)
.

The next step is to compare the actual observation value yk with the all fictitious

observations at each time step. A 1-dimensional observation is herein assumed for

the sake of simplicity and a discussion of how to use multi-dimensional observations

is presented in the next subsection. The number of the fictitious observations smaller
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than the actual one is calculated as follows:

Ak,N,C =
∣∣∣{y ∈ {ỹ(j)

k }
C
j=1 : y < yk}

∣∣∣ ∈ {0, 1, · · · , C} (28)

whereAk,N,C is a random variable and | · | represents the number of elements of a set.

The value of the random variable Ak,N,C indicates the relative position of the actual

observation in the fictitious observations. Note that, when the number of particles tends

to infinity, the probability mass function (PMF) of Ak,N,C almost surely converges

to the discrete uniform distribution on {0, 1, · · · , C} under mild assumptions (Elvira

et al., 2017).

Finally, after a set of W consecutive statistics, Sk = {ak−W+1,N,C , ak−W+2,N,C ,

· · · , ak,N,C}, has been obtained from the random variable Ak,N,C , a chi-squared test

(Plackett, 1983) is conducted to check whether Sk is a sequence of samples from the

uniform distribution on {0, 1, · · · , C}. The chi-squared statistic is calculated as fol-

lows:

χ2
k =

C∑
j=1

(Oj − Ej)2

Ej
(29)

where Oj is the frequency of the actual observations being in the j-th relative position

in the window size W and Ej is the expected frequency under the null hypothesis,

i.e., Ec = W/(C + 1). The number of particles of the EnGMF is then adaptively

selected by comparing the p-value associated with the chi-squared statistic pk,C with

a preassigned threshold pl. If pk,C is less than or equal to the significance level, we

can conclude that the sequence Sk is not sampled from the uniform distribution on

{0, 1, · · · , C}. Therefore, if pk,C < pl, we increase the number of particles to increase

the accuracy.

4.3. Algorithm Summary

The adaptive EnGMF with bi-fidelity propagation algorithm is summarized in Al-

gorithm 1, and the details of the algorithm are described below.

1. N0 and Nmax are the preassigned initial and maximum number of particles,

respectively, N0 < Nmax.
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2. For orbit determination with sparse data problem, observations passes last only

a few minutes after a long time propagation. The chi-squared test is therefore

performed for every observation pass to efficiently assess the convergence of

the proposed algorithm, i.e., the convergence assessment includes only one long

time propagation. In addition, when the number of particles is increased, only the

newly generated particles {x′(i)k−1}
N/2
i=1 are propagated using the bi-fidelity prop-

agation to reduce the computational burden. The added high-fidelity particles

{x′(i)k }
N/2
i=1 are then appended to the existing high-fidelity particles {x(i)

k }
N/2
i=1 .

3. In the previous section, a 1-dimensional observation is used to assess the conver-

gence of the algorithm. The same scheme can be applied over each observation

element for a multi-dimensional case. As a result, multiple p-values, pk,C,t with

t = 1, · · · , ny where ny is the dimension of an observation, are available for the

convergence assessment. As a conservative approach, in the proposed algorithm,

the number of particles is doubled when any of the p-values is less than or equal

to the significance level.

5. Numerical Results

5.1. Simulation Conditions

To evaluate the performance of the UKF, AEGIS, and EnGMF, one numerical ex-

ample is considered. The system dynamic equations are numerically integrated with

an embedded Runge-Kutta 8(7) method (Dormand and Prince, 1980) and the setup of

the model is summarized in Table 2. Range, range-rate, and angle measurements are

simulated using a ground station located at the North Pole (latitude = 90◦, longitude

= 0◦, altitude = 0 km). Using a fictitious tracking station at the north pole allows for

a LEO SO in near-polar orbit to be visible every orbit. Hence a sensitivity study of

the accuracy of the tracking algorithms as a function of the frequency of the measure-

ment passes (once per orbit, once every two orbits, etc.) is easily performed without

the need of scheduling sensors at different geographic locations to insure the desired

measurement frequency. In this simulation, tracking passes are short and sparse. The
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Algorithm 1 Adaptive EnGMF with Bi-Fidelity Propagation
// Initialization //
Set N = N0

