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This paper presents a filtering technique based on a consider Extended Kalman filter for
estimating the aerodynamic angles and the wind components for the atmospheric flight phase of
a launch vehicle, using measurements provided by an Inertial Measurement Unit, a GPS sensor,
and an Air Data System. An original filter formulation is presented, where the wind speed
components are considered as filter states in place of the aerodynamics angles, which are found
a-posteriori. Also, a first-order Gauss-Markov process is used to account for the elastic rotation
at the gimbal, while a multiplicative error quaternion formulation is adopted to provide an
accurate yet robust reconstruction of the LV attitude.

Simulation results are presented and discussed for the flight of a realistic model of the
Ares-I LV. The methodology appears suitable for the estimation of the angle of attack, sideslip
angle, and wind speed components, albeit with a high level of uncertainty in model parameters
knowledge and wind data.

I. Introduction
In this paper, a filtering technique for post-flight analyses is proposed to estimate the aerodynamic angles and

the wind components during the atmospheric flight of a launch vehicle (LV). The dynamics of LVs exhibit unique
characteristics during the first stage of flight, including rapid variations in inertial and aerodynamic parameters and
interactions between low and high-frequency modes due to the slender shape of the vehicle. Accurately modeling the
vehicle is challenging due to safety and cost constraints that limit dedicated flight tests with specific maneuvers.

The scope of this study is to provide a tool that can contribute to various areas of research, such as uncertainty
quantification in LV models, where uncertainties arise from measurement errors, environmental conditions, and modeling
assumptions. Therefore, developing robust techniques to accurately estimate and propagate these uncertainties remains
a significant challenge. To this aim, an accurate description of the nonlinear LV dynamics is crucial to thoroughly test
estimation methodologies, as they often rely on simplified process models, which are typically assumed to ensure both
reliability and simplicity. A reliable estimator of aerodynamic angles and wind velocity is also beneficial to enhance
the accuracy of the current balloon-based wind data collection method before launch and, for instance, improve the
accuracy of post-flight trajectory reconstruction activities.

Various methodologies are proposed in the literature to estimate aerodynamic angles and wind profiles for flight
vehicles. Karlgaard et al. [1] combines flight data from weather balloons, meteorological sounding rockets, and onboard
pressure sensors to reconstruct the atmospheric density and winds. Vitale et al. [2] estimates the wind profile during a
flight test of a reusable reentry vehicle using Gauss-Markov models and an Unscented Kalman Filter. Duttaet al. [3]
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evaluates trajectory, angles of attack, sideslip, and atmospheric parameters for a Mars planetary entry mission using
sensor measurements and filtering techniques.

Other studies solve the same estimation problem in real-time, with the aim of improving the management of structural
loads for LVs in load-alleviation systems. The use of wind sensors, either true or virtual, as well as a LIDAR wind sensor,
is proposed by Boelitz et al.[4] in order to provide near real-time wind measurements. In Ref. [5], the aerodynamic
angles are determined for load-relief feedback by a Kalman filter that accounts for a simplified LV dynamical model
and uses measurements of lateral accelerations provided by the inertial navigation system (INS). Within the same
application area, Simplicio et al.[6, 7] present a disturbance observer for onboard wind anticipation that drives a
load-relief compensator.

An estimator based on a consider version of the Extended Kalman filter (CEKF) [8] is proposed in this study where
the components of the wind speed are considered as filter states and the aerodynamics angles are determined a-posteriori.
Unlike a previous work by the same authors [9], the method propagates the airspeed velocity components and uses the
true airspeed as measurement. A multiplicative error quaternion formulation (MEKF) is also adopted. The process
model takes into account the elastic rotation of the section perpendicular to the nozzle null rotation axis at the gimbal
location so as to estimate the effect of elasticity on the thrust direction. The effects of non-collocated sensors are also
accounted for in terms of their displacement from c.g. location, with the goal of improving model fidelity.

The paper is organized as follows. The mathematical model of the vehicle is first recalled, with reference to a
medium-fidelity simulation model of the Ares-I LV in atmospheric flight. Next, the principal aspects and mathematical
framework of sequential filtering are recalled, and the state and measurement equations for the CMEKF are reported.
Results obtained by simulations and Monte Carlo campaigns are then presented and discussed with the objective of
evaluating the performance and suitability of the approach. A section of conclusions ends the paper.

