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Abstract—Terrain-relative autonomous navigation is a chal-
lenging task. In traditional approaches, an elevation map is
carried onboard and compared to measurements of the terrain
below the vehicle. These methods are computationally expensive,
and it is impractical to store high-quality maps of large swaths
of terrain. In this article, we generate position measurements
using NeuroGrid, a recently-proposed algorithm for computing
position information from terrain elevation measurements. We
incorporate NeuroGrid into an inertial navigation scheme using
a novel measurement rejection strategy and online covariance
computation. Our results show that the NeuroGrid filter provides
highly accurate state information over the course of a long
trajectory.

Index Terms—kalman filter, inertial navigation, terrain-relative
navigation, neuro-inspired

I. INTRODUCTION

During aided inertial navigation, information from onboard
inertial measurement units is fused with periodic observa-
tions of the environment. Global Positioning System (GPS)
receivers have become ubiquitous in aerospace applications
due to their accuracy and ease of use. Recently, however,
interest has grown in GPS-denied navigation. One approach
to GPS-denied navigation is terrain-relative navigation (TRN).
TRN relies on measurements of the terrain below the vehicle.
If a patch of terrain can be uniquely identified and correlated to
an onboard map, then positioning information becomes avail-
able. In this work, we generate position measurements with
NeuroGrid; a neuro-inspired, grid-based localization algorithm
proposed by Wang et al [1]. The measurement is derived
from a sum of “grid activations” computed from features in
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the environment, analogous to brain activity associated with
positioning in rats [2]–[9].

While numerous TRN algorithms exist, they all share some
commonality: measurements of the terrain below the vehicle
are used to estimate the vehicle’s position above it. This esti-
mate is computed (directly or indirectly) from a known map of
the terrain. Often, the map is a digital elevation model (DEM),
which represents the elevation of the terrain at regular intervals
over a given area. In traditional approaches, the DEM is carried
onboard. Terrain Contour Matching (TERCOM) and Sandia
Inertial Terrain-Aided Navigation (SITAN) are two examples
of early TRN algorithms [10], [11]. TERCOM computes a
position measurement by sweeping a short burst of elevation
measurements over the DEM, whereas SITAN processes each
elevation measurement individually to continuously update the
state estimate. These methods are comparable in nature to
iterative closest point (ICP), a point cloud matching algorithm
popular in the robotics community [12].

This work presents an inertial navigation filter with a
neuro-inspired terrain-relative position measurement. Neuro-
inspired methods are an attractive approach to terrain-relative
navigation problems, since many “matching” algorithms—
like the ones described above—are computationally expensive
optimizations. Much recent work on neuro-inspired TRN em-
ploys neural networks to identify craters and other features
on the moon. For example, convolutional neural networks are
able to accurately bound and label craters in images of the
lunar surface. Information about the geography of successfully
identified craters is accessed in an onboard catalog of lunar
craters. Using this approach, satellites operating near the moon
could use craters as navigation aids, rather than raw data from
images or laser scans [13]–[16]. Machine learning methods
have also been proposed for autonomous hazard detection [17],
[18] and guidance [19] during spacecraft landing.

Instead of a DEM or a catalog of surface features, the
NeuroGrid algorithm computes positioning information using
a phase candidate dictionary that associates elevation values
with two-dimensional phase coordinates used in the algo-
rithm’s grid-based representation (see Section II-B). When the
vehicle measures elevations below it, candidate phase values
are accessed using simple dictionary lookups. A single phase is



chosen for each grid using a winner-take-all approach. These
phase values are used to construct grid images reminiscent of
activity observed in the brains of animals as they explore a
new environment. The grid images are summed to produce a
position estimate.

In this work, we use the NeuroGrid algorithm to produce
two-dimensional position measurements from LIDAR scans.
These position measurements are used to update the state
estimate in an Extended Kalman Filter (EKF). Because Neu-
roGrid requires a heading value to compute position, we add
a magnetometer to the vehicle. We also employ a simple
measurement rejection technique at the phase candidate level,
which saves computation time. Finally, we introduce a way
to compute the uncertainty of each NeuroGrid measurement
online using the grid sum.