Initialize the particles x(i)
0 ∼ p(x0), i = 1, · · · , N

Initialize the weights ω(i)
0 = 1/N , i = 1, · · · , N

Set a = 0
Set z = 1

for k = 1 : T do % T: Final simulation time
// Bi-Fidelity Propagation //
if a = 0 then

Propagate x(i)
k−1 using the low-fidelity model

Compute Ξ̄ ≡ {ξ̄l}rl=1 through Eqs. (24)-(26)

Propagate x(i)
k−1 using the bi-fidelity stochastic collocation approach in Section 4.1

else
Propagate x′(i)k−1 using the low-fidelity model

Reuse the Ξ̄ ≡ {ξ̄l}rl=1 obtained from a = 0 case

Propagate x′(i)k−1 using the bi-fidelity stochastic collocation approach in Section 4.1

Append {x′(i)k }
N/2
i=1 to {x(i)

k }
N/2
i=1 , i.e., {x(i)

k }
N
i=1 = {x(i)

k ,x
′(i)
k }

N/2
i=1

Set a = 0
end if

// Gaussian Mixture Model //
Compute BS through Eq. (17)
Set ω(i)

k = 1/N , i = 1, · · · , N

// Fictitious Observations //
Draw ỹ(j)k ∼ n

(
yk;hk(x

(u(j))
k|k−1

), H
(u(j))
k BSH

(u(j))T
k +Rk

)
, j = 1, · · · , C

Compute ak,N,C through Eq. (28)

if k = Wz then // Convergence Assessment //
For each observation element, compute χ2

k through Eq. (29) and the associated pk,C,t, t =
1, · · · , ny

if pk,C,1 ≤ pl or · · · or pk,C,ny ≤ pl and N < Nmax then

Draw x′(i)k−W ∼
∑N

i=1 ω
(i)
k−Wn

(
xk−W ; x̂

(i)
k−W , P̂

xx(i)
k−W

)
, i = 1, · · · , N

Increase N = 2N
Set k = k −W + 1
Set a = 1

else
// Measurement Update //
Convert x(i)

k from Cartesian coordinates to the equinoctial orbital elements through Eq. (8)
Incorporate measurement information in the same way as the measurement update of the GSF
Set N = N0

Set z = z + 1

Draw x(i)
k ∼

∑N
i−1 ω

(i)
k n

(
xk; x̂k, P̂

xx
k

)
, i = 1, · · · , N

Convert x(i)
k from the equinoctial orbital elements to Cartesian

end if
else

// Measurement Update //
Convert x(i)

k from Cartesian coordinates to the equinoctial orbital elements through Eq. (8)
Incorporate measurement information in the same way as the measurement update of the GSF
Draw x(i)

k ∼
∑N

i=1 ω
(i)
k n

(
xk; x̂

(i)
k , P̂

xx(i)
k

)
, i = 1, · · · , N

Convert x(i)
k from the equinoctial orbital elements to Cartesian coordinates

end if
end for
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measurements are available every 10 seconds with a pass lasting only 2 minutes, i.e.,

12 measurements per pass. Each observation consists of range, range-rate, right as-

cension, and declination and the measurements are corrupted by additive zero-mean

Gaussian white noise with standard deviation of 30 m and 0.3 m/s for the range and

range-rate, respectively, and 100 arc-seconds on the right ascension and declination

observation.

Table 2: High-fidelity dynamic model for the numerical simulations

Dynamic Model Description
Primary Body Gravity 70× 70

Third-Body Perturbations Sun and Moon
Atmospheric Drag Cannonball

Solar Radiation Pressure Cannonball

The SO is in a near polar orbit with the following Keplerian orbital elements: a =

7,078.0068 km, e = 0.01, i = 85◦, and ω = Ω = ν = 0. The orbit of the SO is shown in

Figure 2. The simulation epoch is 4-January-2010 at 00:00:00 UTC. The shape of the

SO is assumed to be a sphere with a cross-sectional area of 1 m2 and a mass of 500 kg.

