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AN ADAPTIVE COVARIANCE PARAMETERIZATION TECHNIQUE
FOR THE ENSEMBLE GAUSSIAN MIXTURE FILTER*

ANDREY A POPOV!T AND RENATO ZANETTI#

Abstract. The ensemble Gaussian mixture filter combines the simplicity and power of Gaussian
mixture models with the provable convergence and power of particle filters. The quality of the en-
semble Gaussian mixture filter heavily depends on the choice of covariance matrix in each Gaussian
mixture. This work extends the ensemble Gaussian mixture filter to an adaptive choice of covariance
based on the parameterized estimates of the sample covariance matrix. Through the use of the expec-
tation maximization algorithm, optimal choices of the covariance matrix parameters are computed
in an online fashion. Numerical experiments on the Lorenz ’63 equations show that the proposed
methodology converges to classical results known in particle filtering. Further numerical results with
more advanced choices of covariance parameterization and the medium-size Lorenz ’96 equations
show that the proposed approach can perform significantly better than the standard EnGMF, and
other classical data assimilation algorithms.

Key words. data assimilation, Gaussian mixture model, particle filtering, expectation maxi-
mization
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1. Introduction. Sequential data assimilation [5, 37] aims to perform Bayesian
inference on the state of some natural process from an inaccurate computational model
and sparse and noisy observations. Traditionally, particle filter methods have been
viewed as theoretically nice, but practically useless for inference of high dimensional
systems. Recent advances in particle filters for high dimensions [43] have challenged
this view.

Classical particle filters such as the bootstrap particle filter [37] make and em-
pirical measure assumption on the prior distribution. Conversely filters such as the
ensemble Kalman filter [17, 10] make an assumption that the first two moments of the
empirical distribution are the only ones relevant to performing the inference, similar
to a Gaussian assumption on the distribution. Gaussian mixture models (GMM) can
extend the idea of an empirical measure approximation of the prior to a larger set
of possible prior distributions, that combines the best of both worlds: it is able to
represent non-Gaussian distributions while still assuming that the only two moments
that matter to each mixture mode are its mean and covariance. The Gaussian sum
filter [41] takes advantage of nice properties of GMMs, suffers from needing to prop-
agate the covariance of each mode, and from requiring the need of many heuristics to
ensure that the modes do not degenerate [36].

The ensemble Gaussian mixture filter (EnGMF) [4, 25, 44] and its related cousin
the adaptive Gaussian mixture filter (AGMF) [42, 43] are sequential data assimilation
algorithms that make use of the GMM approximation to the prior through the use of
kernel density estimation (KDE) techniques. The EnGMTF is based on the observation
that Gaussian mixture models, under linear observation assumptions, are closed under
multiplication [3]. The quality of the inference produced by the EnGMF is directly
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related to the accuracy of the GMM assumption about the prior distribution. This
prior distribution is typically determined in whole by Monte Carlo samples through
choices of the means and covariances of the GMM. While the choice of means is
readily apparent as that of the Monte Carlo samples, the choice of covariance is less
straightforward, and is the subject of much of the research surrounding KDE [40, 9].

The key innovations of this work are as follows: We first provide theoretical
results that show the convergence of the EnGMF for a certain class of probabilistic
assumption on the bandwidth parameter in the classical EnGMF algorithm. We next
generalize the EnGMF by introducing the parameterization of statistical covariance
matrix estimates from other ensemble-based filters to the EnGMF. We finally show
how the EnGMF machinery could be used to choose the value of these parameters
in an optimal adaptive fashion by utilizing the expectation maximization algorithm.
Thus the sum total of these results is the adaptive Gaussian mixture filter (AEnGMF)
which utilizes all this machinery for inference.

This work is organized as follows: we first introduce the data assimilation prob-
lem and the EnGMF in section 2. We next present the adaptive ensemble Gaussian
mixture filter in section 3 along with the expectation maximization algorithm in sub-
section 3.1. Numerical experiments are provided in section 4, and concluding remarks
in section 5.

2. Background. Assume that we are given a model that evolves a natural
process of interest from time index ¢ — 1 to time index ¢,

(2.1) ;= M(xi_1) + &,

with model error §;. For the remainder of this paper, we assume that the model error
&; is always zero, and thus the model (2.1) is exact.

The goal is to estimate the true state z! of said process given some non-linear
observation,

(2.2) yi = H(x}) + i,

with observation operator H and an additive error term 7;. Denote with Y; all the
observations up to and including time index 1,

Given a prior at time index 7, namely scf = z!|Y;_1, we aim to perform Bayesian
inference on these two sources of information,

(2.4) p(al|yi) oc p(2?) p(yi|a?)

resulting in the ‘analysis’, 2% = 2?|y; = 2t|V;.

Remark 2.1 (Model error). All of the derivations and algorithms presented in this
work do not require the model error in (2.1) to be zero. This assumption is merely
made for convenience in this work.

We next describe how a solution to (2.4) can be achieved using Monte Carlo
sampling and the EnGMF.

2.1. The Ensemble Gaussian Mixture Filter. Assume that we have a col-

lection of N particles at time index ¢ that is represented as X? = [aci{l, xg’,z, e 795?,]\1]

and is composed of weighted samples from the prior distribution p(z?) with weights
2
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{uij}3L,. Given non-linear observations of the truth (2.2), our aim is to find a col-
lection of N particles X{ = [33?,17 Zigs. .. 2] N/ containing samples from the posterior
distribution, such that the posterior is the prior conditioned by the observations,

(2.5) zf = 2}l

solving the Bayesian inference problem (2.4).