II. Mathematical Model

A. Launch vehicle
The LV model features a 6 degree-of-freedom rigid-body dynamics, a spherical Earth with constant angular rate

𝜔⊕ , and static aerodynamic and thrust forces and moments. Inertial coupling due to nozzle rotation is taken into
consideration, and Thrust Vector Control (TVC) actuator dynamics is modeled by a second-order transfer function
with a pure delay to represent hardware processing time, where gimbal angles and angular rates have saturation limits.
Finally, the structural dynamics of the model are represented by the first three bending modes, while sloshing and
aeroelastic effects are neglected. Reference is made to Appendix .A.6 for the definition of the reference frames.

Specific symbols and notation are employed in what follows. In particular, he angular rate of frame F𝐴 relative to
F𝐶 is represented by the vector 𝝎𝐴𝐶 . When a vector is denoted with a subscript [𝐴], it is expressed in the frame F𝐴. If
not explicitly mentioned, vectors are assumed to be represented in the body frame F𝐵. The rotation matrix from frame
F𝐴 to F𝐶 is indicated as R𝐶𝐴.

The equations of motion for the LV are expressed in F𝐵 as

𝑚

(
¤𝒗 + 𝝎𝐵𝐼 × 𝒗 + R𝐵𝐹𝝎⊕ × 𝒗 + R𝐵𝐹

(
𝝎⊕ × 𝝎⊕ × 𝒑 [𝐹 ]

))
=F𝑔 + T + F𝐴 + F𝑁 (1)

𝑰 ¤𝝎𝐵𝐼 + 𝝎𝐵𝐼 × (𝑰𝝎𝐵𝐼 ) =M𝐴 + M𝑇 + M𝑁 (2)

where the Earth angular rate 𝝎⊕ = [0, 0, 𝜔⊕]𝑇 , with 𝜔⊕ = 7.291 985 × 10−5 rad/s, represents the velocity of frame
F𝐹 relative to F𝐼 , and 𝒗 and 𝒑 are the ground speed and inertial position of the vehicle c.g., respectively. Assuming a
simple inverse square model for the gravity field, the weight force is given by

F𝑔 = R𝐵𝐸


0
0
𝑔

 (3)

where the rotation matrix R𝐵𝐸 is expressed using the Shuster’s quaternion multiplication [10] as follows

R𝐵𝐸 = 𝑰 − 2𝑒0 [𝒆 ×] + 2[𝒆 ×]2 (4)



being 𝑒0 and 𝒆, respectively, the scalar and vector part of the quaternion 𝑒 = [𝑒0, 𝒆], 𝑰 the identity matrix, and [𝒆×] the
skew-symmetric matrix formed from the vector part of quaternion 𝒆.

A TVC is used to orient the thrust direction for control and stabilization purposes. The thrust force T is applied at
the nozzle pivot point and directed along the 𝑥-axis of a frame F𝑁 fixed to the nozzle. The nozzle orientation with
respect to the LV airframe F𝐵 is given by the matrix R𝑁𝐵 = 𝑅2 (𝛿𝑧)𝑅3 (𝛿𝑦) that reads

R𝑁𝐵 =


cos (𝛿𝑧) 0 sin (𝛿𝑧)

0 1 0
− sin (𝛿𝑧) 0 cos (𝛿𝑧)



cos

(
𝛿𝑦

)
− sin

(
𝛿𝑦

)
0

sin
(
𝛿𝑦

)
cos

(
𝛿𝑦

)
0

0 0 1

 (5)

being 𝛿𝑦 and 𝛿𝑧 the nozzle rotation angles (also referred for the sake of simplicity as the TVC angles).
As a result of the nozzle rotation commanded by the TVC, the components of the thrust vector in the body frame are

expressed as

T = T𝑟𝑖𝑔 +


0
𝑇𝑟𝑖𝑔𝑦𝜎𝐺𝑦

𝑇𝑟𝑖𝑔𝑧𝜎𝐺𝑧

 , (6)

where 𝑇 is the thrust magnitude, T𝑟𝑖𝑔 is the ideal thrust not considering the elastic deformation of the vehicle, given by

T𝑟𝑖𝑔 =


𝑇𝑟𝑖𝑔 𝑥

𝑇𝑟𝑖𝑔𝑦

𝑇𝑟𝑖𝑔𝑧

 = R
𝑇
𝑁𝐵


𝑇

0
0

 , (7)

and the rotation matrix R𝑁𝐵 is given by Eq.(5). The angles 𝜎𝐺𝑦 and 𝜎𝐺𝑧 represent the (additional) gimbal rotations
with respect to the undeformed axis due to the flexible degrees of freedom. Note that 𝜎𝐺𝑥 is zero as the elastic
deformation in the axial direction is neglected. The moment due to the thrust is expressed as

