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Rate Integrating Gyroscopes (RIGs) measure integrated angular rates or

angular displacement, requiring an observer to provide full state feedback to the

attitude controller. The problem of estimating the angular velocity of a rotating

rigid body with known torque, using measurements from a rate integrating gyro

is considered. A nonlinear observer is designed for cases when the inertia is

accurately known as well as an adaptive observer for unknown inertia, that uses

only continuous-time RIG measurements and provides estimates of the angular

velocity. Moreover, the non-adaptive observer is shown to be robust to bounded

inaccuracies in the knowledge of inertia and external torque acting upon the

system while the state estimation error converges exponentially to zero when

the model is perfect and asymptotically when adapting for inaccurate inertia.

The adaptive observer proposes a novel update rule for parameter adaptation

involving additional control knobs using the attitude states to overcome the

unavailability of the angular rate states as required by conventional certainty

equivalence methods. The observer is tested in simulation to demonstrate its

effectiveness.
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I. Introduction
Inertial navigation is a critical component of aerospace control systems for the calculation of

position, velocity and orientation using measurements from Inertial Measurement Units (IMUs).

These systems are usually comprised of accelerometers and gyroscopes and integrate forward in

time the initial state of the vehicle by replacing dynamic models with IMU measurements. Inertial

navigation systems have been used since the 1950s and were popularly part of the Apollo missions on

the Saturn V rockets, the command module and the lunar module. In a strapdown inertial navigation

system [1], the IMU is rigidly mounted on the vehicle. Strapdown gyroscopes have been used for

many applications including spacecraft attitude estimation [2], underwater vehicle navigation [3],

human navigation systems [4] and robotic navigation [5].

One approach to attitude determination is to integrate Euler’s equation using models of the

torques applied to the vehicle. Alternatively, inertial navigation bypasses the need for these models by

measuring angular velocity directly (referred to as model replacement mode [6]). This methodology

is preferred when IMU information is more accurate than the available models of rotational dynamics

and torques. Moreover, model replacement is computationally much simpler for real-time onboard

applications.

Rate IntegratingGyroscopes (RIGs) do not directlymeasure the angular rate but rather accumulate

angular displacements by integrating the feedback required to null internal gyroscope motions. They

provide measurements of the integrated rate and thus provide a direct measurement of neither the

attitude state nor the angular velocity. They are preferred in spacecraft applications compared to

conventional rate gyroscopes for their low noise due to degenerate mode operation and exceptional

scale factor stability [7]. Modern RIGs use micro-electromechanical system devices [8].

Attitude controllers for aerospace systems typically require state feedback, where the state

consists of the attitude and angular rate. However, since rate integrating gyroscopes do not provide

angular rate measurements, state feedback controllers would require an observer to reconstruct the

full state using the IMUmeasurements. Kalman filters have been used in the literature to estimate this

state [9,10]. For gyroscopes systems that measure angular velocity directly, nonlinear observers for
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attitude and gyro bias with exponential stability exist [11,12]. This work, on the other hand, focuses

on designing observers for known and adaptive inertia cases, which use continuous measurements

from an RIG and provides estimates for the angular rate states that converge (exponentially when the

inertia is known) to their true values when the external torques are perfectly modeled. The angular

velocity estimates provided by these observers can be used in controllers for stabilizing the system

or tracking desired reference trajectories. To the best of our knowledge, no prior work exists in the

literature on continuous time observers for RIG systems.

RIGs are used for high precision applications because they provide the entire history of the

angular velocity as its integrated value. The alternative of sampling the angular velocity at discrete

times is typically less accurate as information on how the angular velocity varies in-between

samples is lost. While we use continuous time RIG measurements here, discretizing the output of a

continuous observer such as the one presented in this work will help use this observer with discrete

time computer systems, while preserving the theoretical guarantees presented for the observer and

the inherent advantages of using RIGs.

In this work, we consider a rigid body governed by Euler rotational dynamics, the angular

rotational rate is assumed to satisfy a known upper bound and the torque applied is known. We

present two nonlinear observer designs, for the known inertia and adaptive cases, which utilize

the measurements from the RIG and provide estimates of the angular rate states. The observer

dynamics are linear in the measurement term and involve a user chosen parameter that controls the

convergence rate.

When IMUs are used in space applications, in the context of on-orbit assembly, repair and

refilling missions, perfect knowledge of the inertia matrix is often not always available and therefore

necessitates the use of adaptive observers that can deal with model parameter uncertainties. We

present an adaptive nonlinear observer design, which provides estimates of the angular rate states

while adapting for the inertia terms. Unlike the certainty equivalence adaptive methods, the design

of this observer, inspired by the Immersion and Invariance (I & I) control method [13], includes two

extra adaptation parameters which helps compensate for the dynamics of the unmeasured terms. In

3



the adaptive case, the rate of change of the torque applied is also assumed to be known.

A Lyapunov-like analysis is used to prove that the attitude and angular velocity state estimates

converge to the true values as long as the initial states are within a Region Of Attraction (ROA),

hence the result is semi-global. With adaptation, the inertia terms can be estimated to the true value

asymptotically if persistence of excitation conditions are met. Further, the non-adaptive observer

is shown to have exponential convergence, be robust to inaccuracies in the inertia matrix and the

external torque and the estimates converge to the true states within a residual set as long as the errors

in inertia and torque are bounded. These results are demonstrated in numerical simulations.

Extending the observer to adapt for inertia uncertainties using conventional adaptive observer

methods is not straightforward since the available measurements from the RIG are only of the

angular displacement while the inertia matrix is only part of the dynamics involving the angular

velocity. Methods inspired by Cho and Rajamani [14] require the measurement outputs to have a

strictly positive definite transfer function to the unknown inertia parameters, which is not the case in

this system as will be discussed in the sequel. Moreover, the measurement here is the integrated

angular rate vector and hence Marino and Tomei’s [15] method of linearizing the system on the

basis of output injection and filtered transformations cannot be used, since it requires the output to

be a real valued scalar or linear with respect to the unknown parameters. Observers for multi-output

systems which are affine in the unmeasured states [16] can also not be used since the dynamics are

not linear in the angular velocity states.

The paper is organized as follows: the dynamics are introduced and the estimation problem

is stated in the next section. The observer formulation and the Lyapunov-like analysis for known

inertia is presented for its convergence properties. The next section presents an observer design

for the adaptive inertia case with a similar Lyapunov-like convergence analysis. The robustness of

the non-adaptive observer to inertia and torque inaccuracies is discussed in the following section.

The simulation section follows, which performs numerical analysis of the observer system for the

different scenarios before wrapping up with the conclusions in the final section. Throughout this

paper, uppercase letters are used to denote matrices and bold faced variables denote vectors. For
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any symmetric matrix 𝑃, the notation 𝜆min(𝑃) and 𝜆max(𝑃) respectively denote the minimum and

maximum eigenvalues.

