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VARIABLE RESOLUTION QUADTREE MAPPING FOR PLANETARY
LANDING USING PLANAR ELEMENTS

Corey Marcus*, Timothy Setterfield†, and Renato Zanetti‡

We present a terrain mapping technique for autonomous spacecraft landing on plane-
tary bodies. An estimate of the terrain is formed without any a priori knowledge using
generic range and bearing measurements. The map is represented with the quadtree, a vari-
able resolution discretization. This data structure allows high resolution representations in
areas with complex terrain features and low resolution representation in areas with sparse
measurements or simple terrain features. Each quadtree cell contains a planar estimate
of its terrain, these planar estimates are initialized with a Maximum Likelihood estimate
and refined with an Extended Kalman Filter. The planar estimation strategy is validated
through Monte Carlo and the mapping technique is demonstrated with an planetary landing
simulation based on real flight tests conducted as part of NASA’s ALHAT program.

INTRODUCTION
On Mars it is colloquially known as the “seven minutes of terror;” entry, descent, and landing (EDL) is
one of the most technically challenging phases of any robotic lander’s mission. A priori knowledge of the
terrain in which the spacecraft is landing may not be sufficient to accurately locate all potential landing haz-
ards. Communication blackouts and lengthy light-time delays necessitate that the spacecraft autonomously
identify landing hazards and landing sites during descent. Measurements obtained during EDL can be used
to build or refine maps of the surface from which hazards or safe landing sites can be identified. These
challenges are not unique to Mars and may be found in many planetary landing scenarios.

Most existing planetary landing mapping techniques are based off of fixed resolution Digital Elevation Maps
(DEMs).1, 2 At low resolution, these maps fail to capture nuances and fine details of the terrain. At high
resolution, they become inefficient representations of relatively flat and featureless portions of the terrain.
Setterfield et al3 address these limitations through a mapping structure based on the quadtree.4 Quadtrees
are a data structure which discretize two dimensional space with a tree of links and cells. The spatial domain
of each cell can be divided into four child cells of equal area. This division can be continuously repeated,
allowing various resolutions across the domain of the tree. Setterfield et al assign an elevation estimate to
each cell of the tree. This structure allows the map to dynamically increase its resolution in areas with a
high measurement density.
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Mapping is performed for a variety of reasons during descent. It is most often performed to locate previously
unknown hazards while the spacecraft navigates to one of several predetermined landing sites as in NASA’s
Autonomous Landing and Hazard Avoidance Technology (ALHAT) and Safe and Precise Landing (SPLICE)
programs.5, 6 The Mars2020 mission located the lander with respect to an a priori hazard map.7 Future
missions to environments obscured from orbital imagery such as the hazy surface of Titan or permanent
shade of polar Lunar craters may have limited knowledge of the surface before landing. Significant research
is ongoing to select landing sites based on maps generated or refined during descent.

Almost all landing site selection algorithms have one commonality; they depend on fitting planes to the local
terrain.8–13 These planes are commonly used to evaluate the local terrain’s slope and roughness (presence of
small scale hazards). The burden of planar estimation is often placed on the site selection algorithm. Many
authors use DEMs as measurements for their planar estimation scheme. In a planetary mapping scenario,
these DEMs are themselves estimates and any planar estimation scheme would be ingesting estimated el-
evation values which may have correlated estimation errors. This generally violates navigation filter best
practices.14

In this paper, we propose a variable resolution quadtree map in which each cell contains a planar estimate
of the local terrain. Resolution is controlled by the degree to which the local terrain fits the planar approxi-
mation. This division scheme enhances the positive attributes of the quadtree. Complex areas of the terrain
are represented in detail with fine resolution, and computational complexity is greatly reduced for simple or
sparse segments of the terrain.

Modeling each cell as a planar approximation of the terrain produces a map which is of significant value
to landing site selectors. Landing site selection complexity is greatly reduced by providing a map which
already contains planar estimates and associated uncertainties. Furthermore, the theoretical foundation for
planar estimates becomes much firmer by eliminating the need for sequential estimators.