M𝑇 = ( 𝒍𝑔 + 𝝓𝐺) × T (8)

where 𝒍𝑔 = [𝑙𝑔𝑥
, 𝑙𝑔𝑦

, 𝑙𝑔𝑧 ]𝑇 is the position vector of the nozzle pivot point.
The quasi-steady-state aerodynamic force and moment read

F𝐴 =


−𝐷
𝐶

−𝑁

 , M𝐴 = 𝒍𝑎𝑝 ×

−𝐷
𝐶

−𝑁

 +

𝑄𝑆𝑏

[
𝐶𝑙𝛼 (𝑀)𝛼 + 𝐶𝑙𝛽 (𝑀)𝛽

]
𝑄𝑆𝑏𝐶𝑚𝛼

(𝑀)𝛼
𝑄𝑆𝑏𝐶𝑛𝛽 (𝑀)𝛽

 (9)

where 𝒍𝑎𝑝 = [𝑙𝑥𝑎𝑝 , 𝑙𝑦𝑎𝑝 , 𝑙𝑧𝑎𝑝]𝑇 is the position vector of the aerodynamic reference point (AP), and 𝐷, 𝐶, and 𝑁 are
the axial (drag), lateral, and normal force components, respectively, given by

𝐷 = 𝑄𝑆𝐶𝐴(𝑀) − 𝐹base

𝐶 = 𝑄𝑆𝐶𝑌𝛽 (𝑀)𝛽
𝑁 = 𝑄𝑆𝐶𝑁𝛼 (𝑀)𝛼

(10)

where 𝐶𝐴(𝑀) is the axial-force coefficient, 𝐶𝑌𝛽 (𝑀) and 𝐶𝑁𝛼
(𝑀) are the slopes of the side-force and normal force

coefficients with respect to 𝛽 and 𝛼, respectively, expressed in tabular form as functions of the Mach number (𝑀).
The aerodynamic derivatives 𝐶𝑙𝛼 (𝑀), 𝐶𝑙𝛽 (𝑀), 𝐶𝑚𝛼

(𝑀), and 𝐶𝑛𝛽 (𝑀) also depend on 𝑀. In Eqs. 10 𝑄 = 1
2 𝜌𝑉

2
𝑎 is

the dynamic pressure, 𝜌 is the atmospheric density, 𝑉𝑎 is the airspeed modulus, 𝑏 and 𝑆 are the LV diameter and
cross-section, respectively, and 𝐹base is the base force term resulting from the aerodynamic interaction between the LV
base and the surrounding fluid and/or exhaust flow, which depends on altitude.

The aerodynamic angles are

𝛼 = arctan
(
𝑤𝑎

𝑢𝑎

)
(11)

𝛽 = arctan
(

𝑣𝑎√︁
𝑢2
𝑎 + 𝑤2

𝑎

)
(12)



and the airspeed is V𝑎 = 𝒗 − 𝒗𝑤 , where 𝒗 and 𝒗𝑤 are the ground and wind speeds, respectively, is written as

V𝑎 =


𝑢𝑎

𝑣𝑎

𝑤𝑎

 = 𝑉𝑎


cos𝛼 cos 𝛽

sin 𝛽

sin𝛼 cos 𝛽

 (13)

The actuator dynamics is described by a cascade of two transfer functions, that model a second-order system and a
pure delay 𝜏 = 20 ms due to the hardware processing time, that is approximated by a second-order Padè approximation,
according to [

¤𝑑
¥𝑑

]
=

[
0 1

− 12
𝜏2 − 6

𝜏

] [
𝑑

¤𝑑

]
+

[
0

− 12
𝜏2

]
𝛿𝑐 (14)

𝛿�̃� = ¤𝑑 + 𝛿𝑐 (15)

where 𝛿𝑐 is the TVC command, and 𝛿�̃� is the delayed version of the same signal, given by 𝛿�̃� = ¤𝑑 + 𝛿𝑐. The transfer
function of the TVC dynamics is

𝑊𝑇𝑉𝐶 (𝑠) =
𝛿

𝛿�̃�
=

𝜔2
𝑇𝑉𝐶

𝑠2 + 2𝜁𝑇𝑉𝐶𝜔𝑇𝑉𝐶 𝑠 + 𝜔2
𝑇𝑉𝐶

(16)

where 𝜁𝑇𝑉𝐶 and 𝜔𝑇𝑉𝐶 represent the damping ratio and natural frequency, respectively.
To account for the vehicle elasticity, the first three lateral bending modes are considered while neglecting the

coupling between pitch and yaw lateral modes due to the axial symmetry of the vehicle[11]. The model reads