II. Known Inertia

A. Dynamics

Consider Euler rotational dynamics for a system with inertia matrix 𝐽 = 𝐽𝑇 > 0 subject to

bounded external torque 𝝉 given by

𝐽 ¤𝝎 = −𝝎∗𝐽𝝎 + 𝝉 (1)

wherein 𝝎(𝑡) ∈ R3 has components in the body-fixed frame of reference. The skew-symmetric

matrix 𝝎∗ represents the vector cross product. We also assume:

• 𝐽 is perfectly known

• 𝝉 is perfectly determined

• 𝝎 ∈ L∞ is a bounded signal and we know 𝜔𝑚 , sup𝑡≥0 ‖𝝎(𝑡)‖

The assumption that an upper bound 𝜔𝑚 is known is reasonable since any spacecraft is physically

designed to only be able to rotate or tumble below a certain angular rate. The bound can be chosen

beyond the design limits of the spacecraft.

B. Measurements

We have an RIG providing attitude measurements 𝝈(𝑡) ∈ R3 which are the integrated values of

the angular rate 𝝎:

¤𝝈 = 𝝎 (2)

where 𝝈(𝑡) is assumed to be measured perfectly.

C. Objective

Using perfect measurements of 𝝈(𝑡), the goal is to generate an estimate �̂�(𝑡) of the true angular

rate 𝝎(𝑡) such that

lim
𝑡→∞

‖�̂�(𝑡) − 𝝎(𝑡)‖ = 0 (3)
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keeping all signals bounded.

D. Observer Design

The following observer design is proposed for estimating the angular rate:

¤̂𝝈 = �̂� − 𝑘 (�̂� − 𝝈) for some 𝑘 > 0 (4)

𝐽 ¤̂𝝎 = −�̂�∗𝐽�̂� + 𝝉 − 𝑘2𝐽 (�̂� − 𝝈) (5)

We define the estimation errors

𝝈𝑒 = �̂� − 𝝈 (6)

𝝎𝑒 = �̂� − 𝝎 (7)

Using these definitions in (4)-(5) gives

¤𝝈𝑒 = 𝝎𝑒 − 𝑘𝝈𝑒 (8)

𝐽 ¤𝝎𝑒 = (�̂�∗𝐽�̂� − 𝝎∗𝐽𝝎) − 𝑘2𝐽𝝈𝑒 (9)

Expanding the terms within the parenthesis on the right-hand side of (9) gives

�̂�∗𝐽�̂� − 𝝎∗𝐽𝝎 = 𝝎∗
𝑒𝐽𝝎 + 𝝎∗𝐽𝝎𝑒 + 𝝎∗

𝑒𝐽𝝎𝑒 (10)

If we define 𝚿 ,
[
𝝎∗𝐽𝝎𝑒 + 𝝎∗

𝑒𝐽𝝎 + 𝝎∗
𝑒𝐽𝝎𝑒

]
, Eq. 9 can be rewritten as

¤𝝎𝑒 = −𝑘2𝝈𝑒 + 𝐽−1𝚿 (11)

If we define the error states to be 𝝈𝑒 and 𝝎𝑒/𝑘 , using (4) and (11), we have the dynamics for the

error states as: 
¤𝝈𝑒

¤𝝎𝑒

𝑘

 = 𝑘


−I3×3 I3×3

−I3×3 O3×3



𝝈𝑒

𝝎𝑒

𝑘

 +

O3×1

𝐽−1

𝑘
𝚿

 (12)

Renaming the states as

𝒛1 = 𝝈𝑒

𝒛2 =
𝝎𝑒

𝑘

⇔ 𝒛 ,


𝒛1

𝒛2

 ∈ R6 (13)

allows us to express (12) as

¤𝒛 = 𝑘


−I3×3 I3×3

−I3×3 O3×3

 𝒛 +

O3×1

𝐽−1

𝑘
𝚿

 (14)
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Since the inertia matrix is known, we can use its maximum and minimum eigenvalues to express

𝐽𝑀 = 𝜆max(𝐽) = ‖𝐽‖ (15)

𝐽𝑚 = 𝜆min(𝐽) =
1

‖𝐽−1‖
(16)

Define

𝛼 , (𝐽𝑀/𝐽𝑚) (17)

Revisiting the 𝚿 term introduced after Eq. 10, we have

𝚿 = 𝝎∗𝐽𝝎𝑒 + 𝝎∗
𝑒𝐽𝝎 + 𝝎∗

𝑒𝐽𝝎𝑒 (18)

𝐽−1

𝑘
𝚿 =

𝐽−1

𝑘

(
𝝎∗𝐽𝝎𝑒 + 𝝎∗

𝑒𝐽𝝎
)
+ 𝐽−1

𝑘
𝝎∗

𝑒𝐽𝝎𝑒 (19)

Consider the norm of the first term

‖ 𝐽
−1

𝑘

(
𝝎∗𝐽𝝎𝑒 + 𝝎∗

𝑒𝐽𝝎
)
‖ ≤ 2𝐽𝑀

𝑘𝐽𝑚
𝜔𝑚 ‖𝝎𝑒‖ =

2𝛼𝜔𝑚 ‖𝝎𝑒‖
𝑘

= 2𝛼𝜔𝑚 ‖𝑧2‖ (20)

Next,

‖ 𝐽
−1

𝑘
𝝎∗

𝑒𝐽𝝎𝑒‖ ≤ 1
𝑘𝐽𝑚

√︁
𝐽𝑀 (𝐽𝑀 − 𝐽𝑚)‖𝝎𝑒‖2 = 𝑘

√︁
𝛼(𝛼 − 1)‖𝒛2‖2 (21)

Thus, making use of the bounds calculated in Eq. 20 and 21 and substituting them in Eq. 19

results in

‖ 𝐽
−1Ψ

𝑘
‖ ≤ 2𝛼𝜔𝑚 ‖𝑧2‖ + 𝑘

√︁
𝛼(𝛼 − 1)‖𝑧2‖2 (22)

E. Convergence Analysis

For stability and convergence analysis, consider a Lyapunov-like candidate function

𝑉 =
1
𝑘

[
𝒛𝑇1 𝒛1 +

3
2
𝒛𝑇2 𝒛2 − 𝒛𝑇1 𝒛2

]
=

[
𝒛1 𝒛2

]
1
𝑘


I3×3 −12 I3×3

−12 I3×3
3
2 I3×3

︸                    ︷︷                    ︸
𝑃∈R6×6


𝒛1

𝒛2



=

[
𝒛1 𝒛2

] ©«
1
𝑘


1 −12

−12
3
2

︸         ︷︷         ︸
𝑅∈R2×2

⊗I3×3

ª®®®®®®®®®¬


𝒛1

𝒛2

 (23)

where ⊗ denotes the Kronecker product.

