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A NOVEL APPROACH TO AUTONOMOUS LUNAR LOCALIZATION
AND TIMING

Fabio D’Onofrio*, and Renato Zanetti†

The ability of deep-space spacecraft to estimate its position, velocity, and clock
errors without external clock error estimation is investigated. A novel approach to
onboard estimation of clock errors is proposed. Uncertainty quantification on the
effects of clock errors on translational states is performed. The dynamic correla-
tion between timing errors and localization errors are included in the filter design
and leveraged for time estimation. Simulations are performed to numerically vali-
date the proposed approach.

INTRODUCTION

Deep space position, navigation, and timing (PNT) is dominated by ground tracking via the Deep
Space Network (DSN). Space vehicles typically establish a two-way communication connection
with DSN, which allows the ground to form a precise position estimate (using so-called two-way
ranging and doppler measurements) as well as estimate the onboard clock bias and drift. While two-
way communications is a common and precise way to relate the position and time of the spacecraft
to the known position and time of the ground station(s), it also consumes ground resources and
hence it is not an approach scalable to a very large number of spacecraft. Terrestrial and low-Earth
orbit applications, on the other hand, typically rely on one-way ranging and doppler by processing
signals from GNSS constellations. One-way ranging is possible because the large number of GNSS
satellites generate many measurements with diverse geometry allowing for the estimation of both
the receiver’s position and its clock errors.

Much current work focuses on onboard deep space navigation without ground support.1, 2 Pro-
posed techniques include optical navigation with respect to distant planets/moon (3–5), with respect
to lunar craters (6–9), or using the apparent size and position of the Earth and Moon disks (10–12).
Other recent approaches include interlink ranging between various satellites in a non-Keplerian or-
bit (typically via third body perturbations), the so-called LiASON approach13, 14 currently being
tested in the Capstone mission.15 Pulsar navigation is also a possible onboard deep space naviga-
tion approach, and encouraging preliminary results were obtained in a recent International Space
Station experiment.16, 17 Another approach to onboard deep space navigation relies on one-way
ranging from ground stations, this approach is made possible by the Deep Space Atomic Clock,
which maintains an extremely accurate estimate of the onboard time and it is therefore able to form
one-way ranging measurements.18–21
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The ability to precisely keep track of time onboard is crucial to perform accurate navigation,
especially when a high level of autonomy is required. The Deep Space Atomic Clock is not an
economically viable solution for many spacecraft, especially small ones, requiring the onboard time
to be corrected to maintain the desired accuracy throughout the mission.

Different models for satellite clock offset exist, the most commonly accepted being a two– or
three–state linear model.22, 23 The first state is the clock bias, or offset, also referred to as the time
interval error (TIE),24 and represents the difference between the onboard time and the true time. The
clock bias evolves as the integral of the clock drift, also called fractional frequency offset (because
it’s physically caused by the clock oscillator frequency error). It’s also possible to include a third
state, to model the clock drift rate (also known as aging).

Once the clock offset model has been specified, its coefficients can be estimated through mea-
surements relating the onboard time to a reference “true” time; for example using a least squares
(LS) estimation process. Alternatively, a Kalman filter approach can be used. Reference 25 pro-
poses a Kalman filter to estimate the clock states of an ensemble of clocks from observations of time
differences between them. Reference 26 adds the capability to accept both time and frequency mea-
surements, outliers rejection, and the ability to include any combination of white noises or random
walk noises in all three clock states.

Clock estimation with a Kalman filter requires modeling of the process noise which must be
deduced from the physical properties of the clock oscillator noise.27, 28 Initial state and covariance
conditions must also be specified. References 29 and 30 propose to relax these requirements by
employing a finite impulse response unbiased estimation algorithm with measurements of the time
interval error. They also compare the performance with a classic two-state clock Kalman filter with
data from a real clock.