As the prior distribution of the particles is unknown, our prior knowledge can be
used to construct an approximation thereto. From kernel density estimation theory,
the ensemble Gaussian mixture filter (EnGMF) assumes that the distribution of the
prior state at time index ¢, xﬁ-’, is given by the Gaussian mixture,

N
(26) xf ~ Zui,jj\/' ({f?’j, B?j> s
j=1
where each mean exactly corresponds to one of the particles in the ensemble,
(2.7) Tp; =y
The observation distribution at time index ¢ is given by the Gaussian mixture,
M
(2.8) yileh ~ > " vik N ik Ri),
k=1

which is a generalization of the typical Gaussian assumptions on the observation error
made in data assimilation literature.
The posterior distribution at time index 4 is defined [4] by the Gaussian mixture,

N M
(2.9) ol ~ YD wiga N (7 Bl

j=1k=1
with the following set of definitions,
20 =205 — Gigr (M) = Gik) s
T b
B, = (1 — Gi’j,kﬂm) B

75 2,97

-1
G = BYHE (HBLHD 4 Ric)

(2.10)
Wik O Wi jV; | N (ﬂuk ‘H(j?,j)’ H; ;B! H, + Ri,k) :
dH
H, = —~
2,] d{E R

V)

where z ; , , are the analysis Gaussian mixture means, BY ; ; are the analysis Gauss-
ian mixture covariances, Gy ;1 is similar to a gain matrix, w; ;, are the Gaussian
mixture weights, and Hj; ; is the linearization of the observation operator around :Ei-’, i
When the observation operator is linear, H(z) = Hz, the posterior GMM (2.9) is ex-
actly the posterior corresponding to the assumed prior (2.6) and the observation (2.8)
distributions.

Each Gaussian distribution in (2.6) has the following probability density function,

1

= e’%(‘”*if,j)TB?ffl(w*i?,j)7

(2.11) N(z|z}

237

b _ b
B!,) = |2vB!,

with the other Gaussian distributions in (2.8)—(2.10) having a similar form.
3
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Remark 2.2 (Normalization Factors). Note that when either the observation
operator H is non-linear, or the kernel covariance matrices B; ; are not identical, extra
care must be taken when computing the weights w; ;5 in (2.10), as the covariances
HMBZJ.H% + R, ;; are not necessarily equal. This means that, the normalization
factors in each Gaussian term (similar to (2.11)),

(2.12) j2m (H,BYHT, + Ris)|
are required to be computed. This can be performed in a computationally efficient
manner through the use of the Cholesky decomposition and the log-sum-exp trick [7].

While the transformation of the distribution in (2.9) results in an estimate of the
posterior distribution, the means z{ ; of this distribution are not actually samples
from this distribution, thus it is not the case that the posterior samples are equivalent
to these means,

(2.13) Tiy # T

A resampling procedure is therefore required in order to obtain independently and
identically distributed (iid) samples from (2.9). What follows is one such procedure.

Procedure 2.3 (EnGMF resampling). Given the final posterior Gaussian mixture
distribution in (2.9), it is possible to resample S samples from the posterior GMM
through the following procedure:

1. for s =1,...,5, sample the random variable ¢ from the discrete distribution
defined by the weights {w; j i} ks

2. sample X{ | from the Gaussian N (x|£§’£,BZ€),
enabling samples to be generated from the posterior.

Remark 2.4 (Arbitrary Sampling of the Posterior). Note, that using Proce-
dure 2.3 we are able to arbitrarily sample from the posterior distribution. This means
that the number of posterior samples S could be significantly larger or significantly
smaller than the original number of samples N used to generate said posterior.

Remark 2.5 (Independent and Identically Distributed Samples). Note that while
we make the convenient assumption that the samples generated by Procedure 2.3 are
iid, this is not actually the case. The parameters of each mode of the GMM are
actually functions of the prior samples, and are themselves random variables, and
thus introduce a dependence if two samples come from the same mode. This hidden
dependence of the particles means that they are merely conditionally independent,
making them exchangeable, but not independent in general.

Remark 2.6 (Prior Uniform Weights). If Procedure 2.3 is utilized to re-sample
the particles at every step of the assimilation, then the prior distribution weights in
(2.6) are all uniform u; ; = & under the assumption of a uniform transition density.

Remark 2.7 (Differences Between the EnGMF and the AGMF). Unlike the En-
GMF, in the AGMF (see [42, 43]), instead of resampling like in Procedure 2.3, the
weights are scaled by a defensive factor towards uniformity,

1
(2.14) wijk = wijk+ (1 - )=,
N
with a ‘defensive factor’, «;, which ensures that the weights do not degenerate. The
new particles are taken to be the means of the candidate posterior distribution (2.9).
This idea is not explored in this work.
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The posterior GMM (2.9) is only a good representation of the exact posterior if
the prior GMM assumption (2.6) is a good approximation of the distribution that
originated the particles Xf. For a finite ensemble N it is possible that the EnGMF
analysis is a poor representation of the truth. The prior GMM assumption (2.6), in
the particle limit N — oo, converges to the exact prior under certain assumption
on the covariances, B; ;, which is a known result from kernel density estimation
literature [40]. We now show that under some assumptions on the covariances, B, ;,
the posterior GMM (2.9) produced by the EnGMF procedure also converges, in the
particle limit, N — oo, to a distribution obtained from performing exact Bayesian
inference.

THEOREM 2.8 (EnGMF convergence).  Assuming the observation distribution
is exact (2.8), if the means Ef’j in the estimated prior distribution GMM (2.6) are
samples from the underlying exact distribution with weights u; j, and the prior Kernel
covariance matrices tend to zero in the limit of ensemble size, limy _ oo sz =0, then
the EnGMF with the resampling procedure Procedure 2.3 converges to a filter in the

class of sequential importance resampling (SIR) filters.

Proof. Given the assumptions above, in the limit of ensemble size, N — oo, the
prior distribution GMM converges to the empirical distribution,

N
1
(2.15) plat) = ~ Z; Ui 0zt
j:

which converges weakly to the underlying prior distribution. Then as the prior Kernel
covariance tends towards zero, the posterior GMM estimate defined by (2.9) and (2.10)
converges to the empirical measure,

1 N M
(2.16) paf) =5 (Z wmkk) Oug—at,
j=1 1

k=

which converges weakly to the exact posterior distribution. Then, the EnGMF re-
sampling in Procedure 2.3 makes the EnGMF converge to an SIR filter. ]

2.2. EnGMF rate of convergence for scalar parameterization. We now
motivate the importance of choosing a good parameterization of the covariance matrix
is more cost effective than simply increasing the number of particles V. In the follow-
ing, we show that the rate of convergence of the prior GMM estimate of the EnGMF
is sub-linear under a scalar parameterization. This makes the choice of parameter the
dominant factor that determines the goodness-of-fit of the distribution.

