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I. Introduction
The future of planetary exploration relies on autonomous rovers which can navigate themselves in unknown

environments [1]. The problem of Simultaneous Localization and Mapping (SLAM) for robotic systems has been

extensively studied for spatial exploration [2, 3, 4]. The idea of using a robotic agent that combines the problem of

building a map of a new space along with locating the agent in the map being built is ideal for a rover exploring a planet.

The robot performing the exploration task is usually equipped with some form of sensor, often visual, that helps the

robot observe its surroundings as well as some form of odometry that helps the robot measure its own motion. Map

building is often done in the form of features extracted from sensor measurements of the surroundings, stored along

with their locations in a known frame of reference. Knowledge of the position of the rover at the time of observation is

required to place new features on the map or refine their estimated position. The interlink between robot and feature

positions leads to correlations between their estimates; having both the position of the rover and features in the filter’s

state accounts for these correlations and helps reduce errors in both. Planning of the rover’s path by the motion controller

requires the rovers current location relative to the environment. The SLAM objective is to provide the motion controller

with the position of the rover and the map of features as needed.

The nonlinear SLAM problem is usually formulated as either a recursive filter or via sparse optimization. Keyframe-

based Bundle Adjustment (BA) techniques [5, 6] aggregate measurements at different times and use a numerical

optimizer to compute the SLAM solution. Alternatively, recursive implementations only process the latest measurement

and are typically based on either the Extended Kalman Filter (EKF) or the particle filter. Particle filters (unlike the

EKF) are nonlinear estimators, and their implementations for SLAM applications, such as FAST-SLAM [7], have their

own strengths and limitations in terms of complexity and consistency. In this paper we focus on the EKF-SLAM

approach and represent the state and the uncertainty with an estimated mean and a covariance matrix. EKF-SLAM

employs linearization to apply the Kalman filter algorithm to the nonlinear propagation and measurement functions.

Linearization can affect the consistency of the filter as situations arise when the linear approximation of the function

is not sufficiently accurate. This is particularly problematic because the SLAM system is inherently nonlinear and

unobservable, a combination known to cause divergence in the EKF. This phenomenon led to extensive work to study

the consistency of the EKF-SLAM showing that the algorithm is eventually bound to be inconsistent [8, 9, 10, 11].
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Divergence of the SLAM algorithm can be detrimental to any exploration task since it can lead to loss of localization

feedback for controlling the rover as well as map feature locations becoming inconsistent since they are interlinked with

the position.

The SLAM linearization approximation introduces apparent observability to the unobservable subspace [12]. As a

result, the covariance estimates of the EKF undergo reduction in directions of the state-space where no information is

actually available, making the filter more confident than it should, thus creating inconsistency and even divergence. A

classic example to demonstrate the divergence problems of EKF-SLAM is given in Ref .[11], where a stationary robot

with no process noise, observing a single stationary feature, eventually diverges. A relative measurement between the

robot and the features (for example a LIDAR returning range and bearing angles) is the only sensor available, and hence

the absolute positions in the global frame are not observable, and neither is the global heading angle.

A source of inconsistency is given by the linearization of the rover’s heading error which affects the rotation

transformation of the odometry; small errors in heading can lead to large errors in position. For relative navigation

applications however, we do not need to formulate the SLAM problem in the world-centric form, leading to the

development of robocentric methods. In the robocentric approach [9, 13, 14], the global position of the robot is

kept as a state in the EKF together with position of the features relative to it. The robocentric features positions are

fully observable and the measurement model can be linearized more accurately providing much better consistency

characteristics for the EKF algorithm. Ref .[13], in order to reduce the complexity of the propagation step, does not

propagate the change in robocentric position of the features due to the robot’s motion; rather, it appends all odometry

values starting from the latest measurement update step as components of the state vector. When a new measurement is

available from the LIDAR, the global robot position is updated followed by the features positions, while the odometry

states are discarded. The robocentric mapping idea presented in Ref .[13] has much better consistency properties as

compared to the traditional EKF because the odometry states have small uncertainty as they get reset often, but some of

the underlying observability issues are still present. Ref .[14] modifies this approach for visual-inertial odometry and

reduces the computational complexity by not mapping the features and thus reducing the size of the state-space, an

approach similar to Ref .[15] but including the robocentric idea. The robocentric approach is readily applicable and an

excellent choice of SLAM for relative navigation problems where the objective is to navigate a robot to one or more of

the features being observed.