We know the maximum and minimum eigenvalues of 𝑃 and 𝑅 are equal: 𝜆min(𝑃) = 𝜆min(𝑅)
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and ‖𝑃‖ = 𝜆max(𝑃) = 𝜆max(𝑅) which gives us

𝜆min(𝑃) =
5 −

√
5

4𝑘
= 𝑐1 (24)

and

𝜆max(𝑃) =
5 +

√
5

4𝑘
= 𝑐2 (25)

Thus, 𝑉 defined in Eq. (23) satisfies

𝑐1‖𝒛‖2 ≤ 𝑉 = 𝒛𝑇𝑃𝒛 ≤ 𝑐2‖𝒛‖2 (26)

Next, taking the time derivative of 𝑉 in Eq. (23), followed by substituting Eq. 14 and Eq. 19

results in

¤𝑉 =
2
𝑘
𝒛𝑇1 ¤𝒛1 +

3
𝑘
𝒛𝑇2 ¤𝒛2 −

1
𝑘
𝒛𝑇1 ¤𝒛2 −

1
𝑘
𝒛𝑇2 ¤𝒛1

= −𝒛𝑇1 𝒛1 − 𝒛𝑇2 𝒛2 +
3
𝑘
𝒛𝑇2

𝐽−1𝚿
𝑘

− 1
𝑘
𝒛𝑇1

𝐽−1𝚿
𝑘

≤ −‖𝒛‖2 + 3
𝑘
‖𝒛2‖‖

𝐽−1𝚿
𝑘

‖ + 1
𝑘
‖𝒛1‖‖

𝐽−1𝚿
𝑘

‖

≤ −‖𝒛‖2 + 4
𝑘
‖𝒛‖‖ 𝐽

−1𝚿
𝑘

‖ (27)

Next, using (20) and (21), we have

¤𝑉 ≤ −‖𝒛‖2 + 4
𝑘
‖𝒛‖

[
2𝛼𝜔𝑚 ‖𝒛‖ + 𝑘

√︁
𝛼(𝛼 − 1)‖𝒛‖2

]
= −

(
1 − 8𝛼𝜔𝑚

𝑘

)
‖𝒛‖2 + 4

√︁
𝛼(𝛼 − 1)‖𝒛‖3 (28)

To ensure the coefficient of the ‖𝒛‖2 term is negative, we select 𝑘 such that 1 − (8𝛼𝜔𝑚)/𝑘 > 0,

i.e.,

𝑘 > 8𝛼𝜔𝑚 (29)

Thus, we have

¤𝑉 ≤ −
(
1 − 8𝛼𝜔𝑚

𝑘

)
‖𝒛‖2 + 4𝛽‖𝒛‖3

¤𝑉 ≤ −‖𝒛‖2
[(
1 − 8𝛼𝜔𝑚

𝑘

)
− 4𝛽‖𝒛‖

]
, −𝑊 (𝒛) (30)

where we introduce the notation 𝛽 =
√︁
𝛼(𝛼 − 1)

Define a scalar function 𝜌(𝑘):

𝜌(𝑘) , 1
4𝛽

(
1 − 8𝛼𝜔𝑚

𝑘

) √︂
𝑐1
𝑐2

(31)
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which after substituting the values of 𝑐1 and 𝑐2 respectively from (24) and (25) becomes

𝜌(𝑘) = 1
4𝛽

(
1 − 8𝛼𝜔𝑚

𝑘

) √︄
5 −

√
5

5 +
√
5

(32)

Suppose we restrict initial conditions 𝒛(𝑡0) at time 𝑡0 = 0, such that ‖𝒛(𝑡0)‖ ≤ 𝜌(𝑘), then using

Eq. 30,

𝑊 (𝒛(0)) = ‖𝒛(0)‖2
[(
1 − 8𝛼𝜔𝑚

𝑘

)
− 4𝛽‖𝒛(0)‖

]
(33)

= 4𝛽‖𝒛(0)‖2
[
1
4𝛽

(
1 − 8𝛼𝜔𝑚

𝑘

)
− ‖𝒛(0)‖

]
≥ 4𝛽‖𝒛(0)‖2

[
𝜌(𝑘)

√︂
𝑐2
𝑐1

− 𝜌(𝑘)
]

≥ 0

since 𝑐2 > 𝑐1.

By definition of𝑊 (𝒛) in Eq. 30, we know that ¤𝑉 (𝑡) ≤ 0 whenever𝑊 (𝒛(𝑡)) ≥ 0. Thus, having a

region of attraction ‖𝒛(0)‖ ≤ 𝜌(𝑘) ensures ¤𝑉 (𝑡) ≤ 0 for all 𝑡 ≥ 0, that is, 𝑉 (𝑡) is non-increasing

with time. For more details on ROA, the reader is referred to Khalil [17], Chapter 8. Substituting

this in (26) leads to

𝑐1‖𝒛(𝑡)‖2 ≤ 𝑉 (𝑡) ≤ 𝑉 (0) ≤ 𝑐2‖𝒛(0)‖2 (34)

Thus,

‖𝒛(𝑡)‖ ≤
√︂

𝑐2
𝑐1

‖𝒛(0)‖ (35)

Also, using the definition of𝑊 (𝒛) from (30),

𝑊 (𝒛(𝑡)) = ‖𝒛(𝑡)‖2
[(
1 − 8𝛼𝜔𝑚

𝑘

)
− 4𝛽‖𝒛(𝑡)‖

]
≥ ‖𝒛(𝑡)‖2

[(
1 − 8𝛼𝜔𝑚

𝑘

)
− 4𝛽

√︂
𝑐2
𝑐1

‖𝒛(0)‖
]

Defining 𝑐3 to be the terms inside the square brackets,

−𝑊 (𝒛(𝑡)) ≤ −𝑐3‖𝒛(𝑡)‖2 (36)

Thus we have ¤𝑉 (𝑡) ≤ −𝑊 (𝒛(𝑡)) ≤ −𝑐3‖𝒛(𝑡)‖2 or,

¤𝑉 (𝑡) ≤ −𝑐3
𝑐2
𝑉 (𝑡)

𝑉 (𝑡) ≤ exp
(
−𝑐3𝑡
𝑐2

)
𝑉 (0) (37)
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Using this result alongside the inequality from (26) results in

‖𝒛(𝑡)‖ ≤
√︂

𝑐2
𝑐1
exp

(
−𝑐3𝑡
2𝑐2

)
‖𝒛(0)‖ (38)

which proves exponential stability but is a local result for ‖𝒛(0)‖ ≤ 𝜌(𝑘)

F. Discussion

For choosing the value of 𝑘 , from Eq. 29 we have a lower bound 8𝛼𝜔𝑚. From (24) and (25) we

know, as 𝑘 → ∞, both 𝑐1 → 0 and 𝑐2 → 0.

However, the ratio √︂
𝑐1
𝑐2

=

√︄
5 −

√
5

5 +
√
5

(39)

is independent of 𝑘 . Hence, the upper bound on the initial value of ‖𝒛(0)‖ given by Eq.31, in the

limit becomes

lim
𝑘→∞

𝜌(𝑘) = 𝜌∗ =
1
4𝛽

√︂
𝑐1
𝑐2

=
1
4𝛽

√︄
5 −

√
5

5 +
√
5

(40)

Thus, the initial condition on the norm of the error states is upper bounded by 𝜌∗ and also lower

bounded due to the non-zero positive lower bound on 𝑘 .