An adaptive Kalman filter with classified adaptive factors for clock offset estimation has also been
proposed.31 A long short-term memory (LSTM) machine learning approach to accurately express
the nonlinear characteristics of the navigation satellite clock bias has been developed as well.32

The aforementioned works estimate clock errors from time or frequency measurements from ref-
erence oscillators on the ground or on another satellite. They do not include a direct correlation
between the clock offset and the position/velocity onboard propagation error. The aim of this work
is to perform deep space onboard PNT without requiring an atomic clock onboard our vehicle nor
onboard other satellites our vehicle communicates with. This aim is achieved by two novel contri-
butions of this work. First, we derive how onboard clock errors correlate to onboard position and
velocity propagation errors. Using this model, we build correlations between localization errors and
timing errors. Optical measurements generated onboard and referenced to the spacecraft time are
used as navigation aids but they are unable to estimate the onboard time bias. The second contribu-
tion of this work is relating one-way ranging signals to the spacecraft position and time, and using
this information to update the onboard clock bias estimate.

The built-in correlation between timing and localization errors allows for the estimation of the
onboard clock bias from range/position measurements time-tagged by an external source’s accurate
clock. This time update formulation is also a novel contribution of this work. As a use case, we
examine the situation when two-way communication with DSN can be established (for example
in conjunction with telemetry downloads) and DSN uploads a position estimate of the spacecraft
accompanied with a precise time-tag.

We mechanize our approach with an extended Kalman filter; the filter state includes orbital po-
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sition, velocity, clock bias and clock drift. The scenario in which simulations are carried out is the
same as in Reference 9, in which a least squares solution is used to estimate a constant clock offset
(that is, clock drift is assumed to be zero). We improve on the results of Reference 9 by accounting
for clock drift and clock noise.

A similar problem and approach to this work was identified and investigated in Reference 33,
although the authors do not include any direct correlation between the orbit states errors and the
clock errors in the dynamics/error propagation.

CLOCK MODEL AND TIME PROPAGATION

Clock model

The clock model adopted here is a two states linear model, which includes the clock bias, b(t) =
tclock − t (where tclock is the uncompensated onboard time and t is the true time), and a constant
clock drift d(t). The derivative of the clock bias is modeled as the clock drift plus an additive
Gaussian noise, the clock drift is modeled as a random walk. The clock dynamics equations in
continuous time are then:

[
ḃ(t)

ḋ(t)

]
=

[
0 1
0 0

] [
b(t)
d(t)

]
+ νclock (1)

where νclock ∼ N (0,Qclock(t)), that is, it’s a Gaussian noise with zero mean and covariance
matrixQclock(t).

The onboard navigation system includes clock errors estimates. The filter equations are imple-
mented in discrete time, therefore we define the true time at the k-th step as tk, the estimated time
as t̂k = t̂(tk), and the estimated time bias and drift as b̂k = b̂(tk) and d̂k = d̂(tk), respectively.

The clock estimated state dynamics equations in discrete time become:

[
b̂k+1

d̂k+1

]
=

[
1 ∆t̂k
0 1

][
b̂k
d̂k

]
(2)

where ∆t̂k = t̂k+1 − t̂k is the estimated elapsed time between the two subsequent time steps.
This quantity can be related to the estimate of the time drift as follows:

∆t̂k = t̂k+1 − t̂k = tclock(tk+1)− b̂k+1 −
(
tclock(tk)− b̂k

)
= tclock(tk+1)− tclock(tk)− d̂k ∆t̂k (3)

After some re-arranging:

∆t̂k =
(
tclock(tk+1)− tclock(tk)

)
/(1 + d̂k

)
(4)

This expression will be used in the next section to derive the state covariance propagation equa-
tions.
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State and Covariance Propagation

Let x(t) be the state of a stochastic dynamic system (not including the clock bias and drift). The
dynamics equations in continuous and discrete form can be written as:

ẋ(t) = f(x(t), t) + ν(t) (5)

xk+1 = x(tk+1) = x(tk) +

∫ tk+1

tk

f(x(t), t) dt+ νk (6)

In our case, x(t) =
[
r(t)T ,v(t)T

]T ∈ R6 and the derivative function is f(x(t), t) = [v(t),a(t)],
where a(t) contains all gravitational and non gravitational accelerations acting on the spacecraft.
The process noise νk is Gaussian with zero mean and covarianceQposvelk , which is generated using
the linear process noise model,34 as:

Qposvelk =

[
1
4(∆t̂k)

4qI3
1
2(∆t̂k)

3qI3
1
2(∆t̂k)

3qI3 (∆t̂k)
2qI3

]
, (7)

where q = [q1 q2 q3]T represents the process noise acceleration in inertial frame coordinates.