In this work, we propose two key modifications to the robocentric mapping idea. First, the odometry measurements

are used to propagate both the robot’s position and the robocentric features’ positions, with all relevant correlation terms

accounted for. Second, we include second order terms of the Taylor series expansion of the heading error during the

propagation step to greatly improving the consistency of the filter over time. The only minor disadvantage to this method

is the increased computational complexity in roto-translating the map features positions during the propagation step

whereas they are stationary in the classic EKF-SLAM formulation. In the counter example proposed by Julier and
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Uhlmann [11], with a stationary robot and no process noise, our proposed algorithm never diverges, but neither does the

original robocentric approach [13]. However, when we make a slight modification to the counter example in Ref .[11]

and add process noise to the propagation step, the algorithm in Ref .[13] diverges, while the method proposed in this

paper does not. Moreover, the proposed algorithm is more consistent than existing methods in the presented simulated

scenarios involving a moving robot observing features using a Lidar. The effectiveness of the method is tested in a 2D

simulation as well as in experiments on a ground rover and compared against Ref .[13].

The contributions of this paper are: analysis of the observability of the states of the EKF in the global and robocentric

frame for a better understanding of how the transformation impacts the filter, and introduction of the above-mentioned

modifications to the existing robocentric SLAM algorithm to improve its consistency and robustness. Throughout this

paper, predicted values are represented by a bar on the variable 𝑎̄ while updated estimates are represented by a hat 𝑎̂.

II. EKF-SLAM Algorithm
Consider a rover navigating in a 2D environment, equipped with odometry and a LIDAR. The odometry can be

provided using any available sensor like processing the measurements of an IMU or wheel encoders. The path taken by

the rover is assumed prescribed and the localization and mapping module does not receive feedback inputs from the

motion controller. We assume a feature detection technique identifies and extracts points of interest in the planetary

environment from the LIDAR measurement data. The data used by EKF-SLAM are the range and angle measurements

from the rover to these features. The odometer is providing measurements of linear translational and rotational velocity,

which can be integrated over time to obtain the distance moved and change in heading of the rover since the last odometer

reading. We also assume Gaussian random noise with known covariance matrices 𝑄 and 𝑅 corrupting the odometry and

LIDAR measurements respectively.

A. Classical EKF-SLAM

Standard SLAM applications use the position of the rover 𝒓𝐺𝑟 =
[
𝑥𝐺𝑟 , 𝑦

𝐺
𝑟 , 𝜃

𝑅
𝐺

]𝑇 and the landmark features

𝒓𝐺
𝑓𝑖
= [𝑥𝐺

𝑓𝑖
, 𝑦𝐺

𝑓𝑖
]𝑇 , where 𝑖 = 1, 2, .... uniquely identify the features. The superscript 𝐺 indicates the quantity is expressed

in a fixed global frame of reference {𝐺} and the quantity 𝜃𝑅
𝐺

is the angle from the global to a robot-fixed robot-centered

frame {𝑅}. Since the center and orientation of the global reference frame is unobservable, it is typically chosen to

be the initial location of the robot setting the initial uncertainty to zero, which was shown to produce better filter

consistency than choosing any other fixed global frame with non-zero initial uncertainty in the robot position [13]. The

state estimates at any time 𝑡𝑘 are given by

𝒙̂𝐺𝑘 =

[
𝒓𝐺𝑟 (𝑘)𝑇 , 𝒓𝐺𝑓1 (𝑘)

𝑇 , 𝒓𝐺𝑓2 (𝑘)
𝑇 ...

]𝑇
(1)
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The propagation step for the classical EKF-SLAM algorithm adds the odometry 𝒖𝑅
𝑘
= [𝛿𝑥𝑅

𝑘
, 𝛿𝑦𝑅

𝑘
, 𝛿𝜃𝑅

𝑘
]𝑇 to the

robot position states. The odometry measurement is obtained in a robocentric frame of reference {𝑅}.



𝑥𝐺𝑟 (𝑘 + 1)

𝑦̄𝐺𝑟 (𝑘 + 1)

𝜃𝐺 (𝑘 + 1)


=



𝑥𝐺𝑟 (𝑘)

𝑦̂𝐺𝑟 (𝑘)

𝜃𝐺 (𝑘)


+


𝑇
(
𝜃𝑅
𝐺
(𝑘)

)𝑇 0

0

0 0 1


𝒖𝑅
𝑘 (2)

where

𝑇
(
𝛼
)
=


cos𝛼 sin𝛼

− sin𝛼 cos𝛼


so that 𝑇

(
𝜃𝑅
𝐺
(𝑘)

)
is the direction cosine matrix (DCM) to change coordinates from the global frame to the robocentric

frame. The features’ positions remain the same across the time propagation phase of the filter.