¥q + 2𝜁𝛀 ¤q +𝛀2q = �̄�𝐺T (17)

where 𝜁 is the damping ratio, set to 0.005 [12], 𝛀 is the natural frequency matrix, and �̄�𝐺 is the mass-normalized
displacement matrix at the pivot point. The vector q indicates the generalized coordinates, and the relation 𝝓𝐺 = �̄�𝐺q
holds, where 𝝓𝐺 represents the physical displacements at the nozzle pivot point 𝐺. Similarly, using the mode slope
matrix �̄� = 𝑑

𝑑q�̄�, the angular displacement (𝝈G), rate ( ¤𝝈G), and acceleration ( ¥𝝈G) at the same point are computed. As
for the elastic motion of the structure at IMU location, it results in 𝝓IMU = �̄�q, ¤𝝓IMU = �̄� ¤q, and ¥𝝓IMU = �̄�¥q for linear
displacement, velocity, and acceleration, respectively, where �̄� is the displacement matrix at the sensor location. The
angular displacement (𝝈IMU), rate ( ¤𝝈IMU), and acceleration ( ¥𝝈IMU) at the same IMU location are also computed.

The effects of nozzle rotation in terms of force and moment in F𝑏 are [12]

F𝑁 = 𝑚𝑁 𝒍𝑛 × ¤𝝎𝑁 + 𝝎𝐵𝐼 × (𝑚𝑁 𝒍𝑛 × 𝝎𝑁 ) (18)
M𝑁 = (𝑰𝑁 − 𝒍𝑔 × 𝑚𝑁 𝒍𝑛×) ¤𝝎𝑁 + 𝝎𝐵𝐼 × (𝑰𝑁 − 𝒍𝑔 × 𝑚𝑁 𝒍𝑛×)𝝎𝑁 (19)

Given the nozzle mass 𝑚𝑁 , and the position vectors 𝒍𝑔 and 𝒍𝑛 in F𝑏, where 𝒍𝑛 is the distance between nozzle pivot
point and nozzle c.g., it is

𝒍𝑔 =


−𝑥𝑔

0
0

 𝒍𝑛 =


−𝑥𝑛 cos

(
𝛽𝜓

)
cos (𝛽𝜃 )

−𝑥𝑛 sin
(
𝛽𝜓

)
𝑥𝑛 sin (𝛽𝜃 ) cos

(
𝛽𝜓

)
 (20)

and, the nozzle angular rate 𝝎𝑁 and its derivative ¤𝝎𝑁 , respectively

𝝎𝑁 =


sin (𝛽𝜃 ) ¤𝛽𝜓

¤𝛽𝜃

cos (𝛽𝜃 ) ¤𝛽𝜓

 (21)

¤𝝎𝑁 =


sin (𝛽𝜃 ) ¥𝛽𝜓 + cos (𝛽𝜃 ) ¤𝛽𝜓 ¤𝛽𝜃

¥𝛽𝜃

− sin (𝛽𝜃 ) ¤𝛽𝜓 ¤𝛽𝜃 + cos (𝛽𝜃 ) ¥𝛽𝜓

 (22)



Assuming a diagonal inertia matrix of the nozzle 𝑰𝑁=R𝐵𝑁 𝑰𝑁 [𝑁 ]R𝑁𝐵 ≈ 𝑰𝑁 [𝑁 ] , valid in the case of small rotations
between the frames F𝑏 and F𝑁 , that is

𝑰𝑁 =


𝐼𝑁𝑥

0 0
0 𝐼𝑁𝑦

0
0 0 𝐼𝑁𝑧

 (23)

the components of F𝑁 and M𝑁 are expressed as

𝐹𝑁𝑥
=𝑚𝑁𝑥𝑛

[ (
sin (𝛽𝜃 ) ¤𝛽𝜓 ¤𝛽𝜃 − cos (𝛽𝜃 ) ¥𝛽𝜓

)
sin

(
𝛽𝜓

)
+ 𝑞 sin

(
𝛽𝜓

)
sin (𝛽𝜃 ) ¤𝛽𝜓 − 𝑞 cos

(
𝛽𝜓

)
cos (𝛽𝜃 ) ¤𝛽𝜃

− 𝑟 cos
(
𝛽𝜓

) ¤𝛽𝜓 − sin (𝛽𝜃 ) cos
(
𝛽𝜓

) ¥𝛽𝜃

] (24)