Note that local stability implies specifically, our initial condition 𝒛(0) ∈ M where

M =

{
𝒛 ∈ R6 | ‖𝝈𝑒 (0)‖2 +

‖𝝎𝑒 (0)‖2
𝑘2

≤ 𝜌2(𝑘)
}

(41)

which is the region of attraction. 𝝈𝑒 (0) is usually not a restriction because, we can always select

�̂�(0) = 𝝈(0) ⇔ 𝝈𝑒 (0) = 0

On the other hand, 𝝎𝑒 (0) can be arbitrarily large. However, we can always choose large enough

𝑘 such that irrespective of 𝝎𝑒 (𝑡),𝒛(0) ∈ M. In this context, it is crucial that irrespective of how

much we increase 𝑘 , the largest region of attraction 𝜌∗ in Eq. 40 above is a finite constant. Hence,

the result is semi-global.

G. Convergence Rate

In (38), (−𝑐3/2𝑐2) is the rate of convergence. Note that

𝑐3 =

(
1 − 8𝛼𝜔𝑚

𝑘

)
− 4𝛽

√︂
𝑐2
𝑐1

‖𝒛(0)‖ (42)
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Thus, as 𝑘 → ∞, 𝑐3 → 𝑐∗3 where

𝑐∗3 = 1 − 4𝛽

√︄
5 +

√
5

5 −
√
5
‖𝒛(0)‖ (43)

which is independent of 𝑘 . Also recall that 𝑐2 → 0 as 𝑘 → ∞. Thus, the rate of convergence

(𝑐3/2𝑐2) → ∞ as 𝑘 → ∞. Thus selecting large 𝑘 implies faster convergence.

III. Adaptive Observer

A. Dynamics and Measurement

Rearranging the dynamics in Eq.1,

¤𝝎 = −𝐽−1𝝎∗𝐽𝝎 + 𝐽−1𝝉

= Λ(𝝎)𝜽∗ +𝑊 (𝝉)𝝓∗ (44)

where Λ : R3 → R3×18 and𝑊 : R3 → R3×6 are regressor matrices which are purely functions of the

angular rate and torque respectively, 𝜽∗ ∈ R18×1 and 𝝓∗ ∈ R6×1 are vectorized versions of functions

of the inertia matrix 𝐽 terms. The separation of variables to obtain these regressor matrices is

detailed in the appendix. Apart from the same assumptions on 𝝎 and 𝝉 as the non-adaptive observer,

we additionally assume ¤𝝉 is perfectly determined. The measurements available are the same as the

known inertia case, following Eq.2.

B. Objective

The goal is to generate an estimate �̂�(𝑡) of the true angular rate 𝝎(𝑡) such that

lim
𝑡→∞

‖�̂�(𝑡) − 𝝎(𝑡)‖ = 0 (45)

without knowledge of the terms of the inertia matrix 𝐽 and hence without 𝜽∗ and 𝝓∗, keeping all

signals bounded.

C. Observer Design

The following observer design is proposed for estimating the angular rate:

¤̂𝝈 = �̂� − 𝑘 (�̂� − 𝝈) for some 𝑘 > 0 (46)

¤̂𝝎 = Λ(�̂�) (𝜽 + 𝜷𝜃) +𝑊 (𝝉) (𝝓 + 𝜷𝜙) − 𝑘2(�̂� − 𝝈) (47)
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where 𝜽, 𝝓, 𝜷𝜃 and 𝜷𝜙 will be defined later. This observer is unique due to the availability of an

extra design parameter choice in the form of 𝜷𝜃 and 𝜷𝜙, similar to Immersion and Invariance (I &

I) methods [13]. However unlike the I & I method, in this paper, we do not enforce the manifold

attractivity condition. As mentioned in the introduction, the linearized transfer function from the

measurement 𝝈 to the unknown parameters 𝜽∗ and 𝝓∗ has two poles at zero, implying that the

transfer function is not strictly positive definite, leaving our problem incompatible with the method

suggested by Cho and Rajamani [14].

Using the same definition of 𝒛 = [𝒛1, 𝒛2]𝑇 from Eq.13, gives us the error dynamics:

¤𝒛 = 𝑘


−I3×3 I3×3

−I3×3 O3×3

 𝒛 +
1
𝑘


O3×1

Λ(�̂�) (𝜽 + 𝜷𝜽) − Λ(𝝎)𝜽∗ +𝑊 (𝝉) (𝝓 + 𝜷𝝓 − 𝝓∗)

 (48)

The quantity (𝝓 + 𝜷𝝓 − 𝝓∗) takes the physical meaning of the parameter estimation error.

Consider the Lyapunov-like candidate function

𝑉 =
1
𝑘

[
𝒛𝑇1 𝒛1 +

3
2
𝒛𝑇2 𝒛2 − 𝒛𝑇1 𝒛2

]
+ 1
2𝛾1

‖𝜽 + 𝜷𝜃 − 𝜽∗‖2 + 1
2𝛾2

‖𝝓 + 𝜷𝜙 − 𝝓∗‖2 (49)

For the inertia terms, let us define error states

𝒛𝜃 = 𝜽 + 𝜷𝜃 − 𝜽∗ (50)

𝒛𝜙 = 𝝓 + 𝜷𝜙 − 𝝓∗ (51)

and combine these with 𝒛 to form the full state

𝒁 =

[
𝒛𝑇 𝒛𝑇𝜃 𝒛𝑇𝜙

]𝑇
(52)

Using the constants 𝑐1 and 𝑐2 from Eqs. 24 and 25 respectively, we can bound the function in

Eq.49 at any time 𝑡 as follows:

𝑐1‖𝒛(𝑡)‖2 ≤ 𝑉 (𝑡) ≤ 𝑐2‖𝒛(𝑡)‖2 +
1
𝛾1

‖𝒛𝜃 (𝑡)‖2 +
1
𝛾2

‖𝒛𝜙 (𝑡)‖2 (53)

The derivative of Eq.49 can be simplified to

¤𝑉 = −‖𝒛1‖2 − ‖𝒛2‖2 +
1
𝑘2

(3𝒛2 − 𝒛1)𝑇 [Λ(�̂�) − Λ(𝝎)] 𝜽∗

+ 1
𝑘2

(3𝒛2 − 𝒛1)𝑇
[
Λ(�̂�) (𝜽 + 𝜷𝜃 − 𝜽∗) +𝑊 (𝝉) (𝝓 + 𝜷𝜙 − 𝝓∗)