𝑃𝐺 is the covariance of the state 𝒙𝐺
𝑘

given by:

𝑃𝐺 =


𝑃𝐺
𝑟𝑟 𝑃𝐺

𝑟 𝑓

𝑃𝐺
𝑓 𝑟

𝑃𝐺
𝑓 𝑓

 (3)

where we have divided the state covariance into the cross covariance of the robot position and feature positions and their

auto-covariances. The propagation of the covariance evaluated at the predicted state at time 𝑡𝑘+1 is given by

𝑃̄𝐺
𝑟𝑟 (𝑘 + 1) =

[
𝜕𝑟𝐺𝑟 (𝑘 + 1)
𝜕𝑟𝐺𝑟 (𝑘)

]𝑇
𝑃̂𝐺
𝑟𝑟 (𝑘)

[
𝜕𝑟𝐺𝑟 (𝑘 + 1)
𝜕𝑟𝐺𝑟 (𝑘)

]
+
[
𝜕𝑟𝐺𝑟 (𝑘 + 1)

𝜕𝑢

]𝑇
𝑄

[
𝜕𝑟𝐺𝑟 (𝑘 + 1)

𝜕𝑢

]
(4)

𝑃̄𝐺
𝑟 𝑓 (𝑘 + 1) =

[
𝜕𝑟𝐺𝑟 (𝑘 + 1)
𝜕𝑟𝐺𝑟 (𝑘)

]𝑇
𝑃̂𝐺
𝑟 𝑓 (𝑘) (5)

𝑃̄𝐺
𝑓 𝑓 (𝑘 + 1) = 𝑃̂𝐺

𝑓 𝑓 (𝑘) (6)

The noisy measurement from the LIDAR at true robot position [𝑥𝐺𝑟 , 𝑦𝐺𝑟 , 𝜃𝑅𝐺]
𝑇 to the 𝑛-th landmark feature at true

global position [𝑥𝐺
𝑓 ,𝑛
, 𝑦𝐺

𝑓 ,𝑛
]𝑇 in the global frame is given by

𝒛𝑛 = 𝒛𝑛 +


𝑤𝑟

𝑤𝜙

 (7)
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where [𝑤𝑟 , 𝑤𝜙] are the noise corrupting the range and bearing respectively, with covariance matrix 𝑅, and

𝑧𝑛 =


𝑟𝑛

𝜙𝑛

 =


√︃
(𝑥𝐺

𝑓 ,𝑛
− 𝑥𝐺𝑟 )2 + (𝑦𝐺

𝑓 ,𝑛
− 𝑦𝐺𝑟 )2

tan−1 ((𝑦𝐺
𝑓 ,𝑛

− 𝑦𝐺𝑟 )/(𝑥𝐺𝑓 ,𝑛 − 𝑥
𝐺
𝑟 )

)
− 𝜃𝑅

𝐺

 (8)

The filter’s predicted measurement is given by

𝒛𝑛 =


𝑟𝑛

𝜙𝑛

 =


√︃
(𝑥𝐺

𝑓 ,𝑛
− 𝑥𝐺𝑟 )2 + ( 𝑦̄𝐺

𝑓 ,𝑛
− 𝑦̄𝐺𝑟 )2

tan−1 (( 𝑦̄𝐺
𝑓 ,𝑛

− 𝑦̄𝐺𝑟 )/(𝑥𝐺𝑓 ,𝑛 − 𝑥
𝐺
𝑟 )

)
− 𝜃𝑅

𝐺

 (9)

The Jacobian of the measurement equation is

𝐻𝐺
𝑛 =

[
𝐻𝐺
𝑟,𝑛 𝐻𝐺

𝑓1 ,𝑛
𝐻𝐺

𝑓2 ,𝑛
. . .

]
(10)

where

𝐻𝐺
𝑟,𝑛 =

𝜕𝒛𝑛

𝜕𝒓𝐺𝑟
(11)

and

𝐻𝐺
𝑓 𝑗 ,𝑛

=


𝜕𝒛𝑛
𝜕𝒓𝐺

𝑓 𝑗

if 𝑛 = 𝑗

0 if 𝑛 ≠ 𝑗

(12)

The measurement residual is given by

𝒚𝑛 = 𝒛𝑛 − 𝒛𝑛 (13)

and the innovation covariance matrix is

𝑆 = 𝐻𝐺
𝑛 𝑃̄

𝐺 (𝐻𝐺
𝑛 )𝑇 + 𝑅 (14)

The Kalman gain is given by

𝐾 = 𝑃̄𝐺 (𝐻𝐺
𝑛 )𝑇𝑆−1 (15)