The most common paramterization of the prior GMM is a scalar parameterization
that modifies the scaling of the covariance in a way that is guaranteed to degenerate
in the limit of ensemble size. In the case of this scalar bandwidth parameterization,
the prior covariance estimates become

(2.17) Bi‘),j( 12N) = zNPg,Na 1<j5 <N,

where P? is the known (or approximated) covariance of the prior distribution, and 32
is a scaling factor yet to be determined. Following the derivations in [40], we provide
formulations of the error and optimal density for the covariance parameterization
in (2.17).
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Given the unknown true prior distribution p,:, and its GMM approximation p,s,
the most common metric for determining the convergence of the latter to the former
is the mean integral squared error (MISE) at time index i,

(2.13) NHSExpﬁ,ﬁﬁ>—-Exg[A;:Q%ﬂx>ﬁg<x»2dx},

Observe that the convergence of the prior GMM estimate is not the same as
convergence of the posterior GMM estimate. Nevertheless convergence of the prior
estimate implies convergence of the posterior estimate. It is therefore the case that the
rate of convergence of the prior estimate is directly related to the rate of convergence
of the prior estimate.

The MISE is typically approximated using the dominant terms of its expansion
into the approximated mean integrated square error (AMISE) given by,

- 1
(2.19) AMISE(p,2, p,e) = Zﬁfa%- + N71B7"s,
where for the GMM approximation of a distribution « and 4,

(2.20) a=1, 6= (2vm) ",

are known constants that depend on the dimension n, and ~;,
(2.21) i = / tr? (Vipzz? (:c)) dez,
Q. ‘

is dependent on the true prior distribution at time index ¢. As the true prior is
unknown, a known reference distribution ¢ can be used to compute an approximation
for (2.21),

(2.22) i = /Q tr® (V2¢(z)) d,

where ¢ is often taken to be the standard Gaussian distribution.
If our assumed estimate of the parameter 7; is correct, the optimal bandwidth
that minimizes the AMISE in (2.19) is,

on =
2 _
(2.23) #=(my)

by satisfying the first order optimality conditions of (2.19).
Plugging (2.23) back into (2.19), the error can now be written as,

228 AMISE(o.50) = 2 (PO T (57 p s ) Noehe
' Pl Pat T2\ a2 Vi i,

conv. rate

const. reference mismatch

where the first term is a constant and can be ignored, the second term is dependent on
the mismatch between the true (2.21) and approximated (2.22) -; terms, and the third
term determines the rate of convergence in N. Note that rate of coverenge is sublinear
but close to linear for small state-space dimensions n, and is purely sub-linear for even
a modestly small n.
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As the rate of convergence in (2.24) is sub-linear, as determined by the third term,
the multiplicative terms in front of the rate of converegence play a very dominant role.
The first term is constant, and thus can be ignored. The second term,

4

(2.25) A5 4y

therefore largely determines the error. It is trivial to see that (2.25) is minimized
when 7; = +;, therefore the error is only minimized when the reference distribution ¢
in (2.22) matches the true distribution in (2.21).

Thus, when there is a large discrepancy between the reference distribution ¢ and
the true distribution, an adaptive choice of the bandwidth parameter (2.23) could
produce a much more significant decrease in error than simply increasing the ensemble
size N.

3. Adaptive ensemble Gaussian Mixture Filter. Following the observa-
tions provided by Theorem 2.8 and by the discussion in subsection 2.2, we want
to choose covariance matrices B; ; found in the prior GMM assumption (2.6) in an
intelligent and adaptive manner such that the convergence properties are satisfied.
We additionally attempt to fulfill a desire useful to the practitioner: that practical
convergence is achieved with as small as possible number of particles.

To that end, in this work we explore arbitrary parameterized covariance matrices
in the prior GMM (2.6),

N
(3.1) p(4]0;) = ZUHN (xi|x?7j7B?,j(0i)) ;
j=1

where each covariance Bz ;(0;) is a matrix function of some (small number of) param-
eters 0;.

The aim of the parameterization in (3.1) is to find a set of parameters ¢; that
can both be chosen adaptively at each step, and can ensure that the EnGMF does
not violate the assumptions of Theorem 2.8 and, additionally, possibly attempts to
minimize the error presented in subsection 2.2.

We now provide a way by which we can solve for the optimal parameters 6; in (3.1)
through the expectation maximization algorithm.

3.1. Expectation Maximization. The expectation maximization (EM) algo-
rithm [8, 6] finds the set of the parameters 6; that maximize p(6;|y;) which is the
conditional distribution of the parameters given the observations , at time index 3.

Given some initial set of parameters 01(0), the expectation maximization algorithm
proceeds in an iterative fashion in two steps:

The expectation step,

(3.2) Ew?\yiﬁﬁm) log p(a, i, 0:)

constructs the function representing the expectation of the joint distribution of the
prior state, the observations, and the parameters. The joint distribution in (3.2) can
be written in terms of the prior (2.6), observation (2.8), and parameter distributions
as,

(3.3) p(a?,yi, 0:) = p(yil2?, 0;)p(x?16:)p(6;),
7
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and, as the observation GMM (2.8) is not dependent on the parameters, (3.3) can be
simplified to,

(3.4) p(x},vi,0:) = p(yil=})p(?]6:)p(6;),

where the prior distribution (3.1) is parameterized in terms of its covariance (3.1),
and the parameter distribution

(3.5) p(0:),

is determined on a case-by-case basis.
The mazimization step aims to find the value of the parameters ;, that maximize
the log joint distribution (3.4),

(3.6) gl(wwrl) - arggmax]Ex?‘yhegm) [log p(2?|6;) + log p(6;)] ,

where 9§m) are the parameters from the previous step, x?|yi,9§m) are samples from

the posterior distribution (2.9) given the previous set of parameters 9§m), and the
term log p(y;|z?) is constant and thus can be safely ignored due to the fact that it
does not influence the optimization problem. Recall Remark 2.4 that in the EnGMF,
it is possible to generate an unlimited number of i.i.d. samples from the posterior
distribution, thus the maximization step (3.6) can be computed to an arbitrary level
of accuracy, given some reasonable assumptions on the distribution of the sample
mean.

Remark 3.1 (Invertible Covariances). Note that the prior covariance p(x%|6;)
in (3.6) requires that the covariance matrices vaj (0;) in (3.1) are invertible, which is
not necessarily required by the standard EnGMF.

Remark 3.2 (Meaningful Representation of the Prior). Note that the effect of
the expectation maximization algorithm is to pick a parameterization of the prior
estimate that best matches the posterior. For arbitrary parameterizations this would
simply produce another copy of the posterior. The parameterization in (3.1) does
not allow this to happen, as only the covariance is modified, and the mixture weights
and means are not. This ensures that for (almost) all choices of the parameters 0,
the prior estimate is still a useful representation of the prior. This means that the
EM algorithm merely chooses the prior estimate that is most useful in subsequently
representing the posterior.