Each cell’s plane contains an estimate of a surface normal vector. Estimating such vectors results in many
of the same problems found in attitude estimation. Namely, the parameterizations used to accommodate
the length constraint contain singularities or redundant parameters. We estimate the unit-normal through
the manifold encapsulation technique developed by Hertzberg15 which avoids singularities and redundant
parameters. New measurements are used to update planar elements with an Extended Kalman Filter (EKF).

RELATED WORK
The most similar work to this one is that of Setterfield et al.3 However, they solve a complete Simultaneous
Localization and Mapping (SLAM) problem using sparse optimization methods. They consider uncertainty
in both the spacecraft state and map while we consider uncertainty only in the map and employ an EKF.
While their work approximates the terrain in each cell with a constant elevation estimate, we approximate
the terrain with a plane. In addition, Setterfield et al choose to divide their map based on measurement
density while we opt for division based on the quality of the planar fit.

Several other authors in the SLAM domain have documented works which utilize planar elements in their
maps. Viejo and Cazorla16 extract planar elements from point clouds, they then use Iterative Closest Point17

to align the planes and produce a SLAM solution. The planes are not stored in an organized structure, nor are
they updated with a Bayesian filter. Several authors18, 19 present SLAM systems containing planar elements
updated via EKF. However, the normal vectors of their planes are parameterized with angles in a spherical
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coordinate system while we use a parameterization developed by Hertzberg.15 Like Viejo and Cazorla, they
do not organize planes into a structured data representation. Another recent plane-based SLAM system was
demonstrated by Grant.20 This system focuses on using the large volume of data produced by a LIDAR
system. The system can also handle individual points when planes are not a good fit. Instead of solving
the SLAM problem with an EKF, they formulate the problem as a factor-graph optimization and solve with
iSAM2.21

Our manifold representation15 has also seen use in another mapping application. Gallant and Marshall22

used the same representation to map the orientation of local planar surfaces and provide sensor heading
estimates. They did not attempt to estimate the positions of the surface or organize the surfaces into a
structured representation.

PRELIMINARIES
Parameterization of Unit Vectors
In three dimensions, unit vectors lie on the unit sphere, S2. S2 exists in R3 but has only two degrees of
freedom. In this work we parameterize S2 as proposed by Hertzberg et al.15 and further developed by
Gallant23 and Hewitt.24 A unit vector n ∈ S2 is separated into a vector component, κ ∈ R2, lying on the
x-y plane and scalar component, λ = cos(φ), in the z direction. Here, φ, is the angle between n and the z
axis.

An identiy unit vector, o = [0, 0, 1]T may be transformed to the unit vector n using a rotation matrix
T+(n).

n = T+(n)o =

[
I2×2 − κκT

1+λ κ

−κT λ

]
o (1)

The inverse operation maps n to o and uses rotation matrix T−(n) = (T+(n))
T .

To eliminate redundant degrees of freedom, κ is normalized, κ̂ = κ/||κ||. Next, a two dimensional vector,
φ = φκ̂ ∈ s2, is defined. The new space, s2, allows expression of unit vectors without redundancy.
Additional operators, � : S2 × s2 → S2 and � : S2 × S2 → s2 mimic addition and subtraction of unit
vectors.23 This framework allows for small vectors, δφ, to perturb unit vectors, ñ = n� δφ. Alternatively,
a metric representing the error between two unit vectors can be found as, δφ = ñ� n.