𝐹𝑁𝑦
=𝑚𝑁𝑥𝑛

[
−

(
sin

(
𝛽𝜓

)
sin (𝛽𝜃 ) ¤𝛽𝜓 − cos

(
𝛽𝜓

)
cos (𝛽𝜃 ) ¤𝛽𝜃

)
𝑝

−
(
sin

(
𝛽𝜓

)
cos (𝛽𝜃 ) ¤𝛽𝜓 + sin (𝛽𝜃 ) cos

(
𝛽𝜓

) ¤𝛽𝜃

)
𝑟 + cos

(
𝛽𝜓

) ¥𝛽𝜓] (25)

𝐹𝑁𝑧
=𝑚𝑁𝑥𝑛

[ (
sin (𝛽𝜃 ) ¥𝛽𝜓 + cos (𝛽𝜃 ) ¤𝛽𝜓 ¤𝛽𝜃

)
sin

(
𝛽𝜓

)
+ 𝑝 cos

(
𝛽𝜓

) ¤𝛽𝜓
+ 𝑞 sin

(
𝛽𝜓

)
cos (𝛽𝜃 ) ¤𝛽𝜓 + 𝑞 sin (𝛽𝜃 ) cos

(
𝛽𝜓

) ¤𝛽𝜃 − cos
(
𝛽𝜓

)
cos (𝛽𝜃 ) ¥𝛽𝜃

] (26)

𝑀𝑁𝑥
= − 𝐼𝑁𝑥

(
sin (𝛽𝜃 ) ¥𝛽𝜓 + cos (𝛽𝜃 ) ¤𝛽𝜓 ¤𝛽𝜃

)
+

[
𝐼𝑁𝑦

¤𝛽𝜃 − 𝑚𝑁𝑥𝑛𝑥𝑔
(
sin

(
𝛽𝜓

)
sin (𝛽𝜃 ) ¤𝛽𝜓 − cos

(
𝛽𝜓

)
cos (𝛽𝜃 ) ¤𝛽𝜃

) ]
𝑟

−
(
𝐼𝑁𝑧

cos (𝛽𝜃 ) + 𝑚𝑁𝑥𝑛𝑥𝑔 cos
(
𝛽𝜓

) )
𝑞 ¤𝛽𝜓

(27)

𝑀𝑁𝑦
= − 𝐼𝑁𝑥

𝑟 sin (𝛽𝜃 ) ¤𝛽𝜓 − 𝐼𝑁𝑦
¥𝛽𝜃 + 𝑚𝑁𝑥𝑛𝑥𝑔

[ (
sin (𝛽𝜃 ) ¥𝛽𝜓 + cos (𝛽𝜃 ) ¤𝛽𝜓 ¤𝛽𝜃

)
sin

(
𝛽𝜓

)
− cos

(
𝛽𝜓

)
cos (𝛽𝜃 ) ¥𝛽𝜃

]
+

(
𝐼𝑁𝑧

cos (𝛽𝜃 ) + 𝑚𝑁𝑥𝑛𝑥𝑔 cos
(
𝛽𝜓

) )
𝑝 ¤𝛽𝜓

(28)

𝑀𝑁𝑧
=𝐼𝑁𝑥

𝑞 sin (𝛽𝜃 ) ¤𝛽𝜓 + 𝐼𝑁𝑧

(
sin (𝛽𝜃 ) ¤𝛽𝜓 ¤𝛽𝜃 − cos (𝛽𝜃 ) ¥𝛽𝜓

)
− 𝑚𝑁𝑥𝑛𝑥𝑔 cos

(
𝛽𝜓

) ¥𝛽𝜓 −
[
𝐼𝑁𝑦

¤𝛽𝜃 − 𝑚𝑁𝑥𝑛𝑥𝑔
(
sin

(
𝛽𝜓

)
sin (𝛽𝜃 ) ¤𝛽𝜓 − cos

(
𝛽𝜓

)
cos (𝛽𝜃 ) ¤𝛽𝜃

) ]
𝑝

(29)

where 𝛽𝜃 and 𝛽𝜓 are the angles between the F𝐵 and F𝑁 x-axis and y-axis, respectively, and 𝑝, 𝑞, and 𝑟 are the
components of 𝜔𝐵𝐼 components.

B. Sensor models
Measurements from various sensors, including IMU, GNSS receiver, and an ADS, are used for estimation purposes.