The updated state and covariance matrix are

𝒙̂ = 𝒙̄ + 𝐾 𝒚𝑛 (16)

𝑃̂ = 𝑃̄ − 𝐾𝐻𝑛𝑃̄ (17)
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B. Robocentric EKF-SLAM

To handle the well-documented inconsistencies in the above described classic EKF-SLAM, Ref .[13] proposes the

use of a robocentric frame of reference in which the features locations are stored with respect to a moving frame attached

to the robot. Often times the relative position of the rover with respect to specific features and locations is all that is

needed to accomplish mission objectives; for example obstacle avoidance, rendezvous with another rover, searching for

a specific location on the planet, or close proximity operations for in-orbit satellite repair. In those scenarios the global

position of neither the robot nor features is of importance. Thus, in these applications, robocentric SLAM algorithms

provide a more stable method to calculate the needed information. The state vector of the robocentric EKF includes the

position of the robot in the global frame {𝐺} (which can also be removed when purely relative information is needed)

𝒓𝐺𝑟 =
[
𝑥𝐺𝑟 , 𝑦

𝐺
𝑟 , 𝜃

𝑅
𝐺

]𝑇 , and the positions of the features 𝒓𝑅
𝑓𝑖
= [𝑥𝑅

𝑓𝑖 ,
𝑦𝑅
𝑓 ,𝑖
]𝑇 expressed in the robocentric frame {𝑅}. The

state estimate at any time 𝑡𝑘 is given by

𝒙̂𝑅𝑘 =

[
𝒓𝐺𝑟 (𝑘)𝑇 , 𝒓𝑅𝑓1 (𝑘)

𝑇 , 𝒓𝑅𝑓2 (𝑘)
𝑇 ...

]𝑇
(18)

The global position of the features can be retrieved as needed.

In Ref .[13] the odometry data are added to the state vector during the time propagation step, increasing the state

dimension. The measurement update step uses this augmented state to correct for the global position of the robot, the

robot-relative positions of the features, and the odometry measurement added to the state. A third filter step is then

introduced, the composition step, which transforms the feature positions to the current robocentric frame using the

updated odometry data and then discards the odometry components of the state estimate.

In the classic EKF-SLAM approach, the global positions of the robot and of the features are individually not

observable, but their difference is. Therefore neither uncertainty collapses but relative measurements build correlation

between the two. The filter updates the different state components based on the relative uncertainty between the robot’s

position and the feature’s. If the robot’s position was known exactly, for example, its estimate would not change when a

LIDAR measurement is processed but only the estimate of the feature’s position would change. Larger uncertainty also

results in the measurement Jacobian being potentially evaluated at an estimated state value far from the truth.

Ref .[13] effectively introduces a new global frame after each measurement update, so that the odometry states

and the features are individually unobservable, but their difference is. This method performs better than the classic

EKF-SLAM in terms of consistency because the uncertainty associated with the odometry states is much smaller than

the typical uncertainty associated with the robot’s position, hence the filter “knows” where to apply the measurement

update. Yet, under challenging scenarios (for example a long measurement drop-off or very noisy odometry) the original

robocentric EKF-SLAM can still diverge. The stationary robot observing a stationary feature counter example [11] is an

example where EKF-SLAM diverges and switching to a robocentric frame helps with filter consistency. However, if
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process noise is added to this same example scenario, the robocentric approach in Ref .[13] does diverge after extended

periods of time. To mitigate this behavior, we introduce a new robocentric EKF-SLAM formulation.

III. Modified Robocentric EKF-SLAM
In the proposed algorithm, we recommend the use of the robocentric frame but eliminate the process of appending

the odometry data to the state. Instead, we use odometry in the time propagation step to move the estimated position of

the robot and at the same time transform the estimated feature positions to the new robocentric frame, removing the

need for the composition step of Refs.[13, 14]. Additionally we introduce a second order correction in the propagation

to enhance robustness of the algorithm. The propagation and update steps are described next.

A. Propagation

Like before, the true position of the robot is 𝒓𝐺𝑟 =
[
𝑥𝐺𝑟 , 𝑦

𝐺
𝑟 , 𝜃

𝑅
𝐺

]𝑇 and the odometry measurement is modeled as

𝒖𝑅
𝑘 =


𝑇
(
𝜃𝑅
𝐺
(𝑘)

) 
𝑥𝐺𝑟 (𝑘 + 1) − 𝑥𝐺𝑟 (𝑘)

𝑦𝐺𝑟 (𝑘 + 1) − 𝑦𝐺𝑟 (𝑘)


𝜃𝑅
𝐺
(𝑘 + 1) − 𝜃𝑅

𝐺
(𝑘)


+ 𝒗𝑘 (19)

the heading angle 𝜃𝑅
𝐺

is counted positive from 𝐺 to 𝑅 so that 𝑇
(
𝜃𝑅
𝐺
(𝑘)

)
is the DCM to transform coordinates from 𝐺 to

𝑅. The odometry noise 𝒗𝑘 is assumed white, zero-mean, with covariance matrix 𝑄.