II. BACKGROUND

A. Biological Inspiration

Researchers study navigation in animals by recording elec-
trical activity in their brains. Activity in one group of cells,
the grid cells, has been identified as a key component of self-
localization. Fig. 1 shows the results of an experiment where
rats explore a rectangular enclosure [8].

Fig. 1. Grid cell activity during three experiments with rats. A probe measures
the activity of a single grid cell in each animal’s brain. Spikes in activity in the
cell (left: purple, center: blue, right: yellow) are superimposed on the animal’s
path (black). Adapted from [8] (see Supplementary Information, Fig. 3).

Remarkably, even though the animal roams freely, the grid
cell activity is characterized by distinct spatial clusters. These
clusters form a hexagonal grid pattern. The brain contains
hundreds of grid cells. Each cell fires with distinct scale,
orientation, and x- and y- spatial offset. Solstad et al. (2006)
proposed a computational representation of grid cell activity
based on these four parameters that we employ in this work
[3].

While it is clear that grid cell activity is related to local-
ization, the activity of a single grid cell does little to identify
the animal’s position in the space. Indeed, if we wished to
decode the activity of a single cell, all we could claim is that
the animal is located in one of the areas on the grid associated
with activity in that cell. However, in combination, the activity
of a large number of grid cells can yield a very precise position
estimate. Exactly how animals process grid cell activity to
form a position estimate is still not completely clear. Solstad
et al. propose simply summing the grid activations associated
with all the cells firing at a certain time; in this way, the

Fig. 2. Left: Visualization of grid with spatial scale λ = 400 px and angle
θ = 0◦. Center: Elevation contour containing points between 174 m and 176
m (see Fig. 5). The size of the map, like the grid image (left), is 1600 ×
1600 px. Right: Phase candidate matrix for points on the elevation contour
175 m to 175.1 m for grid (λ = 400 px, θ = 0◦). Extra elevation bins are
shown in the center image for clarity.

animal’s location “pops out” at a point where all the activated
grids intersect (see, e.g., [3] Fig. 2 or [1] Fig. 9).

In order to adapt this approach for precise positioning in
autonomous navigation, grid cell activity must be associated
with environmental features. This way, data from observations
of the environment can be translated into unique position
estimates.

B. The Phase Candidate Dictionary

The phase candidate dictionary is a data structure proposed
in Wang et al. (2022) that associates elevation values with
grid activity [1], [3]. In this work, a vehicle flies at constant
altitude and records elevation values at points in a small
area below it (see Section III). To build the phase candidate
dictionary, we first randomly generate a collection of N
grid modules with spatial scale λi and orientation θi, where
i = 1, . . . , N . The grid modules represent all the grids with the
same scale and orientation (λi, θi) but different spatial phase
offset (ϕx,i, ϕy,i). Then, the DEM is divided into elevation
bins. These bins form elevation contours (Fig. 2, center). For
each pair (xj , yj) on each elevation contour, we determine the
phase offset (ϕx,i, ϕy,i) associated with grid (λi, θi) such that
a peak of grid (λi, θi) would appear at (xj , yj) (see [1], Eq.
1).

The phase offsets (ϕx,i, ϕy,i) ∈ [0, 2π)× [0, 2π) are placed
into phase bins. In this work, we use 30 phase bins with
size 2π/30. When a phase value (ϕx,i, ϕy,i) is found on the
elevation contour, a 1 is placed at the index corresponding
to the appropriate phase bin on a 30 × 30 phase candidate
matrix. Broadly speaking, the phase candidate matrix encodes
information about spatial periodicity in the elevation contour.
This process is illustrated in Fig. 2. The phase candidate
dictionary contains one phase candidate matrix for each grid
(λi, θi) for each elevation contour. If we choose to encode
N grids, and we slice the DEM into M elevation contours,
then the phase candidate dictionary contains N × M phase
candidate matrices. The phase candidate matrices are accessed
using simple dictionary lookups. The lookup keys are grid
module (λi, θi) and an elevation bin.