The IMU, usually placed ahead of the c.g., provides measurements of the inertial non-gravitational acceleration 𝒂IMU
and the body-to-inertial angular rate 𝝎𝐵𝐼 in the frame F𝐵. The IMU location for the considered application is reported
in Table 1, where the coordinates are expressed in the structural reference frame F𝑆 (see Appendix .A.6). Systematic
errors and noise that affect the measurements are modeled according to Ref. [13]. Consequently, the accelerometer and
gyro data are modeled as follows

�̃�IMU = (𝑰 + 𝚲𝑎 + 𝑴𝑎 + 𝑵𝑎)𝒂IMU + 𝜷𝑎 + 𝒘𝑎 (30)
¤𝜷𝑎 = 𝒘𝑏𝑎

(31)
�̃�𝐵𝐼 = (𝑰 + 𝚲𝜔 + 𝑴𝜔 + 𝑵𝜔)𝝎𝐵𝐼 + 𝜷𝜔 + 𝒘𝑔 (32)
¤𝜷𝜔 = 𝒘𝑏𝑔 (33)

Measured quantities are denoted by a tilde, 𝒘 is a zero mean white Gaussian noise, while the subscripts 𝑎 and 𝑔

indicate accelerometer and gyro, respectively. Matrices 𝚲𝑖 = diag(𝝀𝑖), 𝑴𝑖 = [𝝁𝑖 ×], and 𝑵𝑖 = 𝑵(𝝂𝑖), denote scale



factor, misalignment, and non-orthogonality, respectively. The notation [𝝁𝑖 ×] refers to the skew-matrix form of vector
𝝁𝑖 for cross product, and 𝑵 is given by

𝑵(𝝂) =


0 𝜈𝑧 𝜈𝑦

𝜈𝑧 0 𝜈𝑥

𝜈𝑦 𝜈𝑥 0

 (34)

An ideal ADS sensor is considered, as uncertainties in Mach number and total air temperature, which contribute to
the definition of the measurement error model in the ADS system, are ignored for the sake of simplicity [? ]. Therefore,
it is assumed that the sensor gives the TAS measurement, as

�̃�T =

√︃
𝑢2
𝑎 + 𝑣2

𝑎 + 𝑤2
𝑎 + 𝑤𝑉T (35)

subjected to random noise 𝑤𝑉T white and Gaussian in nature. Correction factors used to compensate for effects related
to the location of the sensor [14] are not considered for the sake of simplicity.

The GNSS receiver, whose location is reported in Table 1, provides position and velocity output in the F𝐹 frame.
The position output is expressed as

𝒓GNSS[𝐹 ] = 𝒓GNSS[𝐹 ] + 𝒘𝑟 ,𝑐 + 𝒘𝑟 ,𝑤 (36)

¤𝒘𝑟 ,𝑐 = − 1
𝜏𝑐

𝒘𝑟 ,𝑐 + 𝒘𝑑,𝑤 (37)

where 𝒓GNSS[𝐹 ] and 𝒓GNSS[𝐹 ] are, the true and measured positions of the receiver in the ECEF reference frame, F𝐹 ,
respectively. The simplified model used to describe the position error incorporates a combination of an uncorrelated
(white) random noise and a correlated noise sequence, represented by a first-order Markov process. The velocity
measurement is expressed as

�̃�GNSS[𝐹 ] = 𝒗GNSS[𝐹 ] + 𝒘𝑣 (38)

where 𝒗GNSS[𝐹 ] and �̃�GNSS[𝐹 ] are the true and measured planet-relative velocity vectors, respectively, with components
again specified in F𝐹 , and 𝒘𝑣 is a white and Gaussian noise.

Reference is to be made to [15] for further details on the sensor models.

III. Estimation Methodology
The present paper adopts a novel formulation of the filter, where the components of the wind speed are used as filter

states instead of the aerodynamic angles, which, in turn, are calculated after the filtering process. A MEKF is adopted
[8] for attitude estimation where, neglecting higher-order terms, the four-component quaternion can be effectively
replaced by a three-component error vector. This approach is highly effective when dealing with small attitude errors.

The process equations feature first-order Markov processes for the wind velocity. The elastic rotations in the pitch and
yaw planes at the nozzle gimbal are also described using the same processes. In facts, the LV angular rate components
oscillate at a relatively low frequency (below 1 Hz) due to the forcing action of the transversal thrust components
generated by the TVC, which is then projected onto the dynamics of the first elastic mode (with a natural frequency of
1 Hz) (see Eq.(17)). Consequently, the gimbal point oscillates at the same frequency, causing variations of the thrust
axis direction that require correction. Finally, random walk processes are introduced to capture and compensate for
accelerometer and gyro biases, and scale factors, whereas the effects of misalignment and non-orthogonality errors are
neglected in the filter.