Analogous to IMU-based dead reckoning, the odometry measurements 𝒖𝑅
𝑘
= [𝛿𝒓𝑅𝑟 (𝑘)𝑇 , 𝛿𝜃𝑅𝑘 ]

𝑇 = [𝛿𝑥𝑅
𝑘
, 𝛿𝑦𝑅

𝑘
, 𝛿𝜃𝑅

𝑘
]𝑇

are used to propagate the estimated state as:

𝒓𝐺𝑟 (𝑘 + 1) = 𝒓𝐺𝑟 (𝑘) +


𝑇
(
𝜃𝑅
𝐺
(𝑘)

)𝑇
𝛿𝒓𝑅𝑟 (𝑘)

𝛿𝜃𝑅
𝑘

 (20)

This equation is obtained linearizing all the errors and then taking the expected value. Starting from

𝑇
(
𝜃𝑅𝐺 (𝑘)

)
= 𝑇

(
𝑒𝜃 (𝑘)

)
𝑇
(
𝜃𝑅𝐺 (𝑘)

)
(21)

where the heading angle estimation error is given by 𝑒𝜃 (𝑘) = 𝜃𝑅𝐺 (𝑘) − 𝜃𝑅
𝐺
(𝑘) and taking the expected value of the

right-hand side of Eq. (21) we obtain

𝐸

{
𝑇
(
𝑒𝜃 (𝑘)

)
𝑇
(
𝜃𝑅𝐺 (𝑘)

)}
= 𝐸

{
𝑇
(
𝑒𝜃 (𝑘)

)}
𝑇
(
𝜃𝑅𝐺 (𝑘)

)
(22)
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𝐸

{
𝑇
(
𝑒𝜃 (𝑘)

)}
= 𝐸




cos(𝑒𝜃 (𝑘)) sin(𝑒𝜃 (𝑘))

− sin(𝑒𝜃 (𝑘)) cos(𝑒𝜃 (𝑘))


 ≈ 𝐸




1 𝑒𝜃 (𝑘)

−𝑒𝜃 (𝑘) 1


 =


1 0

0 1


this approximation leads to equation (20); so long as both 𝑒𝜃 (𝑘) and 𝛿𝒓𝑅𝑟 (𝑘) are small it produces satisfactory results.

Since the rover roto-translates, the robocentric coordinates of the 𝑗-th landmark feature roto-translate in the opposite

direction

𝒓𝑅𝑓 𝑗 (𝑘 + 1) = 𝑇 (𝛿𝜃𝑅𝑘 )
(
𝒓𝑅𝑓 𝑗 (𝑘) − 𝛿𝒓

𝑅
𝑟 (𝑘)

)
(23)

Similar to the discussion above, Eq. (23) is accurate so long as the uncertainty associated with 𝑒𝜃 (𝑘) and the value

𝒓𝑅
𝑓 𝑗
(𝑘) + 𝛿𝒓𝑅𝑟 (𝑘) are small. In our analysis we found this not to be always true which leads to filter divergence. Our

proposed approach is to include key second order terms:

𝐸

{
𝑇
(
𝑒𝜃 (𝑘)

)}
≈ 𝐸



1 − 𝑒𝜃 (𝑘)2/2 𝑒𝜃 (𝑘)

−𝑒𝜃 (𝑘) 1 − 𝑒𝜃 (𝑘)2/2


 =


1 −𝑄(3, 3)/2 0

0 1 −𝑄(3, 3)/2


where 𝑄(3, 3) is the variance of 𝛿𝜃𝑅

𝑘
. By adding the second order terms, Eq. (23) is replaced by

𝒓𝑅𝑓 𝑗 (𝑘 + 1) = 𝑇 (𝛿𝜃𝑅𝑘 )
(
𝒓𝑅𝑓 𝑗 (𝑘) − 𝛿𝒓

𝑅
𝑟 (𝑘)

)
− 1

2
𝑇 (𝛿𝜃𝑅𝑘 )

(
𝒓𝑅𝑓 𝑗 (𝑘) − 𝛿𝒓

𝑅
𝑟 (𝑘)

)
𝑄(3, 3) (24)

For the covariance time propagation, we define the matrices

𝐹 =



𝐹𝑥𝑥 03×2 . . . 03×2

02×3 𝑇
(
𝛿𝜃𝑅

𝑘

)
. . . 02×2

...
. . .