The drag coefficient and the coefficient of reflectivity of the SO are set to be 2 and 1.5,

respectively. The initial distribution is defined in Cartesian coordinates as

x0 ∼ n (x0; µ0, P0) (30)

where

µ0 =



7007.2175 (km)

0 (km)

0 (km)

0 (km/s)

0.6606 (km/s)

7.5509 (km/s)


(31)
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P0 =



1.481e+2 0 0 0 -9.237e-2 -5.333e-2

0 2.885e+1 9.994 -3.232e-2 0 0

0 9.994 5.770 -1.242e-2 0 0

0 -3.232e-2 -1.242e-2 3.687e-5 0 0

-9.237e-2 0 0 0 6.798e-5 3.145e-5

-5.333e-2 0 0 0 3.145e-5 3.166e-5


(32)

Figure 2: The orbit of the SO in the ECI frame, km

First, a Monte Carlo analysis is performed with 100 simulations, and each sim-

ulation has one measurement pass every orbital period (5926 seconds). Note that,

throughout this paper, the starting time of each measurement pass is randomly selected

in close proximity of a multiple of the orbital period. The UKF uses the following

tuning parameters: α = 1, β = 2, κ = 3 - nx = -3, for its sigma points spread. The

parameter α tunes the spread of the sigma points, the parameter β is used to include

prior knowledge of the distribution of state, and κ is a secondary scaling parameter
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(Wan and Merwe, 2000). For the AEGIS method, the three-component splitting li-

brary is used (AEGIS-3), and the threshold on the allowed deviation of the differential

entropy is set as ∆H = 0.001H0 (DeMars et al., 2013). The value of H0 is unique

for each mixture component and based on the covariance at the latter of the last pos-

terior estimate or the output of a splitting operation. After each measurement pass,

the AEGIS algorithm is forced to have only one Gaussian component with the pos-

terior mean and covariance matrix. This simple merging algorithm reduces AEGIS

computational burden and adds conservatism that cannot cause divergence (a Gaussian

distribution is the most uncertain given any finite covariance matrix). Unless otherwise

specified, the EnGMF method uses 1000 particles. Both the AEGIS and the EnGMF

use the UKF measurement update equations for incorporating measurement informa-

tion in each GMM component. For the UKF and EnGMF, two implementations with

Cartesian coordinates and the equinoctial orbital elements are compared. AEGIS is

only implemented in Cartesian coordinates. An AEGIS implementation in equinoctial

coordinates will result in very few component splits as the splits occur due to nonlinear-

ity in the propagation and the SO dynamics expressed in equinoctial elements is nearly

linear, making an equinoctial AEGIS implementation very similar to the equinoctial

UKF.

These three algorithms are compared based on accuracy, computational complexity,

and consistency. The accuracy of the filters is represented by their root-mean-square er-

ror (RMSE), which is computed from the true and estimated states at each measurement

update time for all Monte Carlo simulations. The filters’ complexity is represented by

their average execution time per filtering run in a C++ implementation on a 3.2 GHz

single-core Ubuntu operating system. The filters’ consistency is examined using the

scaled normalized estimation error squared (SNEES) βR which is defined as follows:

βRk =
1

Md

M∑
j=1

(x
(j)
k − x̂

(j)
k )T(P

(j)
k )−1(x

(j)
k − x̂

(j)
k ) (33)

where M is the number of Monte Carlo simulations, x(j)
k are the true states, x̂(j)

k are

the estimated states, P (j)
k are the filter’s estimated error covariance matrix of the j-

24



th Monte Carlo run at the time step k. The size of the state space d = 6 is used to

scale the NEES value (Bar-Shalom et al., 2001) such that a consistent filter will result

in a SNEES of one rather than a NEES of d. If the SNEES value is much greater

than 1, it means the estimator is divergent; however, if the value is much smaller than

1, it indicates the estimator is overly conservative. When the estimator is consistent,

SNEES should be nearly one at all times.

5.2. Simulation Results: 1-orbit interval period

The time history of the RMS position errors of the 100 simulations is depicted in

Figure 3 and the position’s RMSE values of each filter are listed in Table 3. Due to

their nonlinear nature, AEGIS and EnGMF provide better performance than the UKF

at the very first measurement update. However, in this measurement-rich environment,

equinoctial UKF performs near the top in accuracy after the initial transient, and it is

the most consistent at a small fraction of the computational cost of nonlinear filters.

