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Abstract— The proliferation of large satellite constellations
in low Earth orbit (LEO) is dramatically increasing demand
on existing systems for space domain awareness. The rapidly
growing number of objects in LEO will reduce the average rate
of observations per object, necessitating the development of multi-
target algorithms that can handle higher levels of data sparsity
without sacrificing computational efficiency. In this paper, we
demonstrate that a multi-target filter that combines a number
of useful capabilities is able to track and maintain custody of
a simulated population of over 16,000 LEO objects without
requiring the use of high-performance computing facilities. The
filter is based on the generalized labeled multi-Bernoulli filter,
and includes three previously-presented features: label space
partitioning based on sensor fields of view, the ensemble Gaus-
sian mixture filter (EnGMF), and bi-fidelity orbit uncertainty
propagation. We also introduce a new, algorithmically simple
method for adjusting the number of EnGMF particles to balance
accuracy and computational efficiency, which we refer to as
progressive resampling.

Index Terms—Space domain awareness, generalized labeled
multi-Bernoulli, ensemble Gaussian mixture, multi-target, multi-
sensor, multi-fidelity

I. Introduction

The proliferation of large satellite constellations in low Earth
orbit (LEO) is dramatically increasing demand on existing sys-
tems for space domain awareness (SDA). Without the addition
of new sensors, the rapidly growing number of space objects
(SOs) in LEO will reduce the average rate of observations
per SO, necessitating the development of multi-target tracking
(MTT) algorithms that are specialized to the SDA problem and
can handle higher levels of data sparsity without sacrificing
computational efficiency. In this paper, a multi-target filter
that combines a number of useful capabilities is used to track
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a simulated population of LEO SOs, of which over 15,000
are based on real two-line elements (TLEs) and the remainder
constitute a new large constellation comprising 1000 satellites.
These SOs are tracked using a simulated heterogeneous network
of ground-based sensors with limited fields of view (FOVs)
based on the existing space surveillance network. The multi-
target filter used in this work is based on the GLMB filter
(GLMBF) [1]–[3], augmented with four features: label space
partitioning based on sensor FOVs [4], the ensemble Gaussian
mixture filter (EnGMF) [5], [6], bi-fidelity orbit uncertainty
propagation [7], and a new, algorithmically simple method for
adjusting the number of EnGMF particles to balance accuracy
and computational efficiency.

The GLMBF is a closed-form solution to the Bayes multi-
target filter recursion based on the family of 𝛿-generalized
labeled multi-Bernoulli (GLMB) random finite set (RFS) prob-
ability density functions (PDFs) [1]–[3]. The GLMBF assumes
with Poisson distributed clutter and Bernoulli processes for
birth and death. The GLMBF is a multiple hypothesis tracker,
which enables it to preserve information that would be lost in
a single hypothesis tracker, such as the probability hypothesis
density (PHD) or labeled multi-Bernoulli (LMB) filter [8]–[10].
However, when used with a sensor network with a limited FOV,
such that many objects are undetectable for most timesteps,
multiple hypothesis trackers can experience runaway growth in
the number of hypotheses. For the GLMBF, this can be mitigated
by partitioning the label space based on each object’s estimated
probability of being in each sensor’s FOV. The resulting filter
is the FOV-partitioned GLMB filter (FP-GLMBF), which has
been shown to enable tractable multiple hypothesis MTT with
limited-FOV sensor networks [4], [11], [12].

The EnGMF is a single-target filter that enables accurate
uncertainty propagation by parameterizing an object’s state
PDF using a set of particles, but avoids particle depletion
during measurement update by converting the particles into



a conservative Gaussian mixture model (GMM) via kernel
density estimation (KDE). It has been shown that the EnGMF
performs well for tracking SOs over multiple orbital periods,
especially when the state is represented by the equinoctial orbital
elements [6], [13]. As an object’s PDF is predicted over time,
its particles tend to spread out due to perturbations, resulting in
decreased accuracy, which negatively affects the FP-GLMBF’s
partition update and the EnGMF’s measurement update. In
this work, we mitigate this issue by adding new particles at
a fixed rate per revolution, through a process we call progressive
resampling.

Multi-fidelity orbit uncertainty propagation provides high-
accuracy state PDF prediction without requiring each particle
in the ensemble to be propagated with the full high-fidelity
dynamics model, improving computational efficiency [7]. This
is important when tracking many SOs. A set of particle state
histories are computed using a low-fidelity dynamics model,
then stochastic collocation [14] is used to adjust the final
state of each particle to more closely match the high-fidelity
model, based on a relatively small number of particles that are
repropagated with the high-fidelity dynamics model.