]
+ 1
𝛾1

(𝜽 + 𝜷𝜃 − 𝜽∗)𝑇 ( ¤̂𝜽 + ¤𝜷𝜃) +
1
𝛾2

(𝝓 + 𝜷𝜙 − 𝝓∗)𝑇 ( ¤̂𝝓 + ¤𝜷𝜙) (54)
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The first three terms of this equation do not involve the inertia estimate error and can follow

the same procedure as the non-adaptive case. Thus, if we manage to make the adaptation terms

equal zero, we can use the Barbalat’s lemma [17] to prove asymptotic convergence to zero of the

error states. However, if we did not have the choice of the control knobs 𝜷𝜃 and 𝜷𝜙, the update law
¤̂𝜽 would have to involve 𝒛2 which is not an available error state, only 𝒛1 is available. This is what

necessitates the inclusion of these control knobs we shall now define as:

𝜷𝜃 =
−3𝛾1
𝑘3

Λ(�̂�)𝑇 𝒛1 (55)

𝜷𝜙 =
−3𝛾2
𝑘3

𝑊 (𝝉)𝑇 𝒛1 (56)

The derivatives of these terms are:

¤𝜷𝜃 =
3𝛾1
𝑘2

Λ(�̂�)𝑇 𝒛1 −
3𝛾1
𝑘2

Λ(�̂�)𝑇 𝒛2 −
3𝛾1
𝑘3

(
𝜕Λ

𝜕�̂�
¤̂𝝎
)𝑇

𝒛1 (57)

¤𝜷𝜙 =
3𝛾2
𝑘2

𝑊 (𝝉)𝑇 𝒛1 −
3𝛾2
𝑘2

𝑊 (𝝉)𝑇 𝒛2 −
3𝛾1
𝑘3

(
𝜕𝑊

𝜕𝜏
¤𝝉
)𝑇

𝒛1 (58)

Substituting these derivatives back into Eq.54, the 𝒛2 term cancels out and for the rest of the

inertia error terms, with learning rates 𝛾1 and 𝛾2, we choose the following update rules:
¤̂𝜽 =
3𝛾1
𝑘3

(
𝜕Λ

𝜕�̂�
¤̂𝝎
)𝑇

𝒛1 −
2𝛾1
𝑘2

Λ𝑇 (�̂�)𝒛1 (59)

and
¤̂𝝓 =
3𝛾2
𝑘3

(
𝜕𝑊

𝜕𝜏
¤𝝉
)𝑇

𝒛1 −
2𝛾2
𝑘2

𝑊𝑇 (𝝉)𝒛1 (60)

Thus with these choices for the inertia estimate terms, we finally have

¤𝑉 = −‖𝒛1‖2 − ‖𝒛2‖2 +
1
𝑘2

(3𝒛2 − 𝒛1)𝑇 (Λ(�̂�) − Λ(𝝎)) 𝜽∗ (61)

We know that Λ(𝝎)𝜽∗ is just a different representation of 𝐽−1𝝎∗𝐽𝝎. Thus we can bound the last

term in the equation above using Eq. 22:
1
𝑘
(Λ(�̂�) − Λ(𝝎)) 𝜽∗ ≤

(
2𝛼𝜔𝑚 ‖𝒛2‖ + 𝑘𝛽‖𝒛2‖2

)
(62)

Going back to Eq. 61,

¤𝑉 ≤ −‖𝒛‖2 + 1
𝑘
(3‖𝒛2‖ + ‖𝒛1‖)

(
2𝛼𝜔𝑚 ‖𝒛2‖ + 𝑘𝛽‖𝒛2‖2

)
≤ −‖𝒛‖2 + 4

𝑘
‖𝒛‖2 (2𝛼𝜔𝑚 + 𝑘𝛽‖𝒛‖)

= −
(
1 − 8𝛼𝜔𝑚

𝑘

)
‖𝒛‖2 + 4𝛽‖𝒛‖3 (63)

where similar to the non-adaptive case, 𝛼 =
𝐽𝑀
𝐽𝑚
is the ratio of the nominal maximum and minimum
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eigenvalues 𝐽𝑀 and 𝐽𝑚 of 𝐽 and 𝛽 =
√︁
𝛼(𝛼 − 1). To ensure the first term is negative, we can choose

𝑘 such that

𝑘 > 8𝜔𝑚𝛼 = 8𝜔𝑚

𝐽𝑀

𝐽𝑚
(64)

Since 𝜽∗ is not known in this case, a conservative upper bound on the largest eigenvalue 𝐽𝑀 and

lower bound on the smallest eigenvalue 𝐽𝑚 of the inertia matrix can be used.

Now if we manage to restrict the initial conditions for the states that will make ¤𝑉 (𝑡) ≤ 0 for all

time 𝑡 ≥ 0, we can then have a non-increasing 𝑉 , that is, 𝑉 (𝑡) ≤ 𝑉 (0), ∀𝑡 > 0. If this condition is

met, using Eq.53, we have

𝑐1‖𝒛(𝑡)‖2 ≤ 𝑐2‖𝒛(0)‖2 +
1
2𝛾1

‖𝒛𝜃 (0)‖2 +
1
2𝛾2

‖𝒛𝜙 (0)‖2

→ ‖𝒛(𝑡)‖2 ≤ 𝑐2
𝑐1

‖𝒛(0)‖2 + 1
2𝑐1𝛾1

‖𝒛𝜃 (0)‖2 +
1

2𝑐1𝛾2
‖𝒛𝜙 (0)‖2 (65)

Let us define a new constant

𝜇20 , max
[
𝑐2
𝑐1
,
1

2𝑐1𝛾1
,
1

2𝑐1𝛾2

]
(66)

which always satisfies 𝜇0 > 1 since 𝑐2 > 𝑐1.

Thus whenever ¤𝑉 (𝑡) ≤ 0, we have

‖𝒛(𝑡)‖2 ≤ 𝜇20

(
‖𝒛(0)‖2 + ‖𝒛𝜃 (0)‖2 + ‖𝒛𝜙 (0)‖2

)
→ ‖𝒛(𝑡)‖ ≤ 𝜇0‖𝒁(0)‖ (67)

Since ‖𝒛‖ < ‖𝒁‖, we can modify Eq.63 to

¤𝑉 ≤ −4𝛽‖𝒛‖2
[
1
4𝜇0𝛽

(
1 − 8𝛼𝜔𝑚

𝑘

)
− ‖𝒁‖

]
≤ −4𝜇1𝛽‖𝒛‖2 ≤ 0 (68)

for an initial region of attraction

‖𝒁(0)‖ ≤ 1
4𝜇0𝛽

(
1 − 8𝛼𝜔𝑚

𝑘

)
, 𝜌2(𝑘) (69)

which differs from Eq.31 by a scaling constant, 𝜇0 instead of just
√︃

𝑐2
𝑐1
, but 𝜌2(𝑘) > 0 is still positive

due to Eq.64, and

𝜇1 =
1
4𝜇0𝛽

(
1 − 8𝛼𝜔𝑚

𝑘

)
− ‖𝒁(0)‖ > 0 (70)