The estimated state at time tk, x̂k = x̂(tk), is propagated forward to tk+1 with our estimate of
the time step ∆t̂k:

x̂k+1 = x̂(tk+1) = x̂k +

∫ ∆t̂k

0
f(x̂(tk + τ), t̂k + τ) dτ (8)

where ∆t̂k has been derived in Eq. (4).

The state estimation error is defined as:

δxk+1 = xk+1 − x̂k+1 = x(tk+1)− x̂(tk+1) (9)

The clock bias and drift estimation errors are similarly defined:[
δbk
δdk

]
=

[
bk
dk

]
−

[
b̂k
d̂k

]
=

[
b(tk)
d(tk)

]
−

[
b̂(tk)

d̂(tk)

]
(10)

Substituting Eq. (6) and Eq. (8) in Eq. (9), we have:

δxk+1 =

∫ ∆tk

0
f(x(tk + τ), tk + τ) dτ + νk −

∫ ∆t̂k

0
f(x̂(tk + τ), t̂k + τ) dτ

=

∫ ∆tk

0

(
f(x(tk + τ), tk + τ)− f(x̂(tk + τ), t̂k + τ)

)
dτ + νk −

∫ ∆t̂k

∆tk

f(x̂(tk + τ), t̂k + τ) dτ

=

∫ ∆tk

0

(
f(x(tk + τ), tk + τ)− f(x̂(tk + τ), t̂k + τ)

)
dτ + νk +

∫ ∆tk

∆t̂k

f(x̂(tk + τ), t̂k + τ) dτ

≈ F (tk+1, tk) δxk −
∂f(x̂k, t)

∂t

∣∣∣∣
t̂k

(tk − t̂k) ∆t̂k + νk + f(x̂k+1, t̂k + ∆t̂k)
(
∆tk −∆t̂k

)
(11)
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where F (tk+1, tk) is the position-velocity state transition matrix from tk to tk+1 and second and
higher orders terms are neglected. The term (tk − t̂k) (i.e. the error on estimated time) in Eq. (11)
is equal to the error on the clock offset estimate, that is, (tk − t̂k) = δbk.

The true time step ∆tk can be expressed as a function of the drift estimation error δdk, by starting
from Eq. (4) and using Eq. (2), as follows:

∆t̂k =
(
tclock(tk+1)− tclock(tk)

)
/
(
1 + d̂k

)
=
(
tk+1 + bk+1 − tk − bk

)
/
(
1 + d̂k

)
=
(
∆tk + dk∆tk

)
/
(
1 + d̂k

)
= ∆tk

(
1 + dk

)
/(1 + d̂k

)
(12)

hence

∆tk = ∆t̂k
1 + d̂k
1 + dk

≈ ∆t̂k −
∆t̂k

1 + d̂k
δdk (13)

The term
(
∆tk −∆t̂k

)
in Eq. (11) can then be written as

(
− ∆t̂k

1+d̂k
δdk
)
.

Therefore, it’s possible to write the position-velocity estimation error propagation equation as:

δxk+1 = F (tk+1, tk) δxk +

[
∂f(x̂k, t)

∂t

∣∣∣∣
t̂k

∆t̂k

]
δbk +

[
−f(x̂k+1, t̂k+1)

∆t̂k

1 + d̂k

]
δdk + νk

(14)

The clock bias error is:

δbk+1 = bk+1 − b̂k+1 = bk + dk∆tk − b̂k − d̂k∆t̂k

≈ δbk + (δdk + d̂k)(∆t̂k −
∆t̂k

1 + d̂k
δdk)− d̂k∆t̂k

≈ δbk + ∆t̂kδdk −
∆t̂k

1 + d̂k
d̂k δdk

= δbk +
∆t̂k

1 + d̂k
δdk (15)

where, in the step from the second to the third line, the term d̂k∆t̂k cancels out, and the second
order term ∆t̂k

1+d̂k
δd2
k is neglected.