From the results, it is also shown that the UKF and EnGMF with equinoctial orbital

elements outperforms the corresponding filter with Cartesian coordinates. Neverthe-

less, the best performance in terms of estimation accuracy is obtained with the AEGIS,

closely followed by the equinoctial UKF.

Table 3: Monte Carlo averaged RMSE, SNEES, and computation time for 100 simulations

Position’s SNEES Computation
RMSE (km) time (sec)

UKF (Cartesian) 0.2212 507.4479 3.36
UKF (Equinoctial) 0.1839 1.2425 3.55

AEGIS-3 (Cartesian) 0.1810 1.5058 460.34
EnGMF (Cartesian) 0.3320 0.4986 189.47

EnGMF (Equinoctial) 0.3284 0.4920 190.49

Figure 4 shows the SNEES value for 100 Monte Carlo simulations and the aver-

age computation time per filtering run for all the filters. In Figure 4(a), the SNEES

value of the EnGMF is smaller than 1, which means the EnGMF is conservative. For

the EnGMF, the covariance matrix calculated by Silverman’s rule for each Gaussian

component is over-smoothed since the density is not truly Gaussian. The value of the
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Figure 3: The average RMSE for 100 Monte Carlo simulations, 1 pass per orbit

0 5 10 15 20 25

Time [hr]

0

1

2

3

4

5

6

N
o
rm

a
liz

e
d
 m

a
g
n
it
u
d
e

SNEES

UKF (Cartesian)

UKF (Equinoctial)

AEGIS-3 (Cartesian)

EnGMF (Cartesian)

EnGMF (Equinoctial)

(a) The SNEES value

UKF AEGIS-3 EnGMF
0

100

200

300

400

500

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
)

Cartesian

Equinoctial

(b) The average computation time per filtering run

Figure 4: The SNEES value and the average computation time per filtering run for 100 Monte Carlo simula-
tions

AEGIS filter is gradually increased starting from the value 1. The UKF works better

when using equinoctial orbital elements than when using Cartesian coordinates. When

the UKF uses Cartesian coordinates, it diverges in two out of 100 simulations, which

means the estimation error widely exceeds the ±3 sigma predicted standard deviations

of the posterior covariance matrix. As is typical for linear estimators processing nonlin-

ear measurements without underweighting (Zanetti et al., 2010), the equinoctial UKF

is overly optimistic in processing the very first batch of measurements, but due to the

measurement-rich scenario, it recovers nicely and achieved very good consistency.

The time-averaged SNEES value for 100 cases is listed in Table 3. The average

computation time is also presented in Table 3. In terms of computation time, the best

performance is obtained with the UKF by a wide margin (as expected from a simple
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linear filter), and the EnGMF reduces the mean computation time by 58.73% in com-

parison with the AEGIS. Note that resetting the GMM in AEGIS to a single component

after each measurement pass greatly reduces its computational cost when compared to

other merging/pruning schemes.

5.3. Simulation Results: 1- to 6-orbit interval periods

Having established the baseline performance of the estimators with one measure-

ment pass per orbital period, we focus on the real challenge addressed by this paper:

scarcity of measurements. Additional simulations are performed when the gap between

measurement passes is increased to 2, 3, 4, 5, and 6 orbital periods. As in the previous

case, a Monte Carlo analysis is performed with 100 simulations. As we are concerned

with computational speed, we set a maximum allowable number of GMM components

for the AEGIS to be 1000 to contain its overall run time; note that relaxing this con-

straint will result in a more accurate, but slower filter.

Figure 5(a) displays the position RMSE of the UKF, AEGIS, and EnGMF in all the

six cases and the Monte Carlo averaged RMS position errors for all cases are listed in

Table 4, where n/a indicates the filter has diverged. The time-averaged SNEES value

of each estimator for all the six cases is displayed in Figure 5(b). The AEGIS outper-

forms the EnGMF with Cartesian coordinates in terms of RMS accuracy for all the six

cases. However, the EnGMF with the equinoctial orbital elements provides better esti-

mation accuracy than the AEGIS when the interval time between measurement passes

is 6 orbital periods. Also note that the RMS position error of the AEGIS increases

more rapidly with the orbital periods than the EnGMF as shown in Figure 5(a). While

the equinoctial UKF provides excellent performance for the one-orbit interval period,

its performance is severely degraded in terms of accuracy and consistency for the two-