3.1.1. Stochastic Optimization. The maximization step (3.6) requires the so-
lution of a stochastic optimization problem. Much of the recent literature on stochastic
optimization has been focused on machine learning applications [1]. As the number
of parameters in 6; is small, it is possible to take advantage of methods that are
built for the small parameter size case and that differ from typical machine learning
optimization methods. Thus, in this work we utilize a variant of Newton’s method.

We can write the loss in the maximization step (3.6) as,

(3.7) L(x;,0;) = Ewﬂyiﬂ(.m) [log p(x4]0;) +log p(0:)] ,
where the posterior can be written as the following,

(3.8) o = by, 00",
8
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which is useful shorthand for the following derivations.
One algorithm for finding the maximum of the loss function (3.7) is Newton’s
method,

-1
(3.9) 6" = D) o (B o [V3L(w, 0 )]) B oo VoL, 00",

where ., is the step-size (also known as the learning rate in the machine learning
community), and the initial parameter value for the algorithm is 0£m+1,1) = GEm),
which is the parameter from the previous maximization step (3.6). As it is challenging
to compute the expected values in (3.9) analytically, some sort of approximation
procedure is required.

As this is a stochastic optimization procedure, the two expected values in (3.9)
cannot be calculated with the same random samples, as that would introduce unin-
tended bias and variance into the update. In this work we utilize the sub-sampled
version of Newton’s method [39] built specifically to handle this scenario. In sub-

sampled Newton’s method, independent samples of m?’(m) are used to approximate
the Hessian E_a,(m) [Vgﬁ(x,é’gmﬂ’p))] and the gradient E_a.m) [Vgﬂ(x,ﬂgmﬂ’p))]. If
the number oflsamples used is identical, then the number of samples required is
double that of the stochastic gradient descent (SGD) algorithm which only requires
the computation of E_a,m) [VoL(x,(mT1LP))]. As Newton’s method achieves faster
convergence than SGD: it is the authors’ belief that for this particular scenario the
benefits of this approach outweight the additional costs.

Remark 3.3 (Quasi-Newton Methods). Instead of computing an estimate to the
Hessian Ex?,m)[vgﬁ(w,@gmﬂ’p))} at every step, it is possible to only compute the

Hessian at the initial step E o (m) [Vgﬁ(x,9§m+1’1))] and use this approximation for
all subsequent steps. This type of computationally efficient computation is a type of
Quasi-Newton method [30] that is often used in practical applications.

Remark 3.4 (Alternative Optimization Algorithms). Alternative stochastic opti-
mization algorithms could also be utilized. The classic stochastic gradient descent
algorithm [38] is an alternative which would require a smaller step-size ;. Another
alternative is ADAM [23] which would require to keep track of separate momentum
and velocity terms.

Remark 3.5 (Incremental Expectation Maximization). If the expectation maxi-
mization algorithm is performed online in sequential data assimilation, it is not nec-
essary to perform many steps of either the expectation maximization algorithm, or
sub-sampled Newton’s method (3.9). In this work we initialize the parameters ex-
pectation maximization algorithm subsection 3.1 from the previous time step of the
data assimilation algorithm. This can be weakly justified as a type of incremental
expectation maximization [28], and in the authors’ experience significantly increases
the utility of the proposed approach.

We now discuss several different strategies for parameterizing the kernel covari-
ance (3.1).

3.2. Bandwidth-based covariance. In kernel density estimation, choosing the
optimal covariance matrices has had considerable research interest [40]. And, as dis-
cussed in section 2 has a considerable impact on the efficacy of the EnGMF algorithm.

9
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From subsection 2.2, recall the covariance parameterization,
b (2 2 pb .
(3.10) B;;(Bin) =BinPin, 1<j<N,

where ﬂf n 1s known as the bandwidth parameter [40]. This is one particular case
of the covariance in the prior GMM (3.1) that is a focus of this work. The samples
covariance in (3.10)

1 1 T

b b bT

(3.11) Ply =X (IN - N11T> X' ~E {(xl? — E[(}]) («? — E[(}]) } ,

is known as the empirical covariance, and is an estimate of the covariance matrix of
the prior state xf In (3.10), the only parameter is the bandwidth estimate, 6; = BzN.

Remark 3.6 (Stochastic Newton’s for the Bandwidth Parameter). When the sub-
sampled version of the stochastic Newton’s method (3.9) is applied to the covariance
parameterized by the bandwidth parameter (3.10), then both the stochastic estimate
of the gradient and the stochastic estimate of the Hessian are scalars. This enables
the computation of the maximization step (3.6) to be performed with minimal linear
system solves.

The prior kernel covariance estimate in (3.10) takes advantage of the underlying
covariance of the data, and is thus a type of online estimate however, the resulting

accuracy of the density estimate is still highly dependent on the bandwidth parameter
2
i, N

It is known from [40] that if the underlying exact prior distribution of z° in (2.6) is
Gaussian, that the optimal choice of bandwidth parameter 42 in (3.10) that minimizes
the mean integrated square error is,

4 ntd
12 2 o= =
(3 ) Bi,N,Gaussmn <N(n I 2)) )

which is also known as Silverman’s rule of thumb.

In practice most probability distributions of interest are not Gaussian, and (3.12)
can result in a very poor approximation of the underlying density [40], thus a more
refined choice of the bandwidth parameter is required.

Theorem 2.8 showed that a sufficient condition for the convergence of the EnGMF
is that the covariance estimate tends towards zero as N — oo. We now show a
condition on the bandwidth parameter that is sufficient for the EnGMF to converge.

LEMMA 3.7. Given the sequence of parameters {ﬁzN}j'\?zl parameterized by the
particle amount N, a sufficient condition for the covariance estimate (3.10),

(3.13) Bin= /81’2,NP2N7
to degenerate in the limit of particle number,

(3.14) Bin — do,

is that the bandwidth parameter tends towards zero,
(3.15) Jim G2 =0,

in the limit of particle number N.
10
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Proof. Observe that,

(3.16) E[B;.n]
~]

COV[BZ'
meaning that both the mean and covariance of the random variable tend towards zero
as N — oo, as required. 0

zz,NE[Pf,N]v

= ?,N COV[P?,NL

s

COROLLARY 3.8. The sequence {87 N Goussian) N=1 0f bandwidth parameters de-
fined by Silverman’s rule of thumb (3.12) satisfies the conditions of Lemma 3.7.