...
...

. . . 𝑇
(
𝛿𝜃𝑅

𝑘

)


(25)

where

𝐹𝑥𝑥 =


𝐼2×2 𝑑𝑇

(
𝜃𝑅
𝐺
(𝑘)

)𝑇
𝛿𝒓𝑅𝑟 (𝑘)

01×2 1

 (26)

8



and

𝐵 =



𝑇
(
𝜃𝑅
𝐺
(𝑘)

)𝑇 0

0

0 0 1

𝑇 (𝛿𝜃𝑅
𝑘
) 𝑑𝑇 (𝛿𝜃𝑅

𝑘
)
(
𝒓𝑅
𝑓1
(𝑘) − 𝛿𝒓𝑅𝑟 (𝑘)

)
𝑇 (𝛿𝜃𝑅

𝑘
) 𝑑𝑇 (𝛿𝜃𝑅

𝑘
)
(
𝒓𝑅
𝑓2
(𝑘) − 𝛿𝒓𝑅𝑟 (𝑘)

)
...

...
...



(27)

where

𝑑𝑇 (𝛼) =


− sin(𝛼) cos(𝛼)

− cos(𝛼) − sin(𝛼)

 (28)

The classic EKF first order covariance propagation is given by

𝑃̄𝑘+1 = 𝐹𝑃𝑘𝐹
𝑇 + 𝐵𝑄𝐵𝑇 (29)

The covariance of the landmark features is further increased to include the second order terms

𝑃̄ 𝑓𝑖 , 𝑓 𝑗 (𝑘 + 1) ⇐𝑃̄ 𝑓𝑖 , 𝑓 𝑗 (𝑘 + 1) + 1
2
𝑄(3, 3)2𝑇 (𝛿𝜃𝑅𝑘 )𝐴𝑖 𝑗𝑇 (𝛿𝜃

𝑅
𝑘 )

𝑇 (30)

for all 𝑖 and 𝑗 , where 𝑃 𝑓𝑖 , 𝑓 𝑗 are the 2 × 2 components of the covariance matrix whose row corresponds to the 𝑖-th

landmark and whose column corresponds to the 𝑗-th landmark, and where

𝐴𝑖 𝑗 =
(
𝒓𝑅𝑓𝑖 (𝑘) − 𝛿𝒓

𝑅
𝑟 (𝑘)

) (
𝒓𝑅𝑓 𝑗 (𝑘) − 𝛿𝒓

𝑅
𝑟 (𝑘)

)𝑇 (31)

Two unique features about our algorithm are worth mentioning. First, this propagation step converts the features

coordinates from robocentric frame at time 𝑡𝑘 to the robocentric frame at time 𝑡𝑘+1 fully accounting for the common

process noise terms corrupting the propagation of both the robot position and the features positions. Second, we include

selected second order terms to aid the consistency of the filter. While the second order terms we chose to include are

sufficient to ensure consistency in all of the test performed, it is possible that different scenarios might necessitate

additional second order terms, or perhaps even higher than second order terms. The extreme conditions that might

require the extra terms however, seem unlikely for practical situations.

In all examples and experiments performed, the second order components associated with the term𝑇
(
𝜃𝑅
𝐺
(𝑘)

)𝑇
𝛿𝒓𝑅𝑟 (𝑘)

in the robot’s position propagation were negligible because the odometry term 𝛿𝒓𝑅𝑟 (𝑘) is small. It is plausible, however,

9



that long propagation steps due to measurement blackouts would cause this term to be needed.

B. Update

The predicted measurement for the 𝑖𝑡ℎ landmark is given by

𝒛𝑖 =


√︃
(𝑥𝑅

𝑓𝑖
)2 + ( 𝑦̄𝑅

𝑓𝑖
)2

tan−1 (𝑦̄𝑅
𝑓𝑖
/𝑥𝑅

𝑓𝑖

)
 (32)

while the measurement Jacobian is given by

𝐻𝑅 =

[
02×3 . . . 𝐻𝑅

𝑓𝑖
. . .