and three-orbits case, and is completely diverging for 4–6 orbital periods between mea-

surement passes. The UKF uses the Unscented Transformation (UT) to approximate

mean and covariance across nonlinear transformations: the dynamics model and the

measurement model. In the presence of very large prior uncertainties, the nonlinear-

ities of range, range rate and bearing angles are sufficient to make the UT inaccurate

and the UKF diverge.
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The choice of using Silverman’s rule in the EnGMF rather than performing band-

width optimization is a trade between speed and accuracy/consistency. However, since

the choice results in a conservative filter (estimated covariance larger than actual one)

this trade off is deemed worthy when the goal is to maintain custody of a very high

number of SOs. The EnGMF implementation in the equinoctial elements provides

increasingly better performance than the EnGMF with Cartesian coordinates as the in-

terval between measurement passes is increased. The UKF with Cartesian coordinates

and equinoctial orbital elements diverge when the interval time is more than 3 and 4

orbital periods, respectively.
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Figure 5: Monte Carlo averaged RMSE and SNEES value for all the six cases

Table 4: Monte Carlo averaged RMS position errors for all the six cases

1 2 3 4 5 6
UKF (Cartesian) 0.2212 0.6178 n/a n/a n/a n/a

UKF (Equinoctial) 0.1839 0.3823 1.1294 n/a n/a n/a
AEGIS-3 (Cartesian) 0.1810 0.3027 0.4026 0.5060 0.6445 0.6872
EnGMF (Cartesian) 0.3320 0.4248 0.5144 0.5682 0.7219 0.7559

EnGMF (Equinoctial) 0.3284 0.4086 0.4838 0.5444 0.6566 0.6632

Figure 6 shows the computation time of each filter, which is normalized by the

value for the EnGMF with Cartesian coordinates. Compared to the AEGIS filter, the

EnGMF reduces the computation time by 59.91% on average.
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Figure 6: Monte Carlo averaged computation time per filtering run

5.4. Simulation Results: 6-orbit interval periods

In this section the performance of the proposed algorithm is evaluated for the case

when measurement passes are taken every six orbits but under more challenging cir-

cumstances than the prior analysis. Firstly, to demonstrate that the proposed algorithm

is able to handle parametric uncertainty in the dynamics, error is added to the drag and

reflectivity coefficients. The drag coefficient CD is typically a value between 2 and

4, depending on shape, altitude, and molecular content (Vallado and Finkleman, 2014)

and the reflectivity coefficient CR between 0.0 and 2.0 (Vallado, 2013). In the follow-

ing analysis, the true values of the drag and reflectivity coefficients are corrupted with

three levels of zero-mean errors having standard deviations set at 0.1, 0.2, and 0.3. The

resulting time history of the RMS position errors of the 100 simulations is shown in

Figure 7 and the position’s RMSE values of the filters with different uncertain level of

the drag and reflectivity coefficients are listed in Table 5. The EnGMFs implementation

used is that with equinoctial orbital elements. The results show that the performance of

the EnGMF degrades as the noise level of the parameters CD and CR increases (as ex-

pected); however, the EnGMFs is able to handle this additional error source as shown

in Figure 8.

Table 5: Monte Carlo averaged RMS position errors for the EnGMF with equinoctial orbital elements and
CD and CR uncertainty

StdDev 0 0.1 0.2 0.3
RMSE 0.6632 0.6678 0.6734 0.6850
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Figure 7: The average RMSE for 100 Monte Carlo simulations, six-orbits case withCD andCR uncertainty
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Figure 8: The SNEES value for 100 Monte Carlo simulations, the six-orbits case with CD and CR uncer-
tainty

Secondly, the performance of the equinoctial EnGMF is evaluated with an angles-

only measurements (i.e., the only measurement available are right ascension and dec-

lination while range and range rate are not available in this scenario). The interval

between measurement passes is again set to six-orbits. Figure 9 compares the time

history of the averaged RMSE and SNEES values of the equinoctial EnGMFs with

all four types of measurement (i.e., range, rage-rate, right ascension, and declination)

versus using only angle measurement. Figure 9(a) shows that with only angle measure-

ment the performance of the EnGMF degrades compared to using all four measurement

types (as expected); however, Figure 9(b).SNEES remains almost unchanged and hence

the EnGMF remains a slightly conservative filter also in the angles-only case.
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Figure 9: The averaged RMSE and SNEES value for 100 Monte Carlo simulations, six-orbit case with only
angle measurements