It is to be noted that unlike the non-adaptive case, this upper bound is now on the full state 𝒁(0) and

not just on 𝒛(0).
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Similar to the non-adaptive scenario, if we select 𝒁(𝑡0) at time 𝑡0 = 0 such that ‖𝒁(0)‖ ≤ 𝜌2(𝑘)

we can ensure ¤𝑉 (𝑡) ≤ 0, ∀𝑡 ≥ 0. Thus, for a small enough initial ‖𝒁(0)‖, 𝑉 is non-increasing

and thus lim𝑡→∞𝑉 (𝑡) = 𝑉∞ exists. Thus 𝑉 ∈ L∞ → 𝒛 ∈ L∞. Since 𝑉 is bounded, the terms(
𝜽 + 𝜷𝜃 − 𝜽∗

)
and

(
𝝓 + 𝜷𝜙 − 𝝓∗

)
are also bounded, leaving the derivative of 𝒛 to also be bounded

using Eq. 69, i.e., ¤𝒛 ∈ L∞. Integrating Eq.68 on both sides,∫ ∞

0
¤𝑉𝑑𝑡 ≤

∫ ∞

0
−4𝛽𝜇1‖𝒛‖2𝑑𝑡

𝑉∞ −𝑉 (0) ≤ −4𝛽𝜇1
∫ ∞

0
‖𝒛‖2𝑑𝑡∫ ∞

0
‖𝒛‖2𝑑𝑡 ≤ 𝑉 (0) −𝑉∞

4𝛽𝜇1
(71)

which implies 𝒛 ∈ L2. Thus using the corollary to the Barbalat’s lemma, since 𝒛 ∈ L2 ∩ L∞

and ¤𝒛 ∈ L∞, we have lim𝑡→∞ 𝒛(𝑡) = 0. Thus the observer errors in attitude and angular rate

asymptotically converge to zero. The errors in the estimates of the inertia terms 𝒛𝜃 and 𝒛𝜙 will also

converge to zero subject to adequate persistence of excitation.

D. Discussion

Similar to the non-adaptive case, the user chosen parameter 𝑘 and the trajectory followed by the

system impact the region of attraction for ‖𝒁(0)‖ within which all initial values of error state ‖𝒛‖

will asymptotically converge to zero with adaptation for the inertia terms. It is important to note that

Eq.69 is different from the non-adaptive case since it is the region of attraction for the norm of the

full state including the inertia error terms. If we know an upper bound on the error in the initial

guess of 𝜽∗ and 𝝓∗, that is ‖𝒛𝜃 (0)‖ < ‖𝜽 ‖ and ‖𝒛𝜙 (0)‖ < ‖�̃�‖, we can then state that the observer

estimate of the attitude and rate will converge to the true values if

‖𝒛(0)‖ ≤ 𝜌2(𝑘) − ‖𝜽 ‖ − ‖�̃�‖ (72)

This is clearly smaller than the region of attraction for ‖𝒛(0)‖ in the non-adaptive scenario by the

magnitude of ‖𝜽 ‖ + ‖�̃�‖, which is the price to pay for adaptation, along with sacrificing exponential

convergence for asymptotic convergence.

While the size of 𝛼 affects our choice of 𝑘 , the upper bound on ‖𝒁(0)‖ in Eq.69 in the limit is
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still non-zero, as in the non-adaptive scenario:

lim
𝑘→∞

𝜌2(𝑘) =
1
4𝛽𝜇0

(73)

This indicates that the result is once again semi-global since irrespective of the choice of 𝑘 , 1/4𝛽

is the lower bound on the region of attraction for the full initial state ‖𝒁(0)‖. However, this

demonstrates how being overly conservative and choosing large values of 𝛼 (since 𝛽 =
√︁
𝛼(𝛼 − 1))

makes our region of attraction smaller for the initial state. On the other hand if 𝛼 is chosen smaller

than the true value, the choice of 𝑘 from Eq. 64 could in turn be too small and impact the convergence

properties of the observer to the true state.

The discussion from the non-adaptive section holds, that we have the option to choose the

attitude error state 𝝈𝒆 (0) to be zero initially by selecting �̂�(0) = 𝝈(0) but 𝝎𝑒 (0) can be arbitrarily

large. Selecting 𝑘 large enough can accommodate this since higher 𝑘 still leads to a larger 𝜌2(𝑘).

However, higher values of 𝑘 should also be accompanied by higher values of 𝛾1 and 𝛾2 since the

adaptation Eqs. 57 - 60 become sluggish with higher 𝑘 .

The estimates 𝜽 + 𝜷𝜽 and 𝝓 + 𝜷𝝓 converge to the true values of 𝜽∗ and 𝝓∗ when we have an

applied torque that is rich enough or persistently exciting (PE). It is important to note that we still

require the angular velocity to be bounded. Moreover, while a PE torque helps with the estimation

of the inertia parameters, it is not required for the RIG observer estimates of the attitude and angular

velocity to converge to their true values, which is guaranteed for any known and bounded torque

with initial states satisfying Eq. 69.

A special case to be noted is when there is no torque acting on the system. If 𝝉 is identically

zero, we can avoid adapting for 𝝓 since 𝑊 (𝝉) = 0 in Eq.47 and thus leave out the 𝒛𝜙 term from

the Lyapunov function in Eq.49. This also implies that 𝜙 = 0 and we can have a bigger region of

attraction for the attitude and rate states in Eq.72 using the same Lyapunov analysis as above without

any of the terms involving 𝒛𝜙 and the ROA for the full state, 𝜌2(𝑘) does not change:

‖𝒛(0)‖ ≤ 𝜌2(𝑘) − ‖𝜽 ‖ (74)
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IV. Robustness Analysis
There can be scenarios when the adaptive observer cannot be used due to it’s increased complexity

or just not required for minor inaccuracies in inertia. For such cases, we consider the robustness

properties of the non-adaptive observer from Eqs. 4 and 5 in two different scenarios:

• The external torque 𝝉 is unavailable but is bounded and an upper bound is known 𝝉 ∈ L∞,

i.e., there exists some finite 𝜏𝑚 = sup𝑡≥0 ‖𝝉(𝑡)‖. Can the observer be ensured to converge to a

residual set?

• The inertia matrix 𝐽 is inaccurately modelled as 𝐽 = 𝐽𝑇 > 0 (nominal inertia) and thus, there

is an inertia error (𝐽 − 𝐽)? Can the observer errors be bounded in this setting?

We provide positive answers to both these cases in the sequel.