Lemma 3.7 showed that when 61»27 n s a constant, and converges to zero in the limit
of particle number N — oo, the EnGMF converges. However, as we have uncertainty
about the bandwidth parameter, it is natural to think about it as a random variable
with some distribution. Thus an important choice is that of the distribution of the
bandwidth parameter. Care must be taken to ensure that this choice is sufficient to
make the resulting algorithm converge.

We provide a sufficient condition on the distribution of the bandwidth parameter
Bf y from (3.10), as an extension of Theorem 2.8. We therefore extend Lemma 3.7 to
bandwidth parameters that are random variables with some prior distribution in the
expectation maximization algorithm.

THEOREM 3.9. Given the sequence of random wvariables {57 y}3—, with a se-

quence of distributions {p( 1-2’]\,)}10\,":1 parameterized by the particle amount N, a suf-
ficient condition for the covariance estimate (3.10),

(3.17) By = B nPh
to tend towards zero in distribution in the limit of particle number,
(3.18) By 2 0,

is that the distribution of the bandwidth parameter tends towards the delta distribution
around zero,

(3.19) Jim p(B2 ) = do,

ensuring that ﬂiN almost surely becomes 0.

Proof. If the distribution of 62»27 N converges to dg, then the solution to the max-
imization step in the EM algorithm (3.6) almost surely becomes a constant, namely

that BEN 2% 0, as required. ]

3.2.1. Choosing the bandwidth distribution. One way in which the condi-
tions of Theorem 3.9 could be satisfied is through an intelligent choice of the proba-
bility distribution of the bandwidth parameter p(57 y ).

A common choice in the literature, the principal of maximum entropy (PME) [22]
could be used to find a good candidate for this distribution. If we assume that the
expected value of the bandwidth, Bi ~» 1s Silverman’s rule of thumb (3.12), and we
have no other information available, then the distribution that satisfies the PME is
the exponential distribution,

—2
(320) p( ZN) = ﬂi_,l%/,Gaussiane_ﬂi’N’Gaussmnﬁ?’N7
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this distribution, however, always has a single mode at zero, thus, from the authors’
experience, is ill-suited for use in expectation maximization.

It is possible to perform some slight-of-hand in order to make this assumption
more tractable. It is more efficient to look at 3; y, the square-root of the bandwidth
parameter. If (3.20) is the distribution of ﬂz N then 5; n is distributed according to

-2 2

(3.21) p(/Bi,N) = Zﬁ;ﬁ,GauSSianﬁi7Ne*Bi,N,Gaussian PN

which is the Rayleigh distribution [31] with known mode 27/28; N Gaussian. We as-
sume this Rayleigh distribution (3.21) on the bandwidth parameter for the remainder
of this paper.

It is also possible to assume a more general distribution around 51'2, > such as a
gamma distribution, though this choice would introduce another free parameter into
the algorithm; an undesirable outcome.

While the parameterized covariance in (3.10) is well-studied, it has a few limita-
tions that prevent it from being used in high-dimensional inference, chief among those
being the fact that the covariance estimate in (3.11) can potentially be low-rank, and
thus generate a covariance that is not invertible Remark 3.1, thus we can introduce
covariance matrix estimates that have extra parameters in order to mitigate this issue.

Remark 3.10. It is important to note that the optimal bandwidth is deterministic,
but unknown. The uncertainty that transforms our knowledge about the bandwidth
into a random variable is purely from the point of view of the agent performing the
inference. For a more in-depth discussion about choosing distributions for parameters
see [22].

3.3. Covariance Shrinkage Estimates. Covariance shrinkage [13, 12, 14, 11,
24] aims to use extra prior information about the covariance of z¥ in (2.6) in order
to have a more accurate covariance estimate in the case when the number of samples
is smaller than the dimension of the dynamical system N < n. Covariance shrinkage
methods have previously been employed for ensemble data assimilation [29, 34] and
for regularization in particle filtering [35].

Assume that we have prior information about the covariance structure of z? in
the form of a ‘target’ covariance matrix T;. The covariance shrinkage estimate of the
covariance, scaled by the bandwidth, is given by,

(3.22) B}, =5y ['Yi/%Ti +(1—7)P?
where,

-1 ‘ T ipbp3
(3.23) pi=n"'trC, C;=T, P,

is a rescaling factor, and -; is the shrinkage factor, which we treat as a parameter.
Under Gaussian assumptions on the samples, z¥ ., a good known shrinkage factor

2,77
is,
., in | N =2 (ntHN-2
i,RBLW = 4,
521) N(N+2)  N(N +2)(n—1)U;

A 1 ntr C?
U; = t—1
n—l(trzci )
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called the Rao-Blackwell Ledoit-Wolf estimator [13].
One possible choice of the target matrix T; that does not require any prior knowl-
edge is the diagonal of the empirical covariance (3.11),

(3.25) T, =NP?,

where the notation of N is introduced to signify the matrix consisting of only the
diagonal of the subsequent term. Observe that,

(3.26) tr [(& Pf)ié P (N P?)é] =n,

meaning that when the target matrix is defined by (3.25), the scaling factor u; = 1.
This means that direct calculation the matrix C;, from (3.23), is only required for the
calculation of v; gerw in (3.24).

Remark 3.11 (On p(v;)). A commonly made assumption is that parameters are
independently distributed, therefore the distribution of p(ﬂf ~) can be chosen inde-
pendently of the distribution p(+;). As there are no requirements that the optimal ~;
is dependent on ensemble size, it is a natural choice to assume a uniform likelihood,

(3.27) p(yi) o< 1,

which is a typical assumption in parameter estimation [8].

3.4. Covariance Localization. In the geosciences, states usually have some
sort of innate spatial structure. State variables that are spatially far apart are gener-
ally more weakly correlated than states that are closer together. Taking advantage of
this fact, covariance localization [5] is a matrix tapering technique which aims to re-
duce the impact of spurious correlations caused by undersampled (N < n) covariance
matrix estimates.

In this work we focus on what is known as the B-localization methodology, and
combine it with the bandwidth scaling (3.10) in the following manner,

529 B, = % (o) o P1),

where the matrix p(r;) contains a set of decorrelation variables parameterized by the
localization radius r;, and o is the element-wise Schur product.
A common choice for p is known as Gaussian localization,

_1da)?