5.5. Simulation Results: 10-orbit interval periods

A more in-depth comparison of the performances of various filters is shown for

the challenging scenario of one measurement pass every ten orbits. Since the UKF

fails under this challenging scenario, the EnGMF and AEGIS are compared to the

EnKF instead. Figures 10 and 11 present the time history of the RMS position errors,

SNEES values, and average computation time per filtering run of the EnGMF, AEGIS,

and EnKF, and each value is also shown in Table 6. In terms of accuracy, the En-

GMF with Cartesian coordinates or the equinoctial orbital elements outperforms the

EnKF and AEGIS method. This is because the EnKF (Cartesian or equinoctial orbital

elements) and AEGIS filters diverge in two and seven out of 100 simulations respec-

tively, as shown in Figure 11(a), whereas the EnGMF is conservative. As expected,

Figure 11(b) shows that the computation time of the EnGMF is comparable with that

of the EnKF, since they share the same time propagation algorithm which requires the

majority of the computations. Moreover, the EnGMF reduces the computation time by

60.57% compared to the AEGIS filter. In Table 6, we can see that the EnGMF using

the equinoctial orbital elements obtains the best performance in terms of accuracy and

mean computation time.
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Figure 10: The average RMSE for 100 Monte Carlo simulations, the ten-orbits case
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Figure 11: The SNEES value and the average computation time per filtering run for 100 Monte Carlo simu-
lations, the ten-orbits case

Table 6: Monte Carlo averaged RMSE, SNEES, and computation time for the ten-orbits case

Position’s SNEES Computation
RMSE (km) time (sec)

EnKF (Cartesian) 4.2699 2.7008 355.85
EnKF (Equinoctial) 3.3328 2.6713 355.74

AEGIS-3 (Cartesian) 2.1578 1.6459e+06 865.17
EnGMF (Cartesian) 0.9930 0.8595 342.46

EnGMF (Equinoctial) 0.6688 0.5504 339.86

5.6. Simulation Results: 20-orbit interval periods

The performance of the estimators worsen as the gap between measurement passes

increases until they eventually diverges. To evaluate the performance of the adaptive

EnGMF with bi-fidelity propagation under an even sparser measurement data condi-
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tion, a Monte Carlo analysis is performed with 200 simulations when the gap between

measurement passes is increased to 20 orbital periods. The value of 20 orbital periods is

chosen because it causes two divergence cases out of 200 runs when 1000 particles are

used. The initial number of particles of the adaptation is set to N0 = 250 and the max-

imum number of particles is Nmax = 2000. We use 5 fictitious observations C = 5

and 12 window size W = 12. The low-fidelity model is summarized in Table 7. The

EnGMF with 2000 particles, the EnGMF with 2000 particles with bi-fidelity propaga-

tion, and the adaptive EnGMF with bi-fidelity propagation with different significance

level of p-values, pl = [0.1, 0.15, 0.2, 0.25], are compared based on the accuracy, con-

sistency, and complexity. The EnGMFs implementation is the one with equinoctial

orbital elements in this 20-orbits scenario.

Table 7: Low-fidelity dynamic model for the numerical simulations

Model Low-Fidelity
Central Body Gravity Two-Body and J2

Third-Body Perturbations None
Atmospheric Drag None

Solar Radiation Pressure None

Figures 12 and 13 display the time history of and the time average of the RMS po-

sition errors, respectively, and the histogram of the number of particles in each window

size used for the adaptive EnGMF with bi-fidelity propagation is shown in Figure 14.