C. NeuroGrid

The NeuroGrid algorithm produces an (x, y) position esti-
mate using data from elevation measurements. In this work,
a vehicle flying at constant altitude records LIDAR measure-
ments of the terrain below it. The (x, y) position estimate
is used in the measurement update in an EKF. NeuroGrid is
summarized in Table I.

TABLE I
THE NEUROGRID ALGORITHM

Require: (1) A phase candidate dictionary built from the
navigation map in the manner described in Section II-B; (2)
a sensor measurement of P elevation values; (3) A set of
spatial offsets (xo,j , yo,j), j = 1 . . . P : the locations of the
elevation measurements relative to the vehicle in the inertial
frame

1) Perform a phase candidate lookup for each of the P
elevations and each of the N grid modules.

2) Perform a shifting operation using the spatial offsets
(xo,j , yo,j). The phase candidate matrices must be
shifted such that the phase estimate is reflective of the
vehicle position, not the location of each individual
elevation measurement.

3) Sum the shifted phase candidate matrices over all
measurements for each grid module (λi, θi) (see Fig.
3).

4) From this sum, choose the most likely accompanying
(ϕx,i, ϕy,i) for each grid module. This value is simply
the arg max of the summed candidate matrices.

5) Compute and sum grid activations from
(λi, θi, ϕx,i, ϕy,i) for each grid module (see Fig.
4). The value arg max of this sum is the (x, y)
position estimate.

First, a dictionary lookup is performed for each elevation
value for grid module (λi, θi). This garners P phase candidate
matrices (see Fig. 2, right). After a shifting operation (since the
elevation values are spread out around different (x, y) points
beneath the vehicle), the phase candidate matrices are summed
(see Fig. 3). The phase estimate (ϕx,i, ϕy,i) for grid module
(λi, θi) is then the arg max of the sum. These operations
are repeated for each of the N grid modules. An image of
each grid is generated using the four values (λi, θi, ϕx,i, ϕy,i)
(see Fig. 2, left). The grid image has the same pixel resolution
as the DEM. Finally, the N grid images are summed as they
are computed. The arg max of the sum of grid images is
the location estimate (x, y). Fig. 4 shows a sum of 25 grid
images.

III. INERTIAL NAVIGATION

The NeuroGrid location estimate is used as an aiding
measurement in an inertial navigation filter. The filter carries
five states:

x =

pv
θ

 (1)

Σ

Fig. 3. Sum of shifted 30×30 binary phase candidate matrices for P = 150
elevation measurements for grid module (λi = 357px, θi = 206◦). The
arg max value is [3,22], which corresponds to phase estimate (ϕx,i =
22 ∗ 2π

30
, ϕy,i = 3 ∗ 2π

30
).

where p =
[
px py

]T
is the position of the vehicle in the

inertial frame, v =
[
vx vy

]T
is the velocity, and θ is the

heading angle. The vehicle flies at a constant altitude of 350
m.

A. Dynamics Propagation

The dynamics are propagated using measurements from an
onboard inertial measurement unit (IMU). The IMU measures
acceleration am and angular rate ωm in the body frame:

am = T b
i a+ ηa (2)

where a is the true inertial-frame acceleration, T b
i is the 2×2

direction cosine matrix that represents the the transformation
from the inertial frame to the body frame, and ηa is an additive
white Gaussian noise with power spectral density PSDa =
1.361× 10−6 m2/s3 [20].



Σ

Fig. 4. Grid sum of N = 25 1600×1600 grid images. The vehicle is located
at the center of the yellow circle in the bottom image.

Similarly, the gyroscope measurement is

ωm = ω + ηg (3)

where ω is the true angular rate and ηg is an additive white
Gaussian noise with power spectral density PSDg = 6.250×
10−6 deg2/s [20].

The state dynamics are ẋ = f(x), where

f(x) =

va
ω

 . (4)

The estimated state, x̂, is propagated in discrete time at the
IMU rate:

p̂k+1 = p̂k + v̂k∆t+
1

2
âk∆t2 (5)

v̂k+1 = v̂k + âk∆t (6)

θ̂k+1 = θ̂k + ωm∆t (7)

where
âk = T̂ i

bam (8)

T̂ i
b is a direction cosine matrix computed from the heading

angle estimate θ̂, and ∆t is the time between time step k and
time step k + 1.