(3.29) plriJeg=e = 7,

where d(¢, q) represents the spatial distance between the variables at index £ and index
q.

Remark 3.12 (Choice of Localization Radius r;). The choice of localization ra-
dius r; in (3.28) can be informed by the temporal covariance of the model of interest
if the model of interest is Ergodic, however in practice, the best localization radius is
almost always determined empirically.

Adaptive-in-time choices for r; have been explored for the ensemble Kalman filter
in [33].
13
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Fi1G. 1. An illustration of the outer loop of the AEnGMEF algorithm. In this example the candi-
date prior is made up of three distinct Gaussian modes which are plotted separately. The candidate
prior is transformed into the candidate posterior through the standard EnGMF update (2.10). Next
the expectation mazimization algorithm (3.2) and (3.6) is performed, and a new candidate prior is
obtained. This procedure repeats until some desired level of convergence is achieved.

Expectation Maximization

3.5. Practical Implementation of the AEnGMF. We are now able to com-
bine all the elements presented in this section to fully describe the inner-workings of
the adaptive ensemble Gaussian mixture filter (AEnGMF). The AEnGMF operates
as follows. First a choice of parameterized covariance is made by the user. This
choice determines the parameters that are optimized for. Next a choice of parameter
distribution is required. In this work the bandwidth parameter is assumed to be dis-
tributed according to the Rayleigh distribution subsection 3.2.1, and the rest of the
parameters are assumed to be proportional to one, thus of no additional consequence.

At each step of the algorithm, the previous choice of covariance parameters is

carried over, 951’1) = 0;_1. This choice from Remark 3.5 is motivated by incremental

approaches to expectation maximization, and lends itself particularly well to param-
eterized covariances that do not depend on their parameters changing a lot from step
to step.

Next, M iterations of the expectation-maximization algorithm are performed.
The expectation maximization algorithm can be treated as the ‘outer-loop’ [30] in
this optimization procedure.

The cost function is solved using P loops of sub-sampled Newton’s method (3.9)
with a constant learning-rate a making this the ‘inner-loop’ algorithm. As it is pos-
sible to sample from the posterior arbitrarily Remark 2.4, the gradient and Hessian
calculations can be performed using a different number of samples, S, than that of
the number of particles N. Specifically, the gradient is computed using S samples
from the candidate posterior, and the Hessian is computed using S separate samples
from the candidate posterior, for a total of 25 samples.

As the AEnGMF is a particle filter, resampling of N particles is performed at the
end of the algorithm with the EnGMF resampling procedure Procedure 2.3.

The outer loop of the algorithm is illustrated in Figure 1, and a detailed step-by-
step look at the algorithm can be seen in Algorithm 3.1.

Remark 3.13 (Choosing M, P, o, and S). In the authors’ experience, it is much
more advantageous to perform multiple iterations of the expectation maximization
algorithm than that of sub-sampled Newton’s method, thus it is advantageous to
take M > P. It is also advantageous to oversample the gradient and Hessian, thus
S > N. By far the hardest choice to make is that of the learning-rate a. A learning
rate that is too large (o =~ 1) could cause the algorithm to become unstable, thus

14
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Algorithm 3.1 The Adaptive Ensemble Gaussian Mixture Filter

Input Initial ensemble X{, initial estimate for the parameters 6y, outer loop
iteration count M, inner loop iteration count P, learning rate «, and number of
internal samples S.

fori=1,... do
% Propagate the ensemble forward in time through the model
X? = M( ?—1)
% Initialize the parameters 6 to the parameters from the previous step
95171) = 91',1
% Perform the expectation maximization loop M times
form=1,...,M do
% Construct loss function
L(z,0) =E_,, om [logp(z|0) +logp(6)]

% Initialize the inner loop # parameter
Q(m—i—l,l) o e(m,P—i-l)
A Y

% Perform P steps of subsampled Newton’s method.
forp=1,...,Pdo
% Sample S particles from the candidate posterior.
X ~(s) m(ly, 0")
% Compute the loss gradient
g = Exa[VoL(X, 0P
% Similarly, compute sample Hessian using different samples
X sy m(aly, 0"™)
H = Ex.[V2L(X, 0"
% Compute new estimate of the parameters
oimTPtl g 4 qH g
end for

% Set the current 6 parameter
glm+1) . p(m+1,P+1)
i =0
end for

% Set the 6 parameter for the current time index
0 — gM+1)
i — Y5
% Sample a new ensemble of N particles with new parameters 6;
Xi ~ vy m(@ly, ;)
end for

increasing the cost instead of decreasing it, and thus make it choose parameters 6
that are worse than the original choices. A learning rate that is too small (a« — 0)
could lead to parameters that react poorly to the changing conditions of the states.
From the practitioner’s point of view, this is by far the most important parameter
to choose correctly. Ideally, the parameter o can be chosen through some type of
line search technique [30] that ensures that steps are always taken in a direction that
decreases the error, though this is not explored in this work.

Remark 3.14 (Considerations for the High-dimensional Setting). There are many
considerations to be made for getting the AEnGMF to work in the high-dimensional
setting. First is that the computation of the covariance cannot be made explicitly.

15
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544 This can be resolved by utilizing a covariance estimate that does not have to be ex-
545 plicitly computed like that of the shrinkage estimate in (3.22). Matrix inverse vector
546 products of (3.22) can also be computed without explicit computation of the entire
547 matrix. The normalizing factor issue in Remark 2.2 can also be mitigated by this
548 covariance matrix estimate. Another problem is the resampling procedure in Pro-
549 cedure 2.3, which requires the computation of matrix square root vector products.
Methods such as those proposed in [2, 19, 15] could be utilized to solve this issue,
though this is still an open problem. A final consideration is that the intermediate re-
sults or approximations of the densities could represent non-physical states, thus spe-
cial consideration must be given to those problems, especially in the high-dimensional
setting.

ot Ot ot Ut Ot
ot ot ov Ut Ut
N o= O

A &

ot

Remark 3.15 (Computational complexity of the AEnGMF). Take n to be the
dimension of the full state, m to be the dimension of the observations, ¢ to be the
dimensions of the parameters 0, and N to be the ensemble size. The dominant terms
of the EnGMF update involve constructing the covariance, computing the gain matrix
and updating the covariance, which in the worst case has computational complexity
O(m3N + m?nN + n?N). The resampling procedure Procedure 2.3 has complexity
O(n3N). For the AEnGMF, the cost of computing the Hessian in the worst case,
where the gradients need to be computed by repeat evaluation of the cost function,
the complexity becomes O(¢?n3N). Thus, the total complexity of the AEnGMF is

v v Oov Ot QOu ot Ot ot Ot
S S G Ot ot gt Ot
= O © 0w 3

D O
W N

561 (3.30) O (MP[Crnaur + ¢°n°N] + Cencuyr)

565 where CgpgMmr is the complexity of the EnGMF. Thus, the cost of the algorithm has
566 to be weighted against the cost of propagating more particles through the forward
567 model dynamics.