Terrain Measurements
In this work we frequently consider measurements of a terrain. In practice, such measurements often take
the form of a range, ρ ∈ R, and bearing, b ∈ S2. We assume that each of these measurements’ true values,
ρ̄ and b̄, have been corrupted by noise in the following manner

ρ = ρ̄+ νρ νρ ∼ N (0, Σρ) (2)

b = b̄� νb νb ∼ N (02×1, Σb) (3)

It is useful to create a psuedo-measurement of some point, m ∈ R3, which exists on the surface of the
terrain. This is done as a function of ρ, b, and the sensor location,mo.

m = mo + ρb (4)
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By linearizing and neglecting higher order effects, uncertainty in ρ and b can be used to approximate the
uncertainty of the psuedo-measurement asR = cov(m).

R = T (b)+
[
Σb 0
0 Σρ

]
T (b)− (5)

We model the psuedo-measurement as

m = mo + ρb+ νm (6)

νm ∼ N (03×1, R) . (7)

METHODOLOGY
Maximum Likelihood Plane Estimation
Consider a plane, P ⊂ R3, defined in Hessian Normal Form by a unit normal vector, n, and orthogonal
distance from the origin, d. All points, p ∈ R, lying on the plane satisfy the relationship nTp− d = 0. The
orthogonal distance, ε, between an arbitrary point,m ∈ R3, and the plane is given by

ε = nTm− d. (8)

Consider a set I = {0, 1, . . . , Nr − 1} of independent point measurements, mi, of the planar surface.
Each mi has been corrupted by Gaussian noise, ν ∼ N (03×1, Ri). The Maximum Liklihood (ML) plane
estimate, P̂ML, can be found through a minimization of the negative log-likelihood.

P̂ML = arg min
n,d

- log (p(mI |n, d)) (9)

Independence of each measurement allows the following simplification.

- log (p(mI |n, d)) = - log

(∏
i∈I

p(mi|n, d)

)
(10)

Because the distribution of each measurement is Gaussian, the negative log-likelihood can be further sim-
plified as

- log (p(mI |n, d)) ∝
∑
i∈I

1

2
ε2in

TR−1i n. (11)

Equation (11) cannot be optimized in closed form outside the special case when R ∝ I3×3. Instead,
incremental optimization must be used to find P̂ML. To this end, we define nj and dj as the estimates at the
jth iteration of the optimization. If we allow nj and dj to be peturbed by δφ and δd we find the following
expression for error.

εi =
(
nj � δφ

)T
mi − (dj + δd) (12)
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The peturbation of the normal vector can be shown to be linearized as follows

nj � δφ ≈ T+(nj)

[
δφ
1

]
(13)

where T+ is a rotation matrix as defined previously.

Substituting the Equation (13) into Equation (11) and employing linearization about nj and dj results in the
following expression for εi.

εi ≈ Ai −Di

[
δφ
d

]
(14)

where

Ai = mT
i n

j − dj (15)

Di =

[
−mT

i T
+(nj)

[
I

01×2

]
1

]
(16)

Defining ∆ =
[
δφT , d

]T , the cost function in Equation (11) can be simplified into a quadratic.

∑
i∈I

=
1

2
ε2in

TR−1i n (17)

=
1

2
a−∆Tβ +

1

2
∆TH∆ (18)

where

a =
∑
i∈I

A2
iΣ
−1
εi (19)

β =
∑
i∈I

DT
i Σ−1εi Ai (20)

H =
∑
i∈I

DT
i Σ−1εi (21)

Σεi = (nj)TRnj (22)

Setting the derivative of the cost function to zero, the optimal increment, ∆∗, can be found by solving
H∆∗ = β. The optimal values are then used to update the linearization points as follows:

nj+1 = nj � δφ∗, dj+1 = dj + δd∗ (23)

This update process is repeated until convergence is achieved. At convergence, we can quantify uncertainty
in P̂ML by considering the covariance of ∆. It can be shown that cov(∆) = H−1 = P̂ML.
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Extended Kalman Filter Plane Estimation
Post ML initialization, subsequent measurements can be used to refine the estimate. We use an Extended
Kalman Filter (EKF) to produce a estimate of the error in P̂ . This estimate will be used to update P̂ and
account for the estimate error. Estimate error is represented by ∆ =

[
δφT , δd

]T . It is assumed that

∆ ∼ N
(
03×1, P̂

)
. The estimate is refined via a sensor at position m0 producing range, ρ, and bearing,

b measurements. These measurements are converted into a psuedo-measurement of a point on the plane,
m ∈ R3. This process can be repeated to form a recursive estimate of the plane, using the ith psuedo-
measurement,mi, we will update P̂i to produce P̂i+1.