The discrete-time covariance propagation is

Pk+1 = ΦPkΦ
T +BQBT (9)

where Φ = eF∆t, and F is the Jacobian of the continuous-time
error dynamics:

F =


02×2 I2×2 02×1

02×2 02×2

[
0 −1
1 0

]
âk

01×2 01×2 0

 . (10)

Note that the skew-symmetric term in Eq. 10 manifests as a
result of a partial derivative of direction cosine matrix T̂ i

b with
respect to the heading angle. B is the Jacobian of the error
dynamics with respect to the noises ηa and ηg:

B =

− 1
2 T̂

i
b∆t 02×1

−T̂ i
b 02×1

01×2 1

 (11)

and

Q =

[
(PSDa∆t)I2×2 02×1

01×2 PSDg∆t

]
. (12)

B. Measurement Update

The LIDAR measurement is a three-dimensional point cloud
in the body frame. Each point is measured as

pm,j = T b
i pj + ϵj (13)

where pj =
[
xj yj zj

]T
is the location of the point in the

inertial frame, and

ϵj ∼ N (02×1, RLIDAR) (14)

where RLIDAR = 0.052I3×3 m2.
The elevations ej of each point are known, since the vehicle

flies at constant altitude z̄.

ej = z̄ − zm,j (15)

Here, zm,j is the distance to a point below the vehicle along
the body z-axis, which points downward along the inertial z-
axis. P elevations are randomly selected from the point cloud
measurement and sorted into bins. The bin size is the same
one used to build the phase candidate dictionary.

NeuroGrid also requires an estimate of the inertial (x, y)
offsets between the location of the vehicle and each of the
elevation values ej . To this end, we add a magnetometer
that measures the heading angle at the time of the LIDAR
measurement. The magnetometer measurement is

θm = θ + ξ (16)

ξ ∼ N (0, Rmag) (17)



where θ is the true heading angle, and Rmag = 0.83332 deg2

[21]. The inertial (x, y) offsets are then[
xo,j

yo,j

]
= T i

b (θm)

[
xm,j

ym,j

]
(18)

where the heading measurement θm has been used to express[
xj yj

]T
from the LIDAR measurement in the inertial frame.

The inputs to NeuroGrid are the P elevation values ej and and
associated spatial offset values (xo,j , yo,j).

The NeuroGrid algorithm produces an (x, y) position esti-
mate that corresponds to an (i, j) index on the DEM that was
used to build the phase candidate dictionary. The NeuroGrid
measurement model is

y =

[
px
py

]
+ γ (19)

where
γ ∼ N (02×1, R) (20)

and R is computed in the manner described in Section III-D.
The Kalman update is

∆y = y − ŷ (21)

W = HP−
k HT +R (22)

K = P−
k HTW−1 (23)

x̂+
k = x̂−

k +K∆y (24)

P+
k = (I −KH)P−

k (I −KH)T +KRKT (25)

where ŷ is the predicted measurement
[
p̂x p̂y

]T
computed

from the state values and Eq. 25 is the Joseph-form covariance
update [22].

C. Measurement Rejection

NeuroGrid is a “winner-take-all” approach to generating a
position estimate. As Wang et al. point out in [1], some of
the phase estimates computed from the LIDAR measurement
simply are not meaningful. This happens when the sum of the
phase candidate matrices is noisy (see Fig. 3 and [1], Fig. 8).
If the phase candidate sum associated with grid (λi, θi) does
not have a clear maximum value, then the corresponding phase
estimates (ϕx,i, ϕy,i) are liable to produce a grid image (see
Fig. 2, left) that does not have a peak at the location of the
vehicle.

The grid sum that is used compute the NeuroGrid position
estimate is the sum of N grid images. Grids that have a peak
at the vehicle’s location contribute to a large spike in the grid
sum at that point. Grids that do not have a peak at the vehicle’s
location fade into the background.