This paper builds on work we have presented in previous
papers [4], [15], [16]. In [15], we applied the FP-GLMBF and
EnGMF to a population of 8000 SOs, with a fixed number
of particles per track and without multi-fidelity propagation.
In [16], an unpartitioned GLMBF and EnGMF were applied
to a small cluster of objects in geostationary orbit (GEO),
with bi-fidelity propagation and a particle adaptation method
based on convergence assessment. In [4], which is currently
under review, we provide a more detailed derivation of the
FP-GLMBF, including a new measurement-driven birth (MDB)
model, and assess the filter’s performance in scenarios that
include spontaneous birth, death, and spawning. In this paper, we
apply the FP-GLMBF and EnGMF to a population of 16,297
LEO SOs, with bi-fidelity propagation and a new method for
adding particles over time. Unlike in [16], the objects in this
scenario receive asynchronous measurement updates due to
FOV limitations.

II. Algorithm Description
This section describes the multi-target filter system from

bottom to top, beginning with the particle propagation method,
followed by the single target filter, resampling method, and high-
level multi-target filter.

A. Multi-Fidelity Orbit Propagation
In order to balance computational efficiency and propagation

accuracy, we use a bi-fidelity method based on stochastic
collocation. For PDF prediction, we will propagate 𝑁 particles.
In the multi-fidelity approach, these particles are propagated
from one simulation step to the next via a cheap low-fidelity
dynamics model. When we are going to extract the estimated
PDF or perform measurement gating or update, a high-fidelity
correction is performed by identifying a set of important
samples, which are repropagated using a more expensive high-
fidelity model.

This correction is performed via stochastic collocation [7],
[14]: First, the initial state of each particle and its low-fidelity
state at the last 𝑀 steps are concatenated, resulting in the
(𝑀 + 1) 𝑑 × 𝑁 matrix 𝑋𝐿 (Ξ) =

[
𝑥𝐿 (𝜉1) . . . 𝑥𝐿 (𝜉𝑁 )

]
, where

Ξ = {𝜉𝑖}𝑁𝑖=1 is the set of random inputs, 𝑑 = 6 is the dimension
of the state space,

𝑥𝐿 (𝜉𝑖) =


𝑥𝐿 (0, 𝜉𝑖)

𝑥𝐿 (Δ𝑡𝑘−𝑀 , 𝜉𝑖)
...

𝑥𝐿
𝑘
(Δ𝑡𝑘 , 𝜉𝑖)


, (1)

and Δ𝑡𝑘 is the difference between time 𝑡𝑘 and the time of the last
measurement update, or the time of track initialization if there
has been no update. The number of important samples is limited
to 𝑟 ≤ (𝑀 + 1) 𝑑. Each column of 𝑋𝐿 (Ξ) may be approximated
using the surrogate

𝑥𝐿 (𝜉𝑖) ≈
𝑟∑︁
𝑗=1

𝑐 𝑗 (𝜉𝑖) 𝑥𝐿
(
𝜉 𝑗
)
, (2)

where 𝑐 𝑗 (𝜉𝑖) are a set of coefficients and 𝜉 𝑗 are the random
inputs of the important samples. Next, 𝑐 𝑗 (𝜉𝑖) and 𝜉 𝑗 are found
by solving the optimization problem

Ξ̄ = arg min
Ξ

inf
𝑦∈span(𝑋𝐿 (Ξ))

𝑥𝐿 (𝜉) − 𝑦

∞ , (3)

which is achieved using a greedy algorithm based on the
pivoted Cholesky decomposition [7], [17]. Finally, the high-
fidelity values 𝑥𝐻

(
𝜉 𝑗
)

for the important samples are computed
by repropagating with the high-fidelity model, and the corrected
samples are given by

𝑥𝐻 (𝜉𝑖) ≈
𝑟∑︁
𝑗=1

𝑐 𝑗 (𝜉𝑖) 𝑥𝐻
(
𝜉 𝑗
)
. (4)

Our low-fidelity model solves the orbital equations of motion
for the point mass gravity of the Earth and its 𝐽2 perturbation [18]
via the fourth-order Runge–Kutta (RK4) method with a fixed
step size of 10 s. The 𝐽2 perturbation is necessary in the low-
fidelity model for this scenario because its effect is significant
in LEO. We also tested an analytical low-fidelity model based
on Vinti theory [19], which again included point mass and 𝐽2
gravity, but we found that it was slower in this scenario than the
RK4-based model. We hypothesize that this may be due to the
majority of low-fidelity propagator calls in this scenario being
short arcs of 60 s.