A. Unknown Torque

We assume some bounded unknown external torque 𝝉 acting upon the spacecraft. The non-

adaptive observer is modified to:

¤̂𝝈 = �̂� − 𝑘 (�̂� − 𝝈) (75)

𝐽 ¤̂𝝎 = −�̂�∗𝐽�̂� − 𝑘2𝐽 (�̂� − 𝝈) (76)

This leads to

¤𝝈𝑒 = −𝑘𝝈𝑒 + 𝑘

(𝝎𝑒

𝑘

)
(77)

¤𝝎𝑒

𝑘
= −𝑘𝝈𝑒 +

𝐽−1

𝑘
𝚿 − 𝐽−1

𝑘
𝝉 (78)

⇔ ¤𝒛 = 𝑘


−I I

−I 0

 𝒛 +

0

𝐽−1

𝑘
𝚿

 +

0

− 𝐽−1

𝑘
𝝉

 (79)

where the last term is defined as the disturbance

𝒅 ,


0

− 𝐽−1

𝑘
𝝉

 (80)

For the case with known torque (𝒅 = 0), we already have from Eq. 36, a Lyapunov function such
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that

𝑐1‖𝒛‖2 ≤ 𝑉 (𝒛) ≤ 𝑐2‖𝒛‖2 (81)

¤𝑉 ,
(
𝜕𝑉

𝜕𝑧

)𝑇
¤𝒛 ≤ −𝑐3‖𝒛‖2 (82)

Also recall

𝑉 (𝒛) = 1
𝑘

(
𝒛𝑇1 𝒛1 +

3
2
𝒛𝑇2 𝒛2 − 𝒛𝑇1 𝒛2

)
= 𝒛𝑇𝑃𝒛 (83)

Thus, 𝜕𝑉
𝜕𝑧

= 2𝑃𝒛

⇔ ‖ 𝜕𝑉
𝜕𝑧

‖ ≤ 2𝜆max(𝑃)‖𝒛‖ = 2𝑐2‖𝒛‖ (84)

since ‖𝑃‖ = 𝜆max(𝑃) = 𝑐2 = (5 +
√
5)/4𝑘 .

If we define 𝑐4 = 2𝑐2, the above equation can be written as ‖ 𝜕𝑉𝜕𝑧 ‖ ≤ 𝑐4‖𝒛‖. Next recall,

𝒅 =


0

− 𝐽−1

𝑘
𝝉

 ⇔ ‖𝒅‖ ≤ 𝜏𝑚

𝑘𝐽𝑚
(85)

Suppose for some 𝜃 ∈ (0, 1),
𝜏𝑚

𝑘𝐽𝑚
<

𝑐3
𝑐4

√︂
𝑐1
𝑐2

𝜃𝜌(𝑘) (86)

this implies that there exists 𝑘 sufficiently large such that

𝜏𝑚 <
𝑐3
𝑐4

√︂
𝑐1
𝑐2

𝜃𝑘𝐽𝑚𝜌(𝑘) (87)

Then using Lemma 9.2 from Khalil [17], for all ‖𝒛(0)‖ <
√︁
𝑐1/𝑐2𝜌(𝑘), we have

‖𝒛(𝑡)‖ ≤
√︂

𝑐2
𝑐1
exp (−𝛾(𝑡)) ‖𝒛(0)‖ ∀ 0 ≤ 𝑡 ≤ 𝑇 (88)

and

‖𝒛(𝑡)‖ ≤ 𝑏 for 𝑡 ≥ 𝑇 (89)

which is a residual set and a uniform ultimate bound for some finite 𝑇 > 0, where

𝛾 =
(1 − 𝜃)𝑐3
2𝑐2

(90)

and

𝑏 =
𝑐4
𝑐3

√︂
𝑐2
𝑐1

𝜏𝑚

𝐽𝑚𝑘𝜃
(91)

note that 𝑏 → 0 as 𝑘 → ∞.
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B. Inaccurate Inertia Model

If the inertia matrix 𝐽 is poorly modeled, a nominal inertia 𝑱 is adopted with maximum and

minimum eigenvalues 𝐽𝑀 and 𝐽𝑚 respectively. We modify the observer to be:

¤̂𝝈 = �̂� − 𝑘 (�̂� − 𝝈) (92)

¤̂𝝎 = −𝑘2(�̂� − 𝝈) − 𝐽−1�̂�∗𝐽�̂� + 𝐽−1𝝉 (93)

such that the disturbance term in Eq. 80 can be modified as follows

𝒅 =


0

− 1
𝑘
(𝐽−1𝝎∗𝐽𝝎 − 𝐽−1𝝎∗𝐽𝝎) + (𝐽−1 − 𝐽−1)𝝉)

 (94)

The nominal system, i.e., with 𝒅 = 0, provides us with the same behavior as the unknown torque

case above, hence (88) and (89) hold with the convergence rate in (90). However, the modified ratio

of eigenvalues of the inertia matrix, 𝛼 is replaced by �̄� = 𝐽𝑀/𝐽𝑚 and the residual set to which the

norm of the states converges to is now:

𝑏 =
𝑐4
𝑐3

√︂
𝑐2
𝑐1

1
𝐽𝑚𝐽𝑚𝑘𝜃

[
𝜏𝑚 (𝐽𝑚 + 𝐽𝑚) + 𝜔2𝑚 (𝐽𝑀𝐽𝑚 + 𝐽𝑀𝐽𝑚)

]
(95)

This proves that the proposed observer is robust to inaccuracies in the inertia matrix and unknown

external torques, with the angular velocity estimates always converging to a local residual region

surrounding the true value of the state.

V. Simulations
We perform numerical simulations for a spacecraft with an inertia matrix:

𝐽 =



20 1.2 0.9

1.2 17 1.4

0.9 1.4 15


(96)

starting from 𝝎(0) = [0.1, 0.05, 0]𝑇 .
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The external torques are chosen as

𝝉1 =



0.1 sin(𝑡)

0.2 cos(2𝑡)

0.3 cos(3𝑡)


(97)

and a persistently exciting

𝝉2 =



0.1 cos(2𝑡) + 0.2

0.5 cos(2𝑡) + 0.4

0.1 sin(2𝑡) + 0.2


(98)

For the case when the inertia and torque are known accurately, the error in velocity is shown

in Fig. 1 for 𝐽, 𝝉1 and 𝑘 = 20, where the estimate can be clearly seen to be converging to the real

values of the angular velocity and the errors go to zero.

For demonstrating the robustness properties of the observer, we use the system with inertia 𝐽

from Eq.96 with the non-adaptive observer using an inertia estimate of

𝐽 =



21 2.2 1.9

2.2 18 2.4

1.9 2.4 16


(99)

which represents approximately 5% error in the inertia parameter model. The torque input from

Eq. 97 was applied to the system but is unknown to the observer. The angular velocity and norm

of the error states are shown in Fig. 2, where once again, the estimate converges to the true state,

demonstrating the robustness of the observer to inertia and torque inaccuracies.

To demonstrate the working of the adaptive observer, we use the same inertia matrix 𝐽 above.

Fig.3a shows the norm of the angular velocity error for an initial inertia guess of 𝐽 above acted upon

by 𝜏1, while Fig.3b shows the same results for an initial inertia error of 20% of 𝐽 with 𝜏2. Fig.4

compares the norm of the full error state for the non-adaptive and adaptive observers. If we consider

the parameter estimation error to be represented by

𝜙 = ‖𝝓 + 𝜷𝝓 − 𝝓∗‖ (100)

Fig. 5 shows 𝜙 for 𝐽 with a persistently exciting torque 𝝉2, which clearly goes down to zero,
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Fig. 1 Angular velocity estimation error for non-adaptive known torque and inertia

demonstrating the convergence of the estimate to the true values of the terms of the inertia matrix.