Figure 15 shows the time history of the SNEES values and average computation time

of the 200 simulations. The result shows that, in the adaptive EnGMF with bi-fidelity

propagation, as the significance level of p-values becomes higher, it provides improved

accuracy with a larger average number of particles. Moreover, the algorithms are con-

servative as shown in Figure 15(a). As a result, it is demonstrated that the predictive

observation PDF is effectively used as a convergence assessment of the EnGMF. The

EnGMF with 2000 particles with or without bi-fidelity propagation outperforms any of

the adaptive EnGMF with bi-fidelity propagation and the EnGMF with 2000 particles

obtains the best performance in terms of accuracy. The EnGMF with 2000 particles,

however, requires almost fourteen times the computation time of the EnGMF with 2000
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particles with bi-fidelity propagation. The computational time can be reduced further

by using the adaptive algorithm as shown in Figure 15(b). The time-averaged position’s

RMSE values, average number of particles, SNEES values, and computational times

of each filter are listed in Table 8.

Figure 12: The average RMSE for 200 Monte Carlo simulations, the twenty-orbits case

(BF) (0.1) (0.15) (0.25)(0.2)

Figure 13: The time-averaged RMSE for 200 Monte Carlo simulations, the twenty-orbits case

Table 8: Monte Carlo averaged RMSE, SNEES, and computation time for the twenty-orbits case

Position’s Average number SNEES Computation
RMSE (km) of particles time (sec)

EnGMF-2000 1.1922 2000 0.6658 1430.5
EnGMF-2000 (bi-fidelity) 1.2270 2000 0.6308 105.5

Adaptive (pl = 0.1) 1.3938 385.83 0.7797 41.76
Adaptive (pl = 0.15) 1.3358 428.33 0.7409 45.29
Adaptive (pl = 0.2) 1.3025 638.75 0.7227 56.33

Adaptive (pl = 0.25) 1.2476 980.83 0.6796 80.33
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(a) pl = 0.1 (b) pl = 0.15

(c) pl = 0.2 (d) pl = 0.25

Figure 14: Histogram of the number of particles in each window size used for the adaptive EnGMF with
bi-fidelity propagation with different significance level of p-values, pl = [0.1, 0.15, 0.2, 0.25]
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Figure 15: The SNEES value and the average computation time per filtering run for 100 Monte Carlo Simu-
lations, the twenty-orbits case
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6. Conclusions

This paper studies a software-only solution to the orbit determination problem with

sparse observation data. The motivation behind the study is the ability to maintain cus-

tody of a very large number of LEO objects. As such, it is of outmost importance in this

study to strike a balance between estimation accuracy/consistency and computational

burden of the methodology employed. Two linear filter implementations (unscented

and ensemble Kalman filters) are shown to either be inadequate for very scarce mea-

surement scenarios (UKF with measurement passes every three orbits or more regard-

less of the choice of Cartesian coordinates or equinoctial orbital elements) or to be less

accurate at the same computational cost (EnKF). A state-of-the-art Gaussian sum filter

named AEGIS is shown to perform well at a very high computational cost, but it fails

when the number of Gaussian components is artificially capped in order to contain its

total execution time.

A newly proposed approach is a modification of the kernel-based ensemble Gaus-

sian mixture filter. Each propagated sample of the prior distribution is treated as a

Gaussian component with a non-zero covariance matrix. The covariance matrix of a

Gaussian component is calculated with Silverman’s rule of thumb to reduce the com-

putational cost of numerically optimizing a bandwidth parameter. The rule produces

the optimal bandwidth when the samples are drawn from a Gaussian distribution, and

results in a conservative estimate for non-Gaussian distributions. Numerical simula-

tions show that the modified algorithm is more accurate and/or faster than the other

approaches for sparse measurement scenarios. The conservatism inherent from using

Silverman’s rule cannot cause filter divergence but can result in slight loss of accuracy.

This slight loss of accuracy is deemed an acceptable trade off to computational effi-

ciency for the ultimate purpose of this work: tracking a very large number of space ob-

jects. While this conservatism can potentially trigger false collision alarms, an efficient

strategy to maintaining a very large catalog is using the proposed lower complexity and

conservative estimates for the population at-large and to only focus high precision and

computationally expensive orbit determination solutions for the very small subset of

objects that are deemed at risk for collision.
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Finally, the adaptive kernel-based ensemble Gaussian mixture filter with bi-fidelity

propagation was designed and shown to provide good performance while reducing the

computational time. The bi-fidelity approach leverages both high- and low-fidelity

models to reduce computational burden with an acceptable loss in accuracy for long

time propagation. The adaptive algorithm determines the appropriate number of par-

ticles based on the convergence assessment using a predictive observation probability

density function.
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