B. Ensemble Gaussian Mixture Filtering
The EnGMF provides the accuracy of a particle filter (PF)

while avoiding the problem of particle depletion, enabling it
to function with a much smaller number of particles than a
PF, reducing overall computational complexity. The EnGMF
is parameterized by a set of particles, which are initialized by
drawing 𝑁 random samples from an initial PDF. In this work,
the particles are defined in equinoctial orbital elements instead
of the typical Cartesian state space to keep the dynamics nearly
linear even in the presence of perturbations [6], [13]. The first



equinoctial element is typically the semi-major axis (SMA) of
the object’s orbit, but we replace it with the mean motion 𝑛 =√︁
𝜇⊕/𝑎3, where 𝜇⊕ is the standard gravitational parameter of

the Earth and 𝑎 is the SMA, in order to make the problem more
linear.

The PDF is predicted in time by simply predicting each
particle. When performing a measurement update or extracting
the PDF’s estimated mean and covariance, the particles are
combined into a GMM via KDE: each particle becomes the
mean of a GMM component with weight 𝑁−1 and conservative
covariance

𝐵𝑆 = 𝛽𝑆𝑃 , (5)

where 𝛽𝑆 is a bandwidth parameter found using Silverman’s rule
and 𝑃 is the sample covariance of the 𝑁 particles [6], [20].

In order to incorporate process noise, when the GMM is
constructed, a linearized process noise model is used to inflate
the sample covariance before applying Silverman’s rule. In
Cartesian coordinates, the process noise transition matrix is

Γ(Δ𝑡) =
[
Δ𝑡 𝐼3

1
2Δ𝑡

2𝐼3

]
, (6)

where Δ𝑡 is the time since the last measurement update, or
since track initialization if there has been no update, and 𝐼3
denotes the 3×3 identity matrix. Each particle is transformed
from equinoctial elements to Cartesian coordinates in the
Earth-centered inertial (ECI) reference frame, then a random
process noise sample with covariance Γ(Δ𝑡)𝑄ΓT (Δ𝑡), where
𝑄 is the process noise covariance, is added, and the particle
is transformed back to equinoctial elements. Note that the
particles with noise added are only used to compute the sample
covariance, and are not stored.

After adding noise to all particles, we compute the sample co-
variance and apply Silverman’s rule to conservatively construct
a GMM from the set of particles. Each particle is used as the
mean of a GMM component with weight 𝑁−1 and a covariance
of

𝐵𝑆 = ℎ𝑆

(
4

𝑑 + 2

) 2
𝑑+4

𝑁− 2
𝑑+4 �̃� , (7)

where ℎ𝑆 is a tunable parameter and �̃� is the sample covariance
including process noise. For this work, we set ℎ𝑆 = 1, which
results in the optimal bandwidth matrix 𝐵𝑆 (in terms of the mean
integrated squared error (MISE)) when the sampling distribution
is Gaussian [20].

In this work, the resulting GMM is updated via the square-
root unscented Kalman filter (SR-UKF) update [21], which
is more accurate for nonlinear measurement models than the
linearization-based extended Kalman filter (EKF) update, but
comes at a higher computational cost. Because FOV limitations
mean that measurement updates are relatively rare in this
scenario, the cost of measurement updates was not considered
a significant factor in achieving the desired performance. To
apply the SR-UKF update to a GMM, the single-Gaussian

SR-UKF update is applied to each component individually. The
component weights are updated by

𝑤+
𝑖 =

𝑞𝑖𝑤
−
𝑖∑𝑁

𝑗=1 𝑞 𝑗𝑤
−
𝑗

, (8)

where 𝑤−
𝑖

is the prior weight of component 𝑖, 𝑤+
𝑖

is its posterior
weight, and 𝑞𝑖 is its measurement likelihood. The sum in the
denominator of (8) is the overall measurement likelihood, which
is needed for multi-target data association.

After each measurement update, a new set of particles are
sampled from the posterior PDF. Because of the relatively small
number of particles used in this work, outliers in resampling
could have negative effects on accuracy. Therefore, rejection
sampling is used to ensure that no particle is more than 3𝜎 from
the GMM component from which it was sampled.