To save computation time, we propose a simple measure-
ment rejection technique at the phase candidate sum level. The
measurement acceptance criteria is

max(Spc)− mean(Spc) > P/10 (26)

where Spc is the phase candidate sum. If the inequality in
Eq. 26 is satisfied, then the phase candidate sum is accepted.

Otherwise, it is rejected. The maximum possible value at
any index is P , since there are P elevation measurements.
Criteria (26) requires that the maximum value of the phase
candidate sum is greater than P/10 higher than the mean. If
grid (λi, θi) is rejected based on criteria (26), its grid image
is not computed nor added to the grid sum.

D. Online Covariance Computation

The NeuroGrid position estimate is the arg max of the
grid sum, an image with the same pixel resolution as the
DEM (see Fig. 4). Grids that have peaks at the location of
the vehicle constructively interfere, causing a large spike in
activity. This activity is also high in an approximately circular
area around the vehicle. We define the covariance of the
NeuroGrid measurement based on the slope of the activity
peak. If the arg max of the grid sum is a clear maximum,
and the pixels surrounding it fall off in value quickly, then
the standard deviation of the position measurement is close
to the pixel width of the grid sum. If multiple surrounding
pixels have values close to the arg max, then the standard
deviation is multiple pixel widths.

TABLE II
COVARIANCE OF THE NEUROGRID POSITION MEASUREMENT

Require: (1) A grid sum image G; (2) A pixel-to-m
conversion factor α, which is the resolution of G

1) Find the index (i, j) = arg max{G}.
2) Step down the rows n times until G(i + n, j) <

c ∗ arg max{G}, where 0 < c < 1.
3) Set σ = αn.

4) Set R =

[
σ2 0
0 σ2

]
.

The covariance computation scheme is summarized in Table
II. It requires a constant value c, where 0 < c < 1. As c
increases, the algorithm is more and more likely to compute a
σ-value of exactly one pixel. It returns a diagonal covariance

matrix R =

[
σ2 0
0 σ2

]
.

IV. RESULTS

We test the filter on data from a simulated flight over a
section of the University of Texas at Austin campus [23].
The vehicle flies in a circular trajectory at a constant altitude
of 350 m. The radius of the circle is 100 m. The vehicle
completes one revolution around the circle in 60 s. As it flies,
its heading points in the direction of the velocity vector. The
IMU propagation rate is 100 Hz. Fig. 5 shows the trajectory.

The initial uncertainty is 10 m in position, 1 m/s in velocity,
and 1 deg in heading:

P0 =

102I2×2 0 0
0 1.02I2×2 0
0 0 (1.0 π

180 )
2

 . (27)

A pair of LIDAR and heading measurements are recorded
every 5 seconds. The phase candidate dictionary was built
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Fig. 5. Trajectory for the simulated flight. Arrows indicate the vehicle’s
heading. Measurements of the terrain are recorded every 5 seconds. P = 150
random points from each measurement are selected for processing. The chosen
points lie within a 25 m ground radius of the vehicle (white circles).

with a DEM resolution of 0.25 m/px and an elevation bin
resolution of 0.1 m. It encodes phase information for 50
randomly generated grids with minimum scale λi = 10 m
and maximum scale λi = 100 m.

Fig. 6 shows the state estimation error computed during 50
Monte Carlo runs. The measurement covariance is computed
online using the method described in Section III-D, and phase
candidates are rejected using the criteria in Eq. 26. A value of
c = 0.9995 was chosen for the covariance computation. Even
with such a large value of c, the filter is slightly conservative.
This means that the NeuroGrid position measurements are
slightly better than the “spread” of the maxima in the grid
sum would suggest; even though there are values very close
to the maximum in proximity to the maximum, the maximum
is almost always the best estimate of the position.

Since NeuroGrid is a global position measurement, it is able
to overcome very large initial position and velocity errors. The
estimator is also consistent; the state errors remain within the
filter’s covariance bounds. Fig. 6 shows the mean 3σ filter
covariance bounds over all 50 Monte Carlo runs, since the
filter covariance values differ between runs. The covariance
of the estimation error values is shown in red.