]
(33)

where

𝐻𝑅
𝑓𝑖
=


𝑥̄𝑅
𝑓𝑖

𝑧̄𝑖 (1)
𝑦̄𝑅
𝑓𝑖

𝑧̄𝑖 (1)
− 𝑦̄𝑅

𝑓𝑖

𝑧̄𝑖 (1)2

𝑥̄𝑅
𝑓𝑖

𝑧̄𝑖 (1)2

 (34)

Matrix 𝐻𝑅 above is linearized along the estimated relative position between the robot and the features. The global

position or heading of the robot are not used in evaluating this derivative and hence their uncertainties do not contribute

to errors in the Jacobian’s evaluation. The update equations follow the conventional Kalman filter approach shown in

Eqs. 13 - 17.

C. New Features

When a feature that is not yet part of the state is detected by the LIDAR, the new measurement is used to initialize

the feature’s estimate rather than to update the state. Moreover, the state covariance matrix is also augmented to include

the uncertainty in the position of the feature as seen by the robot’s current frame. If the measurements received for this

new feature are given by the range and heading [𝑟𝑖 , 𝜙𝑖]𝑇 , the state is augmented as:

𝒙̄𝑘+1 ⇐
[
𝒙̄𝑇𝑘+1, 𝑟𝑖 cos 𝜙𝑖 , 𝑟𝑖 sin 𝜙𝑖

]𝑇 (35)

and covariance as:

𝑃̄𝑘+1 ⇐


𝑃̄𝑘+1 0

0 𝐻𝑧𝑖𝑅𝐻
𝑇
𝑧𝑖

 (36)
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where 𝑅 is the measurement noise covariance matrix and

𝐻𝑧𝑖 =


cos 𝜙𝑖 −𝑟 sin 𝜙𝑖

sin 𝜙𝑖 𝑟 cos 𝜙𝑖

 (37)

Once again, the global position of the robot does not play a role in the addition of new features to the state, since all

position estimates for the filter are stored in the robocentric frame of reference.

IV. Observability Discussion
It is well known that the global frame and azimuth are unobservable for terrestrial SLAM problems. The

classical EKF-SLAM parameterizes the state with the global position of both the robot and the features, and with this

parameterization the difference between the two is observable, while a global roto-translation of both is unobservable.

With the proposed robocentric formulation, the state vector is naturally divided into its observable and unobservable

components: the robocentric features are observable and the global robot position is not. That is to say, the initial global

uncertainty of the robot’s location and heading cannot be improved upon using odometry and lidar measurements only.

This is one of the reasons many SLAM algorithms define an arbitrary global frame to coincide with the robot’s initial

pose, hence the initial covariance associated with the robot’s state is set to zero.

Perfect odometry (or zero process noise) would keep the robot’s and the features’ uncertainty completely uncorrelated.

Under this hypothetical scenario the robot’s azimuth uncertainty would remain constant, and it’s location uncertainty will

grow linearly with slope determined by the initial azimuth uncertainty. In the absence of process noise, the robocentric

feature’s uncertainty will monotonically decrease to zero while they are observed. The counter example from Ref

. [11] is a stationary robot problem observing a single feature and showed that EKF-SLAM is inevitably doomed to

diverge. The divergence is due to the combined effect of the non-linearity of the system which is also unobservable.

The robocentric approach however does not suffer from this divergence, because the observable and unobservable states

are separated and hence the filter “knows” where to apply the measurement update.

Adding process noise (odometry uncertainty) correlates the robot’s global position to the features robocentric

position. This allows for some of the uncertainty added to the robot’s position from process noise to be scaled back with

a lidar measurement update. The robot’s pose is still unobservable (only uncertainty added during propagation can be

removed with measurement updates, the initial uncertainty of the global frame remains).

When adding process noise to the counter example in Ref . [11] the robocentric approach diverges when the second

order components are omitted. The proposed addition of the second order components (Eqs. 23 and 30) compensates for

the nonlinearities that cause this divergence and the proposed solution is able to handle this very challenging scenario.

The process noise enters the system nonlinearly and causes the correlation between robot states and landmark features.
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The feature’s uncertainty and this correlation are then “used” by the filter to distribute the measurement update between

the robot states and the feature. Adding the second order contributions allows for correctly accounting for the uncertainty

and hence correctly distributing the measurement update and avoiding divergence.

V. Experiments
Since planetary exploration datasets or experiments are difficult to obtain, the performance of the proposed algorithm

is tested in simulation in a 2D SLAM environment as well as on the dataset from Ref . [16]. A ground rover equipped

with an odometer and a lidar is considered. We assume the odometry data provides distance moved by the robot in

the forward direction (X axis in the robot frame) and the change in heading angle of the robot (angular velocity). The

Lidar can recognize features in the environment at up to a distance of 100m from the robot and at an angle of within 15

degrees in either direction of the rover’s heading. The odometer measurement error has standard deviation of 2cm/sec in

linear velocity and 0.1 deg/sec in angular velocity, uncorrelated with each other. The range and bearing measurement

are assumed to also be uncorrelated, with an error standard deviation of 1cm in range and 0.05 degrees in bearing for

each measurement.