C. Progressive Resampling
In order to balance the need for sufficient particle density with

computational efficiency, we add new particles to each EnGMF
PDF over time. In this approach, each PDF is initialized with
𝑁 = 𝑁min particles, and the corresponding GMM in equinoctial
elements is computed and stored. As the PDF is predicted, new
particles are drawn from the stored prior at some rate d𝑁

d𝜏 , where
𝜏 is a time-like variable, until 𝑁 = 𝑁max. Each new particle is
predicted to each time in the bi-fidelity time history up through
the current time, so the state history is always fully populated
for high-fidelity correction. After each measurement update,
the number of particles is reset to 𝑁min during resampling and
the prior GMM is replaced. To save memory, the prior GMM
is replaced with the version parameterized by 𝑁min particles,
instead of the GMM produced by the SR-UKF update, which
may be much larger. The values of 𝑁min, 𝑁max, and d𝑁

d𝜏 are all
tunable parameters.

Fig. 1 shows an illustration of progressive resampling with a
one-dimensional PDF. Particles are added from top to bottom
in this example to aid explanation, while the actual method uses
random sampling. The particle addition rate is such that one
particle is added for each prediction step. At time 𝑡0, the initial
PDF is parameterized by two particles (the two filled circles).
Without progressive resampling, these two particles become an
increasingly poor parameterization of the PDF over time, with
the final PDF at 𝑡3 lacking its lower mode entirely. When the
PDF is predicted from 𝑡0 to 𝑡1, a third particle is sampled from
the PDF at 𝑡0 (the top hollow circle). Then, all three particles
are predicted to 𝑡1. This is repeated for the prediction steps from
𝑡1 to 𝑡2 and 𝑡2 to 𝑡3, resulting in a better distribution of particles
at each step.

In this work, the time-like variable 𝜏 is based on the
number of revolutions (orbits) since the last full resampling
(i.e., initialization or the last measurement update). Because the
orbital period of an SO changes over time due to perturbations,
𝜏 is accumulated from timestep 𝑘 to 𝑘 + 1 as follows:

𝜏𝑘+1 = 𝜏𝑘 + (𝑡𝑘+1 − 𝑡𝑘)
�̂�𝑘

2𝜋
, (9)

where �̂�𝑘 is the SO’s estimated mean motion at time 𝑡𝑘 . Because
particles can only be added in integer amounts, when 𝜏 d𝑁

d𝜏 is



𝑡0 𝑡1 𝑡2 𝑡3

Fig. 1. Illustration of progressive resampling in a nonlinear system.

greater than some positive integer Δ𝑁 , the number of particles
is increased to 𝑁 + Δ𝑁 and 𝜏 is decremented by Δ𝑁 d𝜏

d𝑁 .

D. FOV-Based Label-Partitioned GLMB Filtering
This section provides a brief overview of RFSs, then describes

the FP-GLMBF algorithm as it is used in this work. The full
algorithm and its derivation can be found in [4]. In this section,
lower case letters denote vectors, capital letters denote sets,
blackboard bold letters represent spaces, and calligraphic letters
denote sets of sets. Bold symbols indicate the use of label-
augmented vectors. The subscript 𝑘 to indicate the current time
is omitted and the subscript 𝑘 + 1 is abbreviated to a subscript
plus sign. Let F (X) denote the set of all finite subsets of X. We
also define the multi-object exponential 𝑓 𝑋 =

∏
𝑥∈𝑋 𝑓 (𝑥) and

Kronecker delta

𝛿𝑌 [𝑋] =
{

1 , 𝑋 = 𝑌 ,

0 , otherwise.
(10)

Given some vector space X and discrete label space L, an RFS
is a random variable on F (X) and a labeled RFS is a random
variable on F (X × L) [22]. Given 𝒙 = (𝑥, 𝑙) ∈ X × L, let
lab 𝒙 = 𝑙 denote the projection of the label-augmented state
spaceX×L onto its label spaceL. We can now define the distinct
label indicator Δ(𝑿) = 𝛿 |𝑿 | [|lab 𝑿 |], which will be used ensure
that a labeled RFS realization will not contain duplicate labels.

The GLMBF and FP-GLMBF are constructed using RFS
PDFs from the 𝛿-GLMB and LMB families. However, LMB
PDFs are used to represent spontaneous birth and spawning,
neither of which appear in our scenario, so they are not relevant
to this paper. A 𝛿-GLMB PDF has the form

𝝅(𝑿) = Δ(𝑿)
∑︁

(𝐼, 𝜉 ) ∈F(L)×Ξ
𝑤 (𝐼, 𝜉 )𝛿𝐼 [lab 𝑿]

(
𝑝 ( 𝜉 )