Finally, since the clock drift is assumed with constant dynamics affected by process noise, its
estimation error propagates as:

δdk+1 = δdk (16)

The estimation error propagation equations are then written in matrix form as below:

δxk+1

δbk+1

δdk+1

 =


F (tk+1, tk)

∂f(x̂k,t)
∂t

∣∣∣∣
t̂k

∆t̂k −f(x̂k+1, t̂k+1) ∆t̂k
1+d̂k

0 1 ∆t̂k
1+d̂k

0 0 1


δxkδbk
δdk

+

 νk
νclock,b,k
νclock,d,k

 (17)
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The above equation is in the form:

ek+1 = Φkek + νk (18)

Therefore, the predicted estimation error covariance at time (k + 1), P̄k+1, is obtained as:

P̄k+1 = ΦkPkΦ
T
k +Qk (19)

Where Qk is the full (eight by eight) state process noise covariance, which comprises the six by
six position/velocity block Qposvelk , defined in Eq. (7), and the two by two clock process noise
blockQclockk , which is defined as:27, 28

Qclock =

[
q11 q12

q21 q22

]
(20)

q11 =
h0

2
∆t̂k + 2h−1(∆t̂k)

2 +
2

3
π2h−2(∆t̂k)

3 (21)

q12 = q21 = h−1∆t̂k + π2h−2(∆t̂k)
2 (22)

q22 =
h0

2∆t̂k
+ 4h−1 +

8

3
π2h−2∆t̂k (23)

In this work, the clock Allan parameters are set to h0 = 2e − 19, h−1 = 7e − 21 and h−2 =
2e− 20.28

SIMULATION SCENARIO

In our simulation scenario, the spacecraft orbits the Moon and performs optical navigation with
respect to the Moon surface through an onboard camera. The measurements coming from the optical
system are the bearing angles of the craters in the camera field of view, and the timestamps of
these measurements are affected by the non-constant onboard clock error described in the previous
Section.

Two types of external measurements are considered. The first one is a position measurement
provided from ground, obtained by processing batches of DSN range and range rate measurements
via two-way ranging; the second consists of DSN one-way ranging measurements.

Satellite-to-station visibility is modeled by taking into account the relative position of Earth,
Moon, and the spacecraft. No atmospheric delays are modeled in the DSN measurements. The
spacecraft’s attitude is assumed to be such that the camera is always pointing downward to the
Moon surface.

The dynamics model includes a spherical harmonic model for the Moon gravity, plus Earth and
Sun as third body perturbations. The filter propagates the dynamics in the Moon Centered Inertial
(MCI) frame, the onboard state is 8-dimensional (shown in Table 1).

Craters measurement update

The first type of measurement available to the spacecraft, time-tagged by the onboard clock, is
given by bearing angles α and β that represent the location of crater centroids with respect to the
camera.
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Table 1: Filter estimated states

State # of Elements Description

[r]MCI 3 Spacecraft position in MCI frame
[v]MCI 3 Spacecraft velocity in MCI frame

b 1 Onboard clock offset
d 1 Onboard clock drift

Every time a new image is acquired, a certain number of craters are detected through a Mask
R-CNN detector, and are then matched to craters of an onboard catalog. The reader is referred to
Reference 9 for further details about the detection and matching algorithms.

In order to compute the expected measurement, which is needed to obtain the residual in the
classic Kalman filter formulation, the bearing angles are calculated using the vector from the camera
to the crater centroid at estimated time, rCAMcr (t̂k). This vector is first computed in the MCI frame,
and then transformed in camera frame:

[
r̂CAMcr (t̂k)

]
CAM

= [x̂ ŷ ẑ ] (t̂k) = T̂CAMMCI (t̂k)
(
T̂MCI
MCMF (t̂k)

[
rcr(t̂k)

]
MCMF

−
[
r̂(t̂k)

]
MCI

)
(24)

T̂CAMMCI (t̂k) = TCAMB T̂BMCI(t̂k) (25)

where
[
rcr(t̂k)

]
MCI

and
[
r̂(t̂k)

]
MCI

are the crater centroid and spacecraft center of mass posi-
tions in the Moon Centered Inertial (MCI) frame at estimated time, respectively, T̂CAMMCI (t̂k) is the
rotation matrix from the MCI frame to the camera frame, T̂MCI

MCMF (t̂k) is the transformation matrix
from the Moon Centered Moon Fixed (MCMF) frame to the MCI frame, and the subscript B rep-
resents the body frame. The spacecraft body frame is assumed aligned with the North-East-Down
frame.