The state vector 𝒙 of the filter is

𝒙(𝑡) =
[
𝑢𝑎, 𝑣𝑎, 𝑤𝑎, 𝑢𝑤[𝐸 ] , 𝑣𝑤[𝐸 ] , 𝑤𝑤[𝐸 ] , 𝛿𝜎𝑦

, 𝛿𝜎𝑧
, 𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑟, 𝜙, 𝜃, 𝜷𝑎, 𝜷𝜔 , 𝝀𝑎, 𝝀𝜔

]𝑇
(39)

where [𝑢𝑎, 𝑣𝑎, 𝑤𝑎] are the airspeed components in F𝐵, [𝑢𝑤 , 𝑣𝑤 , 𝑤𝑤] [𝐸 ] are the wind components in F𝐸 , 𝛿𝜎𝑦
, 𝛿𝜎𝑧

are the elastic pitch and yaw angular displacements at the gimbal location, respectively, and [𝑒0, 𝑒1, 𝑒2, 𝑒3, ] are the
attitude quaternion. The position vector of the c.g. of the LV is expressed in terms of geocentric radius 𝑟, latitude 𝜙,
and longitude 𝜃. Next, the vectors 𝜷𝑎 = [𝛽𝑎,𝑥 , 𝛽𝑎,𝑦 , 𝛽𝑎,𝑧]𝑇 , 𝝀𝑎 = [𝜆𝑎,𝑥 , 𝜆𝑎,𝑦 , 𝜆𝑎,𝑧]𝑇 , 𝜷𝜔 = [𝛽𝜔,𝑥 , 𝛽𝜔,𝑦 , 𝛽𝜔,𝑧]𝑇 , and
𝝀𝜔 = [𝜆𝜔,𝑥 , 𝜆𝜔,𝑦 , 𝜆𝜔,𝑧]𝑇 are, respectively, accelerometer biases and scale factors, and gyro biases and scale factors.



Table 1 Parameters of sensor error models.

Sensor Parameter Name Value Unit Location in F𝑆 [m]

IMU

𝜎𝑤𝑎
noise, velocity random walk [100 100 100] 𝜇g/

√
Hz

[45 -0.14 1.52]

𝜎𝑤𝜔
noise, angle random walk [0.005 0.005 0.005] deg/

√
h

𝜎𝑤𝑏𝑎
bias stability [1.38 1.38 1.38]·10−5 𝜇g/

√
h

𝜷𝑎 |𝑡=0 bias constant, accelerometer [100 100 100] 𝜇g
𝜎𝑤𝑏𝜔

bias rate, random walk [6.94 6.94 6.94] ·10−9 deg/h3/2

𝜷𝜔 |𝑡=0 bias constant, gyro [0.02 0.02 0.02] deg/h
𝝀𝑎 scale factor, accelerometer [50 50 50] ppm
𝝀𝜔 scale factor, gyro [30 30 30] ppm
𝝁𝑎 misalignment, accelerometer [60 60 60] 𝜇rad
𝝁𝜔 misalignment, gyro [60 60 60] 𝜇rad
𝝂𝑎 non-orthogonality, accelerometer [30 30 30] 𝜇rad
𝝂𝜔 non-orthogonality, gyro [30 30 30] 𝜇rad

GNSS

𝜏𝑐 autocorrelation time 1800 s

[62.91 1.05 -0.92]
𝜎𝑤𝑑,𝑤

driving noise on position 1 m/s
𝜎𝑤𝑟,𝑤

noise on position 6 m
𝜎𝑤𝑣

noise on velocity 1 m/s
ADS 𝜎𝑤𝑇

noise on TAS 5 m/s /
Nozzle angles 𝜎𝑤𝛿

noise on nozzle angle 0.1 deg /

The input vector 𝒖 is

𝒖(𝑡) =
[
𝛿𝑐𝑚𝑑
𝑦 , 𝛿𝑐𝑚𝑑

𝑧 , 𝑝, 𝑞, 𝑟, 𝑎𝑥

]𝑇
where 𝑝, 𝑞, 𝑟 and 𝑎𝑥 have the known meaning, and 𝛿𝑐𝑚𝑑

𝑦 = 𝛿𝑐𝑚𝑑
𝑦 + 𝑤 𝛿 and 𝛿𝑐𝑚𝑑

𝑧 = 𝛿𝑐𝑚𝑑
𝑧 + 𝑤 𝛿 are the TVC command

angles in the pitch and yaw planes, respectively, affected by the noise 𝑤 𝛿 ∼ N(0, 𝜎2
𝑤𝛿

). The values of 𝜎𝑤𝛿
are reported

in Tab. 1, As usual, the notation N(0,𝑸) indicates a zero-mean white Gaussian noise characterized by the variance
matrix 𝑸.