)𝑿
, (11)

where Ξ is a discrete space, (𝐼, 𝜉) is a component of the PDF,
𝑤 (𝐼, 𝜉 ) is its associated weight, and 𝑝 ( 𝜉 ) (·, 𝑙) is the state-space
PDF of an object with label 𝑙 given index 𝜉. In MTT, each
component is a data association hypothesis, with 𝐼 being the
set of objects that exist, 𝜉 being the combined data association
history, 𝑝 ( 𝜉 ) being the tracks for the existing objects, and 𝑤 (𝐼, 𝜉 )

being the estimated probability that the hypothesis is true.
To construct the partition of the label space L at timestep

𝑘 + 1, we first define the instantaneous FOV of each of our 𝑆

sensors as a subset of the state space X. If the sensors’ FOVs do
not overlap, this creates a partition of the state space:

V+ =

{
𝑉

(𝑖)
+

}𝑆
𝑖=0

, (12)

where 𝑉
(0)
+ = X − 𝑉+ is the region outside all sensors’ FOVs

and 𝑉+ =
⋃𝑆

𝑖=1 𝑉
(𝑖)
+ is the network’s combined FOV. Then, we

can take a number of random samples from the weighted sum
of all predicted tracks 𝑝

( 𝜉 )
+ (·, 𝑙) with label 𝑙 and check if they

are within 𝑉
(𝑖)
+ to numerically compute 𝑝

(𝑖)
𝑉

(𝑙), the predicted
probability that object 𝑙 lies within the 𝑖th group of the partition.
By assigning each object 𝑙 to group 𝐿

(𝑖)
+ such that 𝑝

(𝑖)
𝑉

(𝑙) is
maximized, we construct a partition of the label space:

L+ =

{
𝐿
(𝑖)
+

}𝑆
𝑖=0

. (13)

Note that the partition definition is more complicated when
object birth and spawning are considered [4], but that is beyond
the scope of this work.

To apply the partition to a GLMB density or a set of
partitioned GLMB PDFs, we first split all the GLMB PDFs
that contain labels in multiple groups by removing all tracks for
objects in another group and merging any duplicate hypotheses
that are created (i.e., summing their weights). Then, all PDFs in
each group are merged by combining their track lists and taking
the Cartesian product of their hypothesis lists, with each new
hypothesis’s weight being equal to the product of the weights of
the hypotheses that were combined to create it.

As described in [4], the group of objects outside all sensors’
FOVs only need to have their tracks predicted, without mod-
ifying their data association hypotheses. This means that we
can improve computational efficiency and avoid unnecessary
truncation by not merging GLMB PDFs in this group into
a single PDF. Furthermore, by assuming state-independent
probabilities of detection and survival conditioned on object
𝑙 being in the 𝑖th sensor’s FOV, denoted 𝑃

(𝑖)
𝐷

(𝑙) and 𝑃𝑆 (𝑙),
the FP-GLMBF equations can be simplified by assuming
probabilities of detection

𝑝
( 𝜉 )
𝐷

(𝑙) = 𝑝
(𝑖)
𝑉

(𝑙 | 𝜉) 𝑃 (𝑖)
𝐷

(𝑙) (14)

and survival

𝑝
( 𝜉 )
𝑆

(𝑙) = 1 − 𝑝
(𝑖)
𝑉

(𝑙 | 𝜉) (1 − 𝑃𝑆 (𝑙)) , (15)

where 𝑝
(𝑖)
𝑉

(𝑙 | 𝜉) is the probability of an object lying within
the sensor’s FOV given association history 𝜉. The probability
𝑝
(𝑖)
𝑉

(𝑙 | 𝜉) is computed by drawing random samples from the
predicted track for object 𝑙 given history 𝜉 and checking if they
are inside 𝑉 (𝑖)

+ .
The prior filtering density for the group corresponding to the

𝑖th sensor’s FOV after repartitioning at timestep 𝑘 + 1 is

𝝅 (𝑖) (𝑿) = Δ(𝑿)
∑︁

(𝐼, 𝜉 ) ∈F
(
𝐿
(𝑖)
+

)
×Ξ

𝑤 (𝐼, 𝜉 )𝛿𝐼 [lab 𝑿]
(
𝑝 ( 𝜉 )

)𝑿
,

(16)
where Ξ is the set of histories of maps 𝜃 : L → {0, 1, . . .},
assigning measurements from each sensor 𝑖 to labels in its



corresponding group 𝐿 (𝑖) at time 𝑘 . If 𝜃 (𝑙) > 0, it gives the index
of the measurement assigned to object 𝑙 at time 𝑘 , and if 𝜃 (𝑙) = 0,
no measurement is assigned to object 𝑙 at that time. With the
simplifying assumptions described in the previous paragraph,
the predicted and updated PDF is