The expected measurement can then be computed as:

ŷk = ŷ(t̂k) =

[
α̂k
β̂k

]
+wk =

[
atan(x̂/ẑ)
atan(ŷ/ẑ)

]
+wk (26)

where the measurement noisewk is assumed gaussian with zero mean and covariance matrixRk.

The partials of measurement equations with respect to the estimated position and clock bias are
reported below.

∂yk
∂r̂

=
∂yk

∂r̂CAMcr

∂r̂CAMcr

∂r̂
(27)

∂yk

∂b̂k
=

∂α̂k

∂b̂k
∂β̂k
∂b̂k

 =
∂yk

∂r̂CAMcr

∂ r̂CAMcr

∂b̂k
(28)
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with:

∂yk
∂r̂CAMcr

=

[
ẑ/(x̂2 + ẑ2) 0 −x̂/(x̂2 + ẑ2)

0 ẑ/(ŷ2 + ẑ2) −ŷ/(ŷ2 + ẑ2)

]
(29)

∂r̂CAMcr

∂r̂
= −TCAMB T̂BMCI(t̂k) (30)

∂rCAMcr

∂b̂k
= TCAMB T̂BMCI(t̂k)

∂T̂MCI
MCMF (t̂k)

∂t̂k

∂δtk
∂δbk

[
rcr(t̂k)

]
MCMF

= TCAMB T̂BMCI(t̂k)
∂T̂MCI

MCMF (t̂k)

∂t̂k

[
rcr(t̂k)

]
MCMF

(31)

The term ∂T̂MCI
MCMF (t̂k)

∂t̂k
is the derivative, with respect to the estimated time, of the MCMF to MCI

rotation matrix, and ∂δtk
∂δbk

= 1, since δtk = δbk as described previously. Essentially, the clock error
affects the computation of this transformation matrix because of its dependence on the estimated
time.

The partials with respect to the spacecraft velocity and the clock drift are zero.

The measurement partial matrixHk is then:

Hk =

ẑ/(x̂2 + ẑ2) 0 −x̂/(x̂2 + ẑ2) 0 0 0 ∂α̂k

∂b̂k
0

0 ẑ/(ŷ2 + ẑ2) −ŷ/(ŷ2 + ẑ2) 0 0 0 ∂β̂k
∂b̂k

0

 (32)

The Kalman gain and the updated full state are then computed as:

Kk = P̄kH
T
k

(
HkP̄HT

k + Rk

)−1
(33)

x̂k = x̄k +Kk(yk −Hkx̄k) (34)

where x̄k and P̄ are the predicted state and covariance at time k, obtained by propagating the
estimated state and covariance from t̂k−1 to t̂k through Eq. (17) and Eq. (19), respectively.

One-way ranging

When performing DSN one-way ranging, the ground station broadcasts a signal according to its
precise ground clock while the spacecraft is subject to onboard clock errors. Hence the spacecraft
receives a pseudorange measurement affected by the clock bias b. The range measurement ρj(tj) is
therefore modeled as follows:

ρj(tj) = || [r]ECI − [rstation]ECI ||+ b = || [r]MCI + [rEM ]ECI − [rstation]ECI ||+ b (35)

where [rstation]ECI is the DSN station position in ECI, [rEM ]ECI is the Earth-Moon position
vector in ECI, and b is the onboard clock offset.

The Kalman gain and state update equations are:
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Kk = P̄kH
T
ρ

(
HρP̄kH

T
ρ +Rj

)−1
(36)

x̂k = x̄k +Kk(ρj −Hρx̂j) (37)

whereHρ ∈ R1×8 is the matrix of partials of spacecraft-to-station range with respect to the filter
state.
Hρ =

∂ρj
∂x

=
∂ρj

∂
[

[r]TMCI [v]TMCI b d
]T =

[
[[r]MCI+[rEM ]ECI−[rstation]ECI ]

T

||[r]MCI+[rEM ]ECI−[rstation]ECI ||
O1×3 1 0

]
(38)

Ground position update

A possibility arising from explicitly accounting for the correlations between timing and localiza-
tion errors is to estimate the clock errors from position measurements time tagged with true time
rather than onboard time. This situation can occur, for example, when DSN tracks a satellite, per-
forms orbit determination on it, and uploads the result which is then used by the satellite as an
external measurement. Let pj be the position measurement provided from the ground, time-tagged
with the precisely kept ground time tj .