Table III explores the effect of the value of c on estimation
accuracy. The position RMSE at time step k is:

RMSE(k) =

√√√√ 1

Nm

Nm∑
i=1

∥pi
k − p̂i

k∥22 (28)

where Nm is the number of Monte Carlo runs. The position
RMSE values in Table III are averaged over all time steps k.

While the estimator performs reasonably well without phase
candidate rejection, it is clear that phase candidate rejection
improves the NeuroGrid measurement by removing additional
“noise” in the grid sum from grid images that are out of

Fig. 6. Estimation error results (gray), mean 3σ covariance bounds (red), and
Monte Carlo 3σ covariance (magenta, dashed).

TABLE III
ONLINE COVARIANCE COMPUTATION RESULTS

Meas. Reject. c Mean posn. RMSE [m]

OFF 0.9950 1.438
ON 0.9950 0.7881
ON 0.9990 0.6812
ON 0.9995 0.6795
ON 0.9999 0.7176

phase with the true position. Further, phase candidate rejection
reduces computation time. Grid images are never computed
from rejected phase candidates, saving time in the calculation
of the grid sum. In fact, only about half of the grids are needed
to compute a grid sum that provides an acceptable position
measurement. The phase candidate dictionary contains 50
grids. On average, only about half the grids are needed
to compute the grid sum. In all cases where measurement
rejection was turned on, the mean number of rejected grids
over all time steps and all 50 Monte Carlo runs was 24.4.

Finally, a note on memory usage: The DEM used to build
the phase candidate dictionary and simulate measurements for
this example is a 1600 × 1600 matrix that encodes elevation
values in a 400× 400 m section of the U.T. campus. If each
elevation value is a 16-bit floating point number, then the
the memory required to store the DEM onboard would be



1600× 1600× 16 bits, or about 5.1 MB. The phase candidate
dictionary contains phase candidates for 50 grids and 630
elevation bins. Each phase candidate is a 30×30 binary matrix.
The size of the phase candidate dictionary is 50×630×30×30
bits, or about 3.5 MB. Thus, the phase candidate dictionary
reduces the memory requirement by about 30%.

However, NeuroGrid still computes a floating-point matrix
the size of the DEM at each measurement time. This is the grid
sum, whose maximum value is used to compute the position
measurement. A lower-quality grid sum could theoretically be
computed, but ultimately the position measurement is only
as precise as the resolution of the grid sum. Practitioners
therefore face a tradeoff between measurement precision and
memory usage at runtime.

V. CONCLUSION

Taking inspiration from navigation in animals, the Neu-
roGrid algorithm computes a position “measurement” with
respect to a DEM using data from elevation measurements.
NeuroGrid is not a neural network. Instead, it uses a data struc-
ture called a phase candidate dictionary to encode information
that relates elevation values to distinct vehicle positions. We
have demonstrated that, in principal, the phase candidate
dictionary can be smaller in size than the DEM. Further, the
NeuroGrid position measurement was shown to be compatible
with an EKF using a simple online covariance computation.
Computation time can also be reduced by rejecting grids with
noisy phase candidate sums at measurement time; not every
grid will have clear spatial phase values (ϕx,i, ϕy,i) for every
measurement. Our measurement rejection scheme has also
been shown to improve estimation accuracy.

This work demonstrates the feasibility of using position
measurements generated by NeuroGrid in an EKF. For the
results presented here, we rely on a raw magnetometer mea-
surement to convert the body-frame position values of the
elevation measurements to the inertial frame. In the future,
we would like to incorporate auto-focusing; starting with a
noisy heading measurement, we will recompute grid images
with different heading values close to the measured value
until we find the highest-quality grid sum. We would also
like to incorporate state estimation into the phase estimates
themselves. Since we know the dynamics of the vehicle, we
should be able to propagate the phase estimates along with the
vehicle states. This way, instead of carrying a phase candidate
dictionary with many grids and rejecting half of them at
measurement time, we could potentially maintain a smaller
number of grids with much more accurate phase estimates.
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