𝝅+
(
𝑿+

��� 𝑍 (𝑖)
+

)
∝ Δ(𝑿+)

∑︁
𝐼, 𝜉 , 𝐼+ , 𝜃+

𝑤 (𝐼, 𝜉 )𝑤 (𝐼, 𝜉 , 𝐼+ , 𝜃+ )
+

(
𝑍
(𝑖)
+

)
𝛿𝐼+ [lab 𝑿+]

×
(
𝑝
( 𝜉 , 𝜃+ )
+

(
·
��� 𝑍 (𝑖)

+

))𝑿
, (17)

where 𝐼+ ∈ 𝐿
(𝑖)
+ , 𝜃+ ∈ Θ+, the set of maps at 𝑘 + 1, and

𝑤
(𝐼, 𝜉 , 𝐼+ , 𝜃+ )
+

(
𝑍
(𝑖)
+

)
=

(
𝑝
( 𝜉 )
𝑆

) 𝐼∩𝐼+ (
1 − 𝑝

( 𝜉 )
𝑆

) 𝐼−𝐼+
×
(
𝜓
( 𝜉 , 𝜃+ )
+

(
·
��� 𝑍 (𝑖)

+

)) 𝐼+
, (18)

𝑝
( 𝜉 , 𝜃+ )
+

(
𝑥+, 𝑙

��� 𝑍 (𝑖)
+

)
=

𝑝
( 𝜉 )
+ (𝑥+, 𝑙) 𝜓 (𝜃+ (𝑙) )

+

(
𝑥+, 𝑙

��� 𝑍 (𝑖)
+

)
𝜓
( 𝜉 , 𝜃+ (𝑙) )
+

(
𝑙

��� 𝑍 (𝑖)
+

) ,

(19)

𝑝
( 𝜉 )
+ (𝑥+, 𝑙) =

〈
𝑓𝑆,+ (𝑥+ | ·, 𝑙) , 𝑝 ( 𝜉 ) (·, 𝑙)

〉
, (20)

𝜓
( 𝜉 , 𝑗 )
+

(
𝑙

��� 𝑍 (𝑖)
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where 𝑍
(𝑖)
+ is the set of measurements 𝑧

(𝑖)
+, 𝑗 collected by sensor

𝑖, 𝑔 (𝑖) is the sensor’s measurement likelihood function, 𝜅 (𝑖) is
its clutter intensity, and 𝑓𝑆,+ is a track’s predicted PDF given its
earlier state.

Finally, the predicted and updated GLMB density is truncated
by computing the cost 𝑐(𝑙, 𝑗) = − log

(
𝜂 (𝐼, 𝜉 ) (𝑙, 𝑗)

)
, for each

individual association 𝑗 of object 𝑙, where

𝜂 (𝐼, 𝜉 ) (𝑙, 𝑗) =
{

1 − 𝑝
( 𝜉 )
𝑆

(𝑙) , 𝑗 < 0 ,
𝑝
( 𝜉 )
𝑆

(𝑙) 𝜓 ( 𝜉 , 𝑗 )
+

(
𝑙

��� 𝑍 (𝑖)
+

)
, 𝑗 ≥ 0 ,

(23)

𝑗 < 0 indicates that object 𝑙 does not exist, 𝑗 = 0 indicates that
it exists but was not detected, and 𝑗 > 0 indicates that it exists
and generated the 𝑗 th measurement. These costs are assembled
into a cost matrix, and the resulting ranked assignment problem
is solved via Murty’s algorithm or a Gibbs sampler-based
stochastic algorithm to truncate the hypothesis list by finding
the highest-weighted new GLMB components [3].

The estimated multi-target state is extracted from each GLMB
PDF by taking its maximum a posteriori cardinality estimate
and then the set of tracks from its highest-weighted hypothesis
with that cardinality. The overall multi-target state estimate is
simply the union of the estimates from each GLMB density.

The use of bi-fidelity orbit uncertainty propagation has two
implications for the FP-GLMBF implementation. First, we

compute 𝑝
(𝑖)
𝑉

(𝑙) for all 𝑙 using only their low-fidelity state PDFs,
in order to avoid the expense of high-fidelity correction. We
then perform high-fidelity correction for all tracks for objects
in groups in the FOV to enable accurate measurement gating
and measurement update. Second, the tracks obtained during
estimate extraction must undergo high-fidelity correction to
ensure accuracy, but these tracks are then discarded to avoid
increasing error by replacing their initial PDFs with bi-fidelity
approximations.