A. Process model

1. IMU systematic errors
The true angular rates, denoted as 𝝎𝐵𝐼 = [𝑝, 𝑞, 𝑟] are defined in terms of the measured angular rates �̃�𝐵𝐼 provided

by the rate gyros of the IMU, and can be expressed as follows

𝝎𝐵𝐼 = (𝑰 + 𝚲𝜔)−1 (�̃�𝐵𝐼 − 𝜷𝜔) (40)

and 𝑎𝑥 the longitudinal component of the acceleration in F𝐵 at c.g. location modeled as follow

𝒂 = (𝑰 + 𝚲𝑎)−1 ( �̃�IMU − 𝜷𝑎) − (𝝎𝐵𝐼 × (𝝎𝐵𝐼 × 𝒅IMU) − ¤𝝎𝐵𝐼 × 𝒅IMU (41)

where measured acceleration and angular rate are modeled as �̃�IMU = 𝒂IMU + 𝜼𝑎 and �̃�𝐵𝐼 = 𝝎𝐵𝐼 + 𝜼𝜔 with
𝜼𝜔 ∼ N(0, 𝜎2

𝑤𝜔
) and 𝜼𝑎 ∼ N(0, 𝜎2

𝑤𝑎
). The vector 𝒅IMU denotes the position vector of the IMU sensor in reference

frame F𝐵, and ¤𝝎𝐵𝐼 represents a smoothed finite-difference estimate of the actual angular acceleration expressed as

¤𝝎𝐵𝐼 = (𝑰 + 𝚲𝜔)−1 ( ¤̃𝝎𝐵𝐼 − 𝜷𝜔) (42)



which is derived from the measured angular velocity �̃�𝐵𝐼 . Accelerometer, gyro bias and scale factors 𝜷𝑎,𝜷𝜔 , 𝝀𝑎, 𝝀𝜔

respectively, are modeled as a zero-order Markov process

¤𝜷𝑎 =𝜼𝛽𝑎 (43)
¤𝜷𝜔 =𝜼𝛽𝜔

(44)
¤𝝀𝑎 =𝜼𝜆𝑎

(45)
¤𝝀𝜔 =𝜼𝜆𝜔

(46)

where 𝜼𝛽𝑎 ∼ N(0,𝑸𝛽𝑎 ), 𝜼𝛽𝜔
∼ N(0,𝑸𝛽𝜔

), 𝜼𝜆𝑎
∼ N(0,𝑸𝜆𝑎

), 𝜼𝜆𝜔
∼ N(0,𝑸𝜆𝜔

).

2. Airspeed
In the filter process equations, the variations of the airspeed components are expressed as

¤𝑢𝑎 = 𝑎𝑥 − (𝑤𝑎 + 𝑤𝑤) (𝑞 − 𝜂𝜔𝑦
+ 𝑞⊕) + (𝑣𝑎 + 𝑣𝑤) (𝑟 − 𝜂𝜔𝑧

+ 𝑟⊕) − ¤𝑢𝑤 +𝜛𝑥 + 𝑓𝑔𝑥
(47)

¤𝑣𝑎 = 𝑎𝑦 + (𝑤𝑎 + 𝑤𝑤) (𝑝 − 𝜂𝜔𝑥
+ 𝑝⊕) − (𝑢𝑎 + 𝑢𝑤) (𝑟 − 𝜂𝜔𝑧

+ 𝑟⊕) − ¤𝑣𝑤 +𝜛𝑦 + 𝑓𝑔𝑦
(48)

¤𝑤𝑎 = 𝑎𝑧 − (𝑣𝑎 + 𝑣𝑤) (𝑝 − 𝜂𝜔𝑥
+ 𝑝⊕) + (𝑢𝑎 + 𝑢𝑤) (𝑞 − 𝜂𝜔𝑦

+ 𝑞⊕) − ¤𝑤𝑤 +𝜛𝑧 + 𝑓𝑔𝑧 (49)

where

𝑎𝑦 =
1
𝑚

(
1
2
𝜌𝑉2

𝑇𝑆𝐶𝑌𝛽 arctan

(
𝑣𝑎√︁

𝑢2
𝑎 + 𝑤2

𝑎

)
− 𝑇 sin(𝛿𝑐𝑚𝑑

𝑧 + 𝛿𝜎𝑧
+ 𝜂𝛿𝑧 ) cos(𝛿𝑐𝑚𝑑

𝑦 + 𝛿𝜎𝑦
+ 𝜂𝛿𝑦 )

)
(50)

𝑎𝑧 =
1
𝑚

(
−1

2
𝜌𝑉2

𝑇𝑆𝐶𝑁𝛼
arctan

(
𝑤𝑎

𝑢𝑎

)
+ 𝑇 sin(𝛿𝑐𝑚𝑑

𝑦 + 𝛿