568 4. Numerical Experiments. The aim of the numerical experiments is first to
569 demonstrate the viability and convergence of the proposed AEnGMF on small-scale
570 problem, and secondly to demonstrate the more complicated covariance parameteri-
571 zation approaches on a larger-scale problem.

572 4.1. Lorenz ’63. With the first set of experiments we aim to look at a highly
573 mnon-linear system with a non-linear observation operator. We focus on the stan-
574 dard EnGMF case of the Kernel covariance parameterized by the bandwidth param-
575 eter (3.10).
576 We take the the 3-variable Lorenz ’63 equations [26],

¥ =0y —x),
577 (4.1) vy =z(p—2),

2 =1y - Bz,
578 with canonical parameters o = 10, p = 28, and g = %. The time between assimilations
579 is taken to be At = 0.5, which allows the system enough time to evolve in a highly
580 non-linear manner. The non-linear dynamics are propagated through time with an
581 adaptive Runge-Kutta method [16] with absolute and relative tolerances of 10711 in
582 order to simulate a costly forward model calculation.
583 It is known [20] that the system (4.1) has three critical points, one at the origin,
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Fic. 2. RMSE simulation results for the Lorenz ’63 equations for four different data assimi-
lation algorithms. The top plot represents the mean RMSE value across all runs, while the bottom
plot represents three standard deviations of error around the mean. The blue line with circular
marks represents the AEnGMF, the red line with square marks represents the canonical EnGMF
with Silverman’s rule of thumb, the yellow line with © marks represents the EnGMF with a scaled
Silverman’s rule of thumb, and the Raspberry line with diamond marks represents the EnKF. Two
baseline lines, running the EnKF and a particle filter (SIR) for a high particle number are also
provided to provide theoretical bounds.

and in the center of each of the butterfly wings. The first non-zero critical point,

Le = /6(10_1)7
(4.2) ye =/Blp—1),
Ze=p—1,

defines the center of one of the wings of the butterfly, with the other center being
(=Z¢, —Ye, zc) and the origin being (0,0,0). For the non-linear observation operator
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Fic. 3. SNEES simulation results for the Lorenz ’63 equations for four different data assimi-
lation algorithms. The top plot represents the mean SNEES value across all runs, while the bottom
plot represents three standard deviations of error around the mean. The lines representing the al-
gorithms are identical to those in Figure 2. The dashes lines around the main lines represent three
standard deviations over the samples. The ideal SNEES of one is represented by the constant gray
dashed line.

we measure the distance from the critical point (4.2) to the point being measured,

(4.3) H(x,y,2) = V(@ = 2)? + (y — ye)? + (2 — 20)2,

as a scalar observation, with Gaussian error with an error variance of R = 1.

The goal of this experiment is to show that the various variants of the EnGMF
are superior to the ensemble Kalman filter (EnKF) and converge to exact Bayesian
inference in the limit of particle number (N — o0). We therefore calculate two
reference boundaries for this problem, one using the EnKF for a large ensemble size
(N = 1000) and for the sequential importance resampling (SIR) particle filter with a
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large number of particles (N = 1000), specifically the variant found in [37].

It is known in the literature [40, 21] that Silverman’s rule-of-thumb is usually
an over-estimate of the optimal bandwidth term. We thus attempt to find a scaling
factor 0 < s < 1 such that the bandwidth parameter defined by the product,

(44) 12N = SﬁGaussmna

would produce the minimal error for our choice of number of particles. From a quick
parameter sweep, it was determined that s = 0.3 provides a good factor, that is
optimal for a high number of particles.

Thus, we run four different algorithms, the EnKF, the AEnGMF, the EnGMF
with Silverman’s rule of thumb, and the EnGMF with Silverman’s rule of thumb
scaled by s = 0.3, for this model setup for various numbers of particles ranging from
N =25 to N = 500.

All experiments were run for 48 independent initial ensembles, with the same truth
but different observations, for 5500 assimilation steps with the first 500 discarded for
spinup, meaning that the first 500 steps do not count into the error calculations to
let the filter reach a steady state. The mean of the spatio-temporal RMSE,

1 2
(4.5) RMSE(z, #t) = ﬁZZ(’IH )

=1 =1

is calculated between the statistical mean z and the truth z?, over the 12 runs and
is the metric by which the efficacy of the algorithms is determined. In order to check
the consistency, the mean of the scaled normalized estimated error squared (SNEES)
metric [44] is utilized,

T
(4.6) SNEES(z,2') = LTZ Tpel(z, —al),

where P{ is the estimate of the posterior covariance at time index i. A SNEES of
one is considered to be ideal, as that means that the error predicted by the filter is
in line with the actual error of the filter. Additionally, if the SNEES is not one, it
is better for the filter to be more conservative, meaning the SNEES is less than one,
that overconfident, meaning a SNEES greater than one.

For the choices of parameters in Algorithm 3.1, we choose M = 5 loops of the
expectation maximization algorithm, P = 1 loops of sub-sampled Newton’s method,
sampling S = N exactly as many samples as there are particles, and a high learning
rate of & = 1. The previous parameter choices were hand-tuned to balance error and
time to solution. The Rayleigh distribution with mean of Silverman’s rule-of-thumb
is chosen for the bandwidth parameter just like in subsection 3.2.1.

The results of the RMSE experiments are visually demonstrated in Figure 2.
As can be seen, the AEnGMF is consistently lower in error than the EnGMF with
bandwidth equivalent to Silverman’s rule-of-thumb, and provides lower error in the
particle number range of N = 25 to N = 100. The EnGMF with scaling factor s = 0.3
is the only algorithm to perform worse than the EnKF for N = 25, but also produces
the lowest error between N = 300 and N = 500. Crucially, almost all algorithms have
the same error bounds, as shown by the 3-c plot of the RMSE, except for the The
EnGMF with scaling factor s = 0.3, which has a significantly higher error standard
deviation. This means that the AEnGMF lowers the error without sacrificing stability.
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For the SNEES of the experiments, demonstrated in Figure 3, the AEnGMF lies
between the EnGMF and the EnGMF with scaling facotr s = 0.3, both in terms
of raw SNEES value and in terms of standard deviation. As both algorithms are
conservative for higher particle numbers, this is not a particularly surprising result.