III. Scenario Description
The simulation covers a period of three days, beginning on

April 18, 2021 at 0:00 UTC, with a timestep size of 1 min. The
simulated SO population consists of two sub-populations. The
first is a hypothetical large satellite constellation comprising
1000 satellites whose orbits all have an SMA of 7528.1363 km
and an inclination of 53◦, forming a shell around the Earth
between ±53◦ latitude. The second is the set of 15,302 SOs
that were included in the TLE catalog on the start date and
had eccentricity less than 0.25 and mean motion greater than
11.25 rev/day, excluding five objects that would reenter the
Earth’s atmosphere within the three day period. This results
in a total population of 16,297 SOs.

Key orbital elements for these objects are shown in Fig. 2. As
the figure shows, LEO objects tend to have highly inclined orbits,
resulting in changing measurement opportunities for ground-
based sensors as the Earth rotates.

Fig. 2. Key orbital elements for the population used in this scenario.

The true dynamics for the simulation include a 16×16
spherical harmonics-based model of the Earth’s gravity field
(EGM2008) [23], the point mass gravity of the Sun and Moon,
and atmospheric drag. The ballistic coefficient for all objects is
a constant 0.021 kg/m2. The true dynamics are solved using a



variable-step RK45 integrator. The filter uses the true model as
its high-fidelity model (i.e., there is no simulated mismodeling),
but it still assumes a process noise covariance of 𝑄 = 𝜎𝑎 𝐼3,
where 𝜎𝑎 = 10−12 km/s2 to account for error due to bi-fidelity
propagation. The true initial states for all objects are sampled
from their initial tracks in the FP-GLMBF to ensure statistical
consistency.

For progressive resampling, the EnGMF has 𝑁min = 100,
d𝑁
d𝜏 = 20 rev−1, and 𝑁max = 500. For bi-fidelity propagation, the
filter stores the initial state and five most recent timesteps for
each particle.

The sensor network comprises ten ground-based radars, each
with a conical FOV of half-angle 1◦. The locations, field of
regard (FOR) definitions, and noise statistics for these sensors
are shown in Tables I–III. A sensor’s FOR is the union
of all its possible FOVs, which are typically constrained by
topography and sensor pointing hardware. All sensors provide
measurements of topocentric azimuth, elevation, and range, and
all sensors except for #9 also provide measurements of range-
rate. All sensors have a conditional probability of detection
𝑃𝐷 = 0.98 for objects in their FOV, while the filter believes
that 𝑃𝐷 = 0.96. The sensors are tasked at each simulation step
to point at the object in their FOV with the longest time since
it was last in the FOV of any sensor, whether or not it was
successfully detected at that time. In order to generate the task
schedule before beginning the simulation, the true states of the
SOs are used to determine sensor pointing directions.

TABLE I
Sensor locations.

# Latitude (deg) Longitude (deg) Altitude (m)

1 30.572460 −86.2146900 73.6404
2 54.361800 −0.670100 211.1952
3 41.752500 −70.538056 109.9920
4 39.136070 −121.350720 142.5200
5 76.570278 −68.299167 370.7752
6 48.724722 −97.899722 379.7776
7 −7.906630 −14.402580 58.3280
8 64.300222 −149.190956 164.0092
9 9.395390 167.479130 −23.6192

10 42.617440 −71.490890 156.4660

TABLE II
Sensor FOR limits.

# Azimuth (deg) Elevation (deg) Range (km)
Min. Max. Min. Max. Max.

1 120 240 1.0 105 40,744
2 0 360 3.0 85 4,828
3 347 227 3.0 85 5,556
4 126 6 3.0 85 5,556
5 297 177 3.0 85 4,828
6 313 63 1.9 45 3,300
7 0 360 −5.0 90 59,264
8 184 64 3.0 85 4,828
9 0 360 0.0 90 90,000

10 0 360 0.5 90 90,000

TABLE III
Sensor noise standard deviations.

# Az. (deg) El. (deg) Range (km) Range-rate (km/s)

1 0.0470 0.0462 0.1623 0.0002
2 0.0215 0.0189 0.0175 0.0002
3 0.0370 0.0313 0.0165 0.0023
4 0.0264 0.0238 0.0177 0.0024
5 0.0481 0.0329 0.0143 0.0013
6 0.0175 0.0129 0.0244 0.0014
7 0.0176 0.0135 0.0804 0.0294
8 0.0462 0.0469 0.0194 0.0027
9 0.0129 0.0114 0.0110 N/A