The proposed approach starts by propagating the state and state transition matrix from the current
estimated time t̂k to time tj . The equations used will be slightly different from the ones derived
before, because tj does not contain the onboard clock offset. Let ∆tj and ∆t̂j be the true and
estimated elapsed times from current time to the ground update time:

∆tj = tj − tk (39)

∆t̂j = tj − t̂k = tj − tk − δbk = ∆tj − δbk (40)

The difference (∆tj −∆t̂j) is then given by the error on estimated clock bias δbk.

Position, velocity, and clock states are propagated as:

x̂j = x̂k +

∫ ∆t̂j

0
f(x̂(tk + τ), t̂k + τ) dτ (41)[

b̂j
d̂j

]
=

[
1 ∆t̂j
0 1

][
b̂k
d̂k

]
(42)

To derive the state transition matrix from t̂k to tj , we start again from the state estimation error:

δxj = xj − x̂j =

∫ ∆tj

0
f(x(tk + τ), tk + τ) dτ + νk −

∫ ∆t̂j

0
f(x̂(tk + τ), t̂k + τ) dτ

=

∫ ∆tj

0

(
f(x(tk + τ), tk + τ)− f(x̂(tk + τ), t̂k + τ)

)
dτ + νk −

∫ ∆t̂j

∆tj

f(x̂(tk + τ), t̂k + τ) dτ

≈ F (tj , tk) δxk +
∂f(x̂k, t)

∂t

∣∣∣∣
t̂k

δbk ∆t̂j + νk + f(x̂j , t̂j)
(
∆tj −∆t̂j

)
= F (tj , tk) δxk +

[
∂f(x̂k, t)

∂t

∣∣∣∣
t̂k

∆t̂j + f(x̂j , t̂j)

]
δbk + νk (43)
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The clock bias estimation error evolves as:

δbj = bj − b̂j = bk + dk∆tj − b̂k − d̂k∆t̂j
= δbk + (d̂k + δdk)(∆t̂j + δbk)− d̂k∆t̂j
= δbk + d̂k∆t̂j + ∆t̂jδdk + d̂kδbk + δdkδbk − d̂k∆t̂j
≈ δbk + d̂k δbk + ∆t̂jδdk = (1 + d̂k)δbk + ∆t̂jδdk (44)

where the second order term δdkδbk is neglected.

The drift estimation error evolves as:

δdj = δdk (45)

The estimation error propagation equations can be written in matrix form as:

δxjδbj
δdj

 =


F (tj , tk)

∂f(x̂k,t)
∂t

∣∣∣∣
t̂k

∆t̂j + f(x̂j , t̂j) 0

0 1 + d̂k ∆t̂j
0 0 1


δxkδbk
δdk

+

νk0
0

 (46)

which is in the form:

ej = Φ(tj , tk)ek + νk (47)

Therefore, when a ground measurement is received, Kalman gain computations and state update
are performed as follows:

Kk = P̄k
(
HgΦ(tj , tk)

)T((
HgΦ(tj , tk)

)
P̄k
(
HgΦ(tj , tk)

)T
+Rposj

)−1
(48)

x̂k = x̄k +Kk(pj −Hgx̄j) (49)

whereHg ∈ R3×8 is the matrix of partials of ground measurement equation,

Hg =
∂pj
∂x

=
∂ [r]MCI

∂
[

[r]TMCI [v]TMCI b d
]T =

[
I3 O3×5

]
(50)

andRposj is the ground position measurement noise covariance matrix.

SIMULATION RESULTS

This section presents simulations of a spacecraft in a 100 km circular and equatorial orbit around
the Moon. The onboard camera takes an image of the Moon surface every 5 seconds. The data
sources to generate images in our simulations is the LROC Global Morphologic Maps35 and the
Robbins lunar crater database.36 Each image is given as an input to the Mask R-CNN detector, and
is assigned a confidence value to remove false detections (detected craters with a confidence value
lower than the threshold are not passed to the filter). Each detected crater is fitted to an ellipse
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Table 2: Simulation parameters

Symbol Description Value

[r]MCI (t0) True initial spacecraft position in MCI frame [km] [1837.4 0.0 0.0]
T