P̂i is expressed as an estimate of the unit normal vector, n̂i ∈ S2, and perpendicular distance from the
origin, di ∈ R.

P̂i =

[
n̂i
di

]
(24)

We define the state update, U , as

P̂i+1 = U
(
P̂i, x̂i

)
=

[
n̂i � δφi
di + δdi

]
. (25)

We estimate ∆i using an EKF. The EKF produces ∆i as a function of its prior, ∆̄i. Because error is used
to update P̂i in each time step we assume that ∆̄i is normally distributed as ∆̄i ∼ N

(
03×1, P̂i

)
.

Our psuedo-measurement, mi ∈ R3, is the location of a point on the surface of P at a given range, ρ ∈ R,
and bearing, b ∈ S2, as recorded by a sensor at mo. As discussed in a previous section, ρ, b, and mo all
have an associated uncertainty which leads to uncertainty in the true value ofmi. We model the uncertainty
inmi as zero-mean, additive Gaussian noise, νi ∼ N (03×1, R).

mi = mo + ρb+ νi (26)

The psuedo-measurement can be predicted as a function of P̂i and ∆i according to

m̄i = h
(
P̂i, ∆i

)
= mo +

d̂i + δdi − (n̂i � δφi, m
o)

(n̂i � δφi, b)
b (27)

The EKF can now produce ∆i as

∆i = P̂iH
T
(
HP̂iH

T +R
)−1

(mi − m̄i) (28)

WhereH = ∂h
∂∆i
|∆i=0, P̂i

.
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The updated error covariance is given in Joseph form by

P̂i+1 = P̂i − P̂iHT
(
HP̂iH

T +R
)−1

HP̂i (29)

Performance Evaluation Through Monte Carlo
To demonstrate the efficacy of this estimation technique, a 1000 run Monte Carlo simulation was performed.
For each run a truth plane was created by perturbing a nominal plane P =

[
nT , d

]T according to

ni = n� δφi (30)

di = d+ δdi. (31)

At each time-step, a sensor at random location mo
i takes a measurement of Pi. The measurement, mi, is

along vector along vector bi.

θi = [0, 0, −1]T + δbi (32)

bi =
θi
||θi||

(33)

Finally, the measurement is corrupted with random noise, νi.

mi = mo
i +

di − (ni, m
o
i )

(ni, bi)
bi + νi. (34)

The first 10 measurements are used to form an ML estimate of Pi. 100 subsequent measurements, sensor
locations, and apparent bearing vectors are used to update P̂i using an EKF. At each time-step, error is
calculated as

ñi = ni � n̂i (35)

d̃i = di − d̂i. (36)

These errors are stored across all Monte Carlo runs to find the sample error mean and 3σ dispersion at each
time step. These values are plotted alongside the predicted 3σ dispersion in Figure 1. This Figure shows the
planar estimation technique is unbiased and consistent. Across all states, updates, and Monte Carlo runs,
1.5% of filter error values exceed the filter’s predicted 3σ performance. This is lower than the expected
2.5% and implies that our filter actually underestimates its own performance. Specific values for the various
distributions used in the Monte Carlo process are shown in Table 1.

Variable Resolution Planar Mapping
We use a QuadTree based map, M, to model a surface, S . The QuadTree is a variable resolution dis-
cretization of S in x-y space as shown in Figure 2. Each cell of the map contains a planar estimate of its
portion of the terrain, M =

{
P̂1, P̂2, . . . , P̂N

}
. Range and bearing measurements, ρi and bi, respec-

tively, are collected from a sensor at mo
i with each time-step. These measurements are used to create a

psuedo-measurement,mi, of a point which lies on S .
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Figure 1: Aggregated Monte Carlo Results.