10 0.0073 0.0081 0.0054 0.0001

The FP-GLMBF begins with one estimated track for each
SO, each in its own group within the initial label space partition.
Each track is initialized by propagating its catalog-derived initial
state backward in time to 𝑡 = −24 h, then using the result as the
mean of a Gaussian PDF. The covariance of this PDF is aligned
with the mean’s velocity direction, with position and velocity
standard deviations of 100 m and 1 cm/s along the velocity
direction and 1 m and 0.1 mm/s along any perpendicular axis.
This Gaussian PDF is then sampled to initialize the EnGMF.
The EnGMF PDF is predicted forward to 𝑡 = −12 h, and
updated once with a geocentric measurement of right ascension,
declination, range, and range-rate. These measurements have
standard deviations of 0.1 deg for the angles, 0.1 km for range,
and 0.01 km/s for range-rate. Finally, the PDF is predicted
to 𝑡 = 0 and updated with another measurement from the
same sensor. This process is necessary because the task of
constructing a realistic initial PDF for an SO is non-trivial due
to nonlinearity.

Clutter returns are not generated in this scenario, and the
FP-GLMBF assumes a uniform clutter intensity of 𝜅 = 10−9.
Each group of the partition is limited to a maximum of 100
hypotheses, and hypotheses with weights less than 10−6 are
pruned. The ranked assignment problem in the FP-GLMBF
joint predict–update step is solved via Murty’s algorithm.
The measurement gating distance is 6. The probability of an
object being inside a sensor’s FOV is computed using 50
random samples. Because no object can actually die during
the simulation, the conditional probability of survival is set
conservatively to 𝑃𝑆 = 0.9999.

IV. Results
This section discusses the results of one run of the simulation,

performed on a 2.4–3.9 GHz CPU with 192 concurrent threads.
The total runtime is 10 h, as shown in Fig. 3. The final average
number of particles per track is 237.3.

The overall tracking performance, quantified using the op-
timal subpattern assignment (OSPA) metric [24], is shown in
Fig. 4. This metric uses cutoff 15 km and order 2. These values
are recorded once every 2 h of simulated time.

In Fig. 4, we see that the location error rises slightly near
the beginning of the simulation, before dropping to a lower
value. This rise is due to the track initialization procedure, which
included an update for all tracks at 𝑡 = 0, which is not consistent



Fig. 3. Total accumulated filtering time over the course of the simulation.

Fig. 4. Tracking error over time. Note that the cutoff is 15 km.

with the actual timing of observations in the simulation. Fig. 5
shows that the average observation rate is a little more than one
per day, and some objects are observed much less frequently.

Fig. 5. Observation rate statistics over time.

In this trial, the filter only ever believes that one object has
died, and it manages to reacquire the object with a better estimate
of its state, as shown in Fig. 6. This is responsible for the
temporary increase in cardinality error visible in Fig. 4. Note
that while this object’s initial position error exceeds its estimated

overall 3𝜎 bound, this is actually the case for 12% of all objects
and is not necessarily responsible for the filter’s temporary belief
that it has disappeared. The fact that the object is later reacquired
shows the value of the multiple hypothesis tracking provided by
the FP-GLMBF, which was able to continue tracking this object
even while its highest-weighted hypothesis said that it had died.

Fig. 6. Error and uncertainty for the object that is temporarily believed to
have died. Note that its position error initially exceeds the estimated overall 3𝜎
bound, but is within the bound after reacquisition.

At the end of the simulation, 75 objects (0.46% of the
population) have position errors exceeding the 15 km cutoff.
Of these, six appear to be due to label switching and are not
reflected in the OSPA distance. Notably, most of the 75 objects
are observed three times throughout the simulation, which is
close to the average observation rate. However, their average
first observation occurs at 𝑡 = 0.91 day, which may be too late to
begin accurate data association without additional observations.
The simplistic sensor tasking algorithm used here may have
missed earlier opportunities to observe these objects and may
have also chosen suboptimal follow-up observation times. This
could be improved by using a less greedy, information-theoretic
approach to sensor tasking [25].

V. Conclusion
We have demonstrated that our filter can track and maintain

custody of more than 16,000 space objects in low Earth
orbit without requiring the use of high-performance computing
facilities. This was achieved by combining the FOV-partitioned
GLMB filter (FP-GLMBF), ensemble Gaussian mixture filter
(EnGMF), multi-fidelity orbit propagation, and our new progres-
sive resampling method. Progressive resampling allowed the
single-target EnGMF to provide accurate estimated probability
density functions (PDFs) to the multi-target FP-GLMBF, even
for objects that had not been observed recently, while reducing
overall memory usage. We also showed that, in this scenario,
an object’s low-fidelity state PDF could be used for the
FP-GLMBF’s partition update without needing to perform high-
fidelity correction.
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