[v]MCI (t0) True initial spacecraft velocity in MCI frame [km/s] [ 0.0 1.6335 0.0 ]
T

b(t0) True initial onboard clock offset [s] 0.1
d(t) True onboard clock drift (constant) [ND] 1e-4
N Image pixel length [pixels] 909
f Camera focal length [pixels] 909
σα Noise standard deviation on bearing angle α [pixels] 4.3921
σβ Noise standard deviation on bearing angle β [pixels] 4.3921
σαβ Noise correlation between bearing angles α and β 0.0
σρ DSN range noise standard deviation [m] 43.4
σρ̇ DSN range rate noise standard deviation [m/s] 1
q Process noise standard deviation [m/s2] [1e− 6 1e− 6 1e− 6]

T

whose center gives the crater centroid pixel coordinates expressed in the camera frame, xc and yc.
These coordinates are then used to match the detected craters to craters in the surface feature catalog
available to the spacecraft (the Robbins lunar crater catalog). From this database, a local catalog
is created at each time step by projecting the spacecraft camera’s field of view pointing downward
towards the surface according to the spacecraft’s body frame (coinciding with the North-East-Down
frame). After a local catalog is created, the Munkres or Hungarian Matching algorithm37,38 is used
to identify craters based on entries in the crater catalog.

The bearing angles α and β of the matched craters’ centroids are then computed as:

α = arctan

(
xc − 0.5N

f

)
(51)

β = arctan

(
yc − 0.5N

f

)
, (52)

where N is the image pixel length and f is the camera focal length. Further details about the
craters detection and matching algorithms can be found in Reference 9.

To simulate clock errors, images’ timestamps are perturbed with a clock offset which increases
with a constant drift.

Some of the parameters used in the simulations are reported in Table 2.

Neglecting the clock offset

Figure 1.a-d shows the estimation errors (red lines) with the 3σ error bounds (blue lines) over
a 12 hours simulation, and the innovation residuals are shown in Figure 1.e. This simulation has
been performed without including any of the terms related to the clock offset in the filter equa-
tions and assuming the spacecraft is processing craters measurements only, that is, no ground-based
measurements are provided.

It is important noticing that the values for the clock bias and drift used in these simulations are
those of the low-end oscillator from Ref.28 This compensated crystal is not meant to keep un-aided
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spacecraft time, bur rather to be used in GPS receivers processing at least four pseudorange mea-
surements consistently. While most spacecraft will probably select a more accurate onboard clock,
the point to be taken is that in subsequent sections we are able to accurately keep an onboard time
with this inexpensive oscillator and without GPS nor DSN tracking. Additionally, the chosen clock
values allow to show the effectiveness of the proposed method within one-day simulations. More
accurate clocks without ground steering would have the same trends, albeit after longer propagation
times.

The position and velocity errors start diverging from the 3σ uncertainty bounds after about two
hours because the filter is not taking into account that the measurements’ timestamps are affected by
the clock offset, whose estimation error also increases with time. The position and velocity errors
are computed as the difference between the estimated state and the true state both evaluated at time
tk.

δxk = xk − x̂k = x(tk)− x̂(tk) (53)

Let t̂` be the estimated time whose numerical value coincides with the true time tk, i.e. t̂` = tk.
Clearly t` = tk only when the clock bias is zero. Filter divergence would slow down comparing
the estimated state at t` with the true states at tk. This asynchronous definition of localization error
is not useful for an autonomous system that aims at making onboard decisions and it is therefore
most concerned with the difference between the current true state and the current estimated state. If
the onboard navigation state was downloaded to the ground to make decisions, on the other hand,
the asynchronous error definition x(tk) − x̂(t`) would be appropriate because the ground would
upload a command together with an execution time tag and a clock correction term. Hence remotely
operated deep-space spacecraft typically do not necessitate the proposed time correlation terms.

Figure 1.e. shows the measurement residuals. Clearly, the filter propagates the spacecraft dy-
namics between each measurement and the following one for an incorrect amount of time: the error
on clock drift estimate causes the clock offset estimation error to grow in the order of seconds after
two hours. This causes the measurement update to fail, hence the innovations of the α angle start
diverging.

(a) Position estimation error. (b) Velocity estimation error.
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(c) Clock bias estimation error. (d) Clock drift estimation error.

(e) Innovation residuals.

Figure 1: Simulation results without accounting for clock offset.