The counterexample from Ref . [11] consists of a static robot (which knows it is static, hence odometry is not

needed) observing a single feature. From Ref . [11] it is known that the classic EKF-SLAM diverges in this scenario

while both our proposed approach and the robocentric SLAM from Ref . [13] perform well. The first test case shown is

a variation of the counterexample from Ref . [11] in which the robot is stationary but it does not know it is. Hence,

odometry is used by the robot and the odometry error corrupts the estimate. Figs. 1 and 2 show the performance of both

our proposed algorithm and the robocentric SLAM from Ref . [13]. It can be seen that while our algorithm performs

correctly the robocentric approach from Ref . [13] diverges.

In the second test case the robot follows a typical exploration circular path surrounded by features, shown in Fig. 3.

Fig. 4 shows the performance of the proposed algorithm while Fig. 5 shows the performance of the robocentric algorithm

from Ref .[13]. The results show that our algorithm is able to estimate both the robot’s position and the features locations,

while the algorithm from Ref . [13] is only able to correctly estimate the features. Monte Carlo simulation runs (zoomed

in on the time scale for better visibility) for the second test case are shown in Figs. 6 and 7.

The third test case shown is the real-world data-set from Ref . [16]. The data-set was collected using a set of robots

equipped with wheel odometry which provides forward translational and angular velocity, a camera providing range and

bearing measurements to features which are barcodes in the environment and the true locations of the robot and the

features using a motion capture system. The noise characteristics of the odometer and camera system are provided

in Ref .[16]. Fig. 8 shows the performance of the proposed algorithm for this data-set which can be seen to perform

correctly in estimating both the robot’s state and the features’ location.

The fourth and last test case is on a real 4-wheeled robot with linear and angular odometry and a camera detecting
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Fig. 1 Robot and Feature position from the proposed algorithm for the stationary robot case from Ref . [11]

QR codes for features (Fig. 9) providing range and bearing measurements. The setup and robot are shown in Fig. 10.

Fig. 12 shows the performance of the proposed algorithm for the experimental setup with the robot following the

trajectory shown in Fig. 11. The odometer error standard deviation is 2cm/sec in linear velocity and 0.01 deg/sec in

angular velocity, while the LIDAR measurements have 5 cm in range and 5 degrees in bearing.
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Fig. 2 Robot and Feature position from Ref . [13] for the stationary robot case from Ref . [11]
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Fig. 4 Performance of the proposed algorithm in test case 2
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Fig. 5 Performance of the robocentric algorithm from Ref . [13] in test case 2
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(a) Robot Position in Global Frame

(b) Local Features

(c) Global Features

Fig. 6 Monte Carlo Performance of the proposed algorithm in test case 2
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(a) Robot Position in Global Frame for Ref . [13]

(b) Local Features for Ref . [13]

(c) Global Features for Ref . [13]

Fig. 7 Monte Carlo Performance of the robocentric algorithm from Ref . [13] in test case 2

18



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time (sec)

-5

0

5

E
rr

o
r 

(m
)

x - Global

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time (sec)

-5

0

5

E
rr

o
r 

(m
)

y - Global

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time (sec)

-2

0

2

E
rr

o
r 

(d
e

g
re

e
s
)  - Global

Robot Position

(a) Robot Position in Global Frame (b) Local Features

(c) Global Features

Fig. 8 Performance of the proposed algorithm using the data-set from Ref [16]

Fig. 9 Features used in the experiments
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Fig. 10 Robot used for experiments
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Fig. 11 Trajectory followed in the Experimental Setup
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Fig. 12 Experimental performance of the proposed algorithm (test case 4)
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VI. Conclusions
The problem of planetary exploration by a ground rover performing Simultaneous Localization and Mapping

(SLAM) was considered. A novel robocentric Extended Kalman Filter (EKF) based SLAM algorithm was proposed

which uses a second order linearization for the propagation function and transforms the full feature state to a frame with

its origin at the robots position before every update step. This idea improves upon existing robocentric EKF-SLAM

algorithms in the literature and prevents divergence in challenging scenarios where existing methodologies failed. The

proposed algorithm also performed consistently in the stationary robot with process noise scenario which was previously

not possible. The algorithm is tested in simulation, with a real world data-set, and on a physical robot; and performed

successfully in all the scenarios including those where existing EKF-SLAM algorithms failed.
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