Table 1: Parameters for Monte Carlo Simulation

Variable Value/Distribution
P [0.099, 0.099, 0.990, 2.0]T

δφi N (02×1, 0.1I2×2)
δd N (0, 0.1)
δbi N (03×1, 0.2I3×3)

mo
i N

(
[0, 0, 10]T , 10I3×3

)
νi N (03×1, 0.1I3×3)

Figure 2: An example QuadTree showing the variable resolution discretization.

Eachmi is associated with an element, Pj ∈M, according to its x and y coordinates. P̂j is initialized with
an ML estimate once it has accumulated a sufficient number of psuedo-measurements. After initialization,
P̂j is refined with any additional measurements using an EKF.
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Cell division is based on psuedo-measurement residuals, ri = mi − m̄i, and innovation covariance,
HP̂iH

T + R, in the EKF update phase. For converged, linear, and Gaussian systems, it can be shown
that ri ∼ N

(
03×1, HP̂iH

T +R
)

. We find the Mahalanobis distance for each residual.

ζi =

√
rTi

(
HP̂iHT +R

)−1
rTi (37)

We define the metric ψj as the average Mahalanobis distance of the Nm residuals used to update P̂ j .

ψj =
1

Nm

Nm∑
i=1

ζi. (38)

For a converged filter observing a perfectly planar S with a linear measurement model and Gaussian noise
E
[
ψj
]

= 1. We assume that the estimate of P̂j has converged, our measurement models are sufficiently
approximated through linearization, and that the measurement noise is roughly Gaussian. If the segment of
S estimated by P̂j is poorly modeled by a plane then ψj will tend to be larger than one. We divide P̂j into
four children whenever ψj is sufficiently large and the cell size is above a predefined minimum resolution.

SIMULATION
We simulate a spacecraft approaching a lunar hazard field which it would like to map. As it approaches, a
flash LIDAR provides the mapping system with measurements of the terrain. The hazard field, spacecraft
trajectory, and LIDAR performance are inspired by the flight tests conducted by Trawny et al as part of
the ALHAT program.2 These flight tests involve a rocket-powered vehicle approaching a man-made hazard
field containing a mixture of rocks and craters which were representative of the Moon’s surface. The vehicle
scanned the field with a gimbal-mounted flash LIDAR and safe landing sites were identified.

Our simulated hazard field measures 60 by 60 meters and is diagrammed in Figure 3. It contains a mixture
of rocks and craters which have the approximate size and locations of the rocks and craters in the field
used by Trawny et al. Like the ALHAT test, our simulated vehicle takes 120 flash LIDAR images while
approaching the field on a downward slope at a range of 490 to 400 meters. We run simulations at two
approach angles, 30 and 60 degrees. The former is reminiscent of the trajectory flown by Trawny et al while
the latter provides better observations of the terrain and enables better mapping performance.

Our simulated LIDAR has performance characteristics modeled after the one used in the ALHAT tests. Each
simulated flash LIDAR image has a 1-degree field of view (FOV) and contains an array of 128x128 range
measurements and bearing angles which are converted to psuedo-measurements as described in a previous
section. We simulate the gimbaled motion of the real LIDAR so that the entire hazard field may be sampled.
The vehicle’s trajectories, hazard field, and LIDAR pointing targets are illustrated in Figure 4. The pseudo-
measurements are corrupted with independent additive Gaussian noise with covariance R. To approximate
the real flash LIDAR’s range precision of 8cm (1-σ), we choose

R = 0.082I (39)

where I is the identity matrix. This results in a spherical uncertainty which is a computationally simple
approximation of the true corruption of the psuedo-measurements in flight tests.
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Figure 3: The simulated hazard field which contains a variety of rocks and craters.