Craters only

Figure 2 shows 100 Monte Carlo runs when the new terms in the covariance propagation are
included, and again processing craters measurements only. The duration of the simulation is of one
day.

We note that even using only optical measurements time-tagged with the onboard clock, the filter
is able to estimate the clock drift. This is due to the clock error terms included in the covariance
propagation and in the crater measurement update equations. The filter is able to quickly reduce
the error on clock drift (bottom right subfigure), preventing the error on clock offset to diverge too
rapidly, as opposed to the previously shown scenario.

13



(a) Position estimation error. (b) Velocity estimation error.

(c) Clock bias estimation error. (d) Clock drift estimation error.

Figure 2: Estimation errors with craters measurements only.

Craters and one-way ranging

In this scenario, the filter processes craters measurements and one-way range measurements from
DSN, using either all three stations (Figure 3), or only one station throughout the whole simulation
(Figures 4, 5 and - 6 for Goldstone, Madrid and Canberra stations, respectively). Results show
convergence of all state components with the uncertainty/error in the clock offset growing only with
long periods without range measurements. Even in those phases the error on the onboard clock drift
stays to low values so the error on clock bias does not grow too fast.
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(a) Position estimation error. (b) Velocity estimation error.

(c) Clock bias estimation error. (d) Clock drift estimation error.

Figure 3: Estimation errors with one-way ranging measurements.

(a) Position estimation error. (b) Velocity estimation error.
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(c) Clock bias estimation error. (d) Clock drift estimation error.

Figure 4: Estimation errors with one-way ranging measurements from Goldstone station only.

(a) Position estimation error. (b) Velocity estimation error.

(c) Clock bias estimation error. (d) Clock drift estimation error.

Figure 5: Estimation errors with one-way ranging measurements from Madrid station only.
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(a) Position estimation error. (b) Velocity estimation error.

(c) Clock bias estimation error. (d) Clock drift estimation error.

Figure 6: Estimation errors with one-way ranging measurements from Canberra station only.

Craters and ground position updates

Our formulation allows for onboard clock estimation from an externally provided measurement
accurately time-tagged with an external reference clock. As a motivating example, we employ two-
way tracking from DSN, for example in conjunction with spacecraft data downloads.

Figure 7 shows a Monte Carlo simulation with a position ground update performed every two
hours. Results show the filter performance is similar to the one-way ranging case shown in the
previous section.

Table 3 shows the root mean square errors of position components and clock states for one Monte
Carlo trial from each simulation case.

The performance of the one-way ranging and the two-way position update are very close to each
other.
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(a) Position estimation error. (b) Velocity estimation error.

(c) Clock bias estimation error. (d) Clock drift estimation error.

Figure 7: Estimation errors with craters measurements and position ground updates.

Table 3: RMS errors of one Monte Carlo trial for each simulation case

Case RMSx [km] RMSy [km] RMSz [km] RMSb [s] RMSd [/]

Neglecting clock offset 2.322 2.478 0.01 7.05 2.27e-4
Craters only 0.011 0.012 0.004 0.26 1.04e-5

Craters + DSN stations (all) 0.008 0.01 0.009 0.024 9.09e-6
Craters + DSN stations (Goldstone only) 0.008 0.01 0.009 0.024 9.07e-6

Craters + DSN stations (Madrid only) 0.008 0.01 0.009 0.048 1.00e-5
Craters + DSN stations (Canberra only) 0.008 0.01 0.009 0.078 9.95e-6

Craters + position from ground 0.01 0.015 0.005 0.039 1.28e-5

CONCLUSIONS

This work proposes a new approach to onboard position, navigation and timing in lunar orbit.
Localization is performed via Moon crater relative navigation but no GPS measurements nor time
correction are available to the spacecraft. Therefore, an alternative formulation to deal with dis-
crepancies between the onboard time and true time is developed. The solution proposed consists
of exploiting an Extended Kalman Filter algorithm with the addition of correlation terms between
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timing errors and state propagation errors. Results show that the inclusion of these terms ensure
convergence in the estimation errors of all filter state’s components in the scenario of Moon optical
navigation without external time measurements and in two different configurations. The first one
leverages one-way ranging from DSN to aid the onboard optical navigation, and the second one
consists of a two-ways position update from DSN.
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