It can be seen that the EnGMF family of methods converges to the SIR limit
very slowly, driven by the sublinear rate of convergence. The practical use of the
Rayleigh distribution subsection 3.2.1 for achieving this effect can be questioned as
the convergence is clearly sub-optimal. A better choice of the distribution of the
bandwidth parameter is required.

Finally, we report the practical computational time increase of the AEnGMF over
the EnGMF. For the full forecast-analysis loop a 1.2 to 1.7 times increase in compu-
tational cost was observed, meaning that when the computational time is dominated
by the forward model runs, the cost of the AEnGMF is not an overly significant
computational burden.

4.2. Lorenz ’96. For the next set of experiments, we look at the case of an un-
dersampled (N < n) estimate of the prior distribution. We look at two different types
of covariance matrix parameterizations: one based on covariance shrinkage (3.22)
with the target matrix being the diagonal of the statistical covariance (3.25), and a
localization-based covariance matrix estimate (3.28).

For the model of interest we take the 40-variable Lorenz ’96 equations [27],

(47) x;c:—xk,l(xk,g—karl)—xk—l—F..., k=1,...,40,

with cyclic boundary conditions, and the forcing factor F' = 8. For the time between
assimilations we take one day of model time which is equivalent to a At = 0.2, leading
to a high level of non-linearity in the system. The non-linear dynamics are propagated
through time with an adaptive Runge-Kutta method [16] with absolute and relative
tolerances of 1076,

We want to compare the AEnGMF approach of adaptively choosing the param-
eters of the Kernel covariance with that of the more classic EnGMF approach where
the parameters are determined by a known good heuristic. We also want to compare
with a base-line state-of-the-art algorithm, the localized ensemble Kalman filter. To
that end, we perform experiments on the following set of filters:

1. the shrinkage-based AEnGMF (Shr-AEnGMF), with parameters of 37 for
the bandwidth and ¢; = tanh™'~;, for an unbounded transformation of the
shrinkage parameter 0 < v; < 1,

2. the shrinkage-based EnGMF (Shr-EnGMF) with bandwidth defined by Silver-
man’s rule-of-thumb (3.12), 87 = 87 ¢, ssian a0d the RBLW (3.24) shrinkage
parameter v; = ¥; RBLW,

3. the localized AEnGMF (LAEnGMF) with parameters of 32 for the bandwidth
and ¢; = ./r; for an unbounded transformation of the localization radius

0 <7y,
4. the localized EnGMF (LEnGMF) with bandwidth defined by Silverman’s
rule-of-thumb (3.12), 87 = B2 q,ussian a0d a fixed radius of r; = 4,

5. and the localized EnKF (LEnKF) with fixed radius r; = 4 for a useful com-
parison with a state-of-the-art filter.
For the non-linear observation operator, we take the point-wise non-linear operator,

(4.8) Hz;) = % l1 + ('fé')oul :
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Fic. 4. Simulation results for the Lorenz ’96 equations for five different data assimilation
algorithms. The dark blue line with circle marks represents the AEnGMF with a shrinkage-based
estimate to the covariance , with the light red line with square represents the standard EnGMF with
a shrinkage-based estimate to the covariance, the yellow line with © marks represents a localized
AEnGMF, the light-blue line with plus marks represents a localized EnGMF, and the raspberry line
with diamond marks represnts the localized EnKF.

as found in [5], with w = 5 for a medium level of non-linearity, with the observation
covariance matrix being set to R = iI40- The number of particles is taken to range
from as little as N =5 to as high as N = 40.

All experiments were run for 48 independent initial ensembles, with the same truth
but different observations, for 5500 assimilation steps with the first 500 discarded for
spinup, meaning that the first 500 steps do not count into the error calculations to let
the filter reach a steady state. For our error metric we again take the spatio-temporal
RMSE (4.5).

For the choices of parameters in Algorithm 3.1, we choose M = 1 loops of the
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expectation maximization algorithm, P = 1 loops of sub-sampled Newton’s method,
sampling S = 100 to sample in the excess, and a low learning rate of @ = le —
2. The Rayleigh distribution with mean of Silverman’s rule-of-thumb is chosen for
the bandwidth parameter just like in subsection 3.2.1, with both the radius r and
shrinkage parameter v having distributions proportional to one along all of their
support as they are not required for convergence.

The results for this round of experiments can be seen in figure Figure 4. At around
N = 30 particles, all algorithms perform roughly the same, thus the interesting be-
havior occurs when there are fewer particles. Both versions of the EnGMF without
adaptive covariance estimates (Shr-EnGMF and LEnGMF) perform worse than the
localized EnKF. The adaptive versions of the same algorithms (Shr-AEnGMF and
LAEnGMF) perform significantly better than all other tested algorithms. The the
LAEnGMF practically converges for N = 10 particles, and the Shr-AEnGMF practi-
cally converges for N = 20 particles. Additionally the Shr-AEnGMF and LAEnGMF
have tighter error bounds than all the other tested algorithms, potentially signifying
that the adapative nature of the algorithm is better able to handle outlier scenar-
ios. These results highlight the need and utility of the adaptive covariance estimate
approach in the EnGMF presented in this paper.

5. Conclusions. By leveraging parameterized sample covariance estimates and
the expectation maximization algorithm, this work introduced the adaptive ensem-
ble Gaussian mixture filter (AEnGMF) as an extension of the ensemble Gaussian
mixture filter (EnGMF). Theoretical results about the convergence properties of this
filter were derived by making assumptions about the distribution of the kernel band-
width. Numerical results have verified the theoretical convergence properties of the
AEnGMF, and have shown that for a certain set of parameters the AEnGMF has
superior convergence to that of the EnGMF.

Future work could extend the AEnGMF to a smoothing [37] framework, a hybrid
filtering [18] framework, and to a multifidelity filtering [32] framework. An active
research direction is in applying the AEnGMF to a real-world orbit tracking prob-
lem [44]. Work exploring practical consideration on choosing the parameters discussed
in Remark 3.13 is also of independent interest.
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