Figure 4: The simulation setup. The spacecraft approaches the hazard field along one of the two trajectories.
It scans the hazard field by pointing the boresight of the LIDAR at a set of points which are evenly distributed
along the LIDAR targeting line.

The simulated pseudo-measurements are used to refine a QuadTree map and model the hazard field. We
overlay the QuadTree map onto the hazard field for each trajectory in Figure 5. In the 30 degree approach,
mapping performace appears low at the peaks of most rocks where the planar elements extrapolate the rocks
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to appear much larger than reality. This effect is a result of the low angle of approach towards the hazard
field. The spacecraft approaches from the negative y direction and terrain on the other side of the rocks is
hidden from its view. This effect combined with data association errors from measurement noise leads to
poor modeling of the rock face hidden from the spacecraft. These performance issues are greatly reduced in
the higher angle of approach case.

(a) 30 degree approach (b) 60 degree approach

Figure 5: The final QuadTree map displayed alongside the truth hazard field. Black lines represent the
boundary of each planar element within the QuadTree.

We query the QuadTree to produce the estimated hazard field elevation as shown in Figure 6. To make for an
easier comparison with the truth elevation, we saturate the estimates at 2.5 and -0.4 meters. Elevation error is
shown in Figure 7. No saturation is performed on the estimate error. We note that all craters and large rocks
are represented in the elevation estimates. However, relatively large errors are present in the true elevation
of some large rocks in the 30 degree approach. As mentioned before, this is a result of the relatively low
angle at which the spacecraft approaches the terrain. Errors are much lower under a 60 degree approach
angle as the spacecraft has much better visibility of all rock faces. We also note the absence of small scale
rocks from our quadtree. This occurs for one of two reasons; the rocks do not result in a significant enough
divergence from planarity to trigger division or the tree has already divided to its minimum resolution in that
area.

A key component of our algorithm is surface normal vector estimation. We find the error angle between
the true surface normal and our estimated surface normal and display it in Figure 8. In most areas, surface
normal error is low. Flat portions of the terrain have errors less than 3 degrees. We do see significant errors
in the neighborhood of rocks where the minimum surface resolution is not fine enough to capture every
detail of the true surface. We also see relatively higher errors on the rock sides which are obscured from
the spacecraft’s view in the 30 degree approach case. On flat portions of the map, the 60 degree angle of
approach case exhibits lower errors than the 30 degree case.

Our system intelligently divides the QuadTree only when the terrain is poorly modeled with a planar esti-
mate. We overlay the divisions of the final QuadTree onto the true hazard field in Figure 9. In general, areas
containing rocks or craters exhibit finer cell resolution than areas in which they are absent. The division
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(a) 30 degree approach
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(b) 60 degree approach

Figure 6: The estimated terrain elevation. White areas do not have a valid planar estimate. Note that the
estimates have been saturated at 2.5 and -0.4 meters to ease comparison with the elevation truth.

(a) 30 degree approach (b) 60 degree approach

Figure 7: The elevation estimate error. White areas do not have a valid planar estimate. Note the color
scales of the two approach angles differ.

system is much more accurate in the 60 degree angle of approach case.

CONCLUSION
We have presented a novel mapping representation for planetary landing scenarios. A target terrain is rep-
resented with a variable resolution DEM, or QuadTree, in which each cell contains a planar estimate of its
terrain. This representation can be queried with infinite precision and inherently contains estimates of the
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(a) 30 degree approach (b) 60 degree approach

Figure 8: The surface normal estimate error. White areas do not have a valid planar estimate.

(a) 30 degree approach (b) 60 degree approach

Figure 9: The elevation truth alongside the QuadTree cell divisions.

terrain’s surface normal. These qualities make it uniquely suited for landing site selection algorithms.

Future work will aim to increase the intelligence and adaptability of the mapping algorithm as well as apply
it to more realistic simulations or real datasets.
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