The inertia matrix can be retrieved from the estimate 𝝓 if required.

VI. Conclusions
A novel observer was designed for estimating the full attitude and angular rate states from

the continuous measurements of a Rate Integrating Gyroscope (RIG), along with an adaptation

modification for when the inertia of the system is not accurately characterized. The observer was

shown using a Lyapunov-like analysis to drive the angular velocity estimates to their true values

exponentially fast when the inertia is known and asymptotically converge in the adaptive case.

The update laws are linear in the measurement term and involve one user chosen parameter which

controls the convergence rate of the estimate and the region of attraction for the initial value of the

state. The non-adaptive observer was also shown to be robust to an inaccurately modeled inertia

matrix as well as unknown torque inputs to the system. The effectiveness of the design was proven

numerically in simulations.
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Fig. 2 Simulations for the non-adaptive inaccurate inertia and unknown torque case
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(a) Adaptive angular velocity estimation error norm for 𝐽1
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(b) Adaptive angular velocity estimation error norm for Cassini 𝐽2 [18]

Fig. 3 Simulations for adaptive inertia and known torque
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Appendices

A. Regressor Matrix 𝜽∗

Consider the dynamics from Eq.1 rearranged as Eq.44.

¤𝝎 = −𝐽−1𝝎∗𝐽𝝎 + 𝐽−1𝝉 (101)
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Let the symmetric inertia matrix have components

𝐽 =



𝐽11 𝐽12 𝐽13

𝐽12 𝐽22 𝐽23

𝐽13 𝐽23 𝐽33


(102)

Using the eigenvectors 𝑣1, 𝑣2 and 𝑣3 of 𝐽, there exists an orthogonal matrix 𝑅:

𝑅 =



↑ ↑ ↑

𝑣1 𝑣2 𝑣3

↓ ↓ ↓


(103)

which converts the inertia to the principal axis frame as matrix 𝐷 which has all its off-diagonal

terms to be zero such that:

𝐽 = 𝑅𝐷𝑅𝑇 (104)

and

𝐽−1 = 𝑅𝐷−1𝑅𝑇 (105)

where 𝐷 = diag[𝐷1, 𝐷2, 𝐷3], and 𝑅𝑇𝑅 = 𝐼3×3. However, since 𝐽 is now known, we do not know

the matrices 𝐷 or 𝑅, which are functions of the terms of the inertia matrix.

Now consider the term 𝐽−1𝝎∗𝐽𝝎. Substituting for the value of 𝐽,

𝐽−1𝝎∗𝐽𝝎 = 𝑅𝐷−1𝑅𝑇𝝎∗𝑅𝐷𝑅𝑇𝝎

= 𝑅𝐷−1
(
𝑅𝑇𝝎

)∗
𝑅𝑇𝑅𝐷𝑅𝑇𝝎

= 𝑅𝐷−1𝜼∗𝐷𝜼 (106)

where 𝜼 = [𝜂1, 𝜂2, 𝜂3]𝑇 = 𝑅𝑇𝝎.

Since 𝐷 is a diagonal matrix, we also have

𝜼∗𝐷𝜼 =



𝐷2 − 𝐷3 0 0

0 𝐷3 − 𝐷1 0

0 0 𝐷1 − 𝐷2





𝜂2𝜂3

𝜂3𝜂1

𝜂1𝜂2


= 𝑆



𝜂2𝜂3

𝜂3𝜂1

𝜂1𝜂2


(107)

Using the vector Kronecker product,

𝜼 ⊗ 𝜼 =
[
𝜂21, 𝜂1𝜂2, 𝜂1𝜂3, 𝜂2𝜂1, 𝜂

2
2, 𝜂2𝜂3, 𝜂3𝜂1, 𝜂3𝜂2, 𝜂

2
3
]𝑇 (108)
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we have 

𝜂2𝜂3

𝜂3𝜂1

𝜂1𝜂2


=



0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0


𝜼 ⊗ 𝜼 = 𝑀 (𝜼 ⊗ 𝜼) (109)

Also

𝜼 ⊗ 𝜼 = 𝑅𝑇𝝎 ⊗ 𝑅𝑇𝝎 = (𝑅𝑇 ⊗ 𝑅𝑇 ) (𝝎 ⊗ 𝝎) (110)

Thus

𝐽−1𝝎∗𝐽𝝎 = 𝑅𝐷−1𝑆𝑀 (𝑅𝑇 ⊗ 𝑅𝑇 ) (𝝎 ⊗ 𝝎) (111)

Since 𝝎 ⊗ 𝝎 has duplicate entries, we can reduce redundancies by using

𝝎 ⊗ 𝝎 =



𝜔21

𝜔1𝜔2

𝜔1𝜔3

𝜔2𝜔1

𝜔22

𝜔2𝜔3

𝜔3𝜔1

𝜔3𝜔2

𝜔23



=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1





𝜔21

𝜔1𝜔2

𝜔1𝜔3

𝜔22

𝜔2𝜔3

𝜔23



, 𝑁𝛀 (112)

Hence

𝐽−1𝝎∗𝐽𝝎 = 𝑅𝐷−1𝑆𝑀 (𝑅𝑇 ⊗ 𝑅𝑇 )𝑁𝛀

= Λ(𝝎)vec
(
𝑅𝐷−1𝑆𝑀 (𝑅𝑇 ⊗ 𝑅𝑇 )𝑁

)
= Λ(𝝎)𝜽∗ (113)

28



where vec is the vectorization operation along the row and using 𝛀 from Eq.112,

Λ(𝝎) =



𝛀𝑇 0 0

0 𝛀𝑇 0

0 0 𝛀𝑇


(114)

and

𝜽∗ = vec
(
𝑅𝐷−1𝑆𝑀 (𝑅𝑇 ⊗ 𝑅𝑇 )𝑁

)
(115)

Thus we have managed to separate the components of 𝝎 from the cross product term and

consolidated all the unknown inertia component into one vector which can be estimated using the

adaptive control method proposed in this paper.

B. Regressor Matrix 𝝓∗

Similar to the previous section, consider next the term 𝐽−1𝝉. By performing symbolic

multiplication and then partial differentiation with respect to the torque terms, we have

𝐽−1𝝉 =



𝜏1 0 0 𝜏2 −𝜏3 0

0 𝜏2 0 𝜏1 0 𝜏3

0 0 𝜏3 0 −𝜏1 𝜏2





𝐽22𝐽33 − 𝐽223

𝐽11𝐽33 − 𝐽213

𝐽11𝐽22 − 𝐽212

𝐽13𝐽23 − 𝐽12𝐽33

𝐽22𝐽13 − 𝐽12𝐽23

𝐽12𝐽13 − 𝐽11𝐽23



/det(𝐽) = 𝑊 (𝝉)𝝓∗ (116)

where det is the determinant of the matrix and 𝝓∗ has all the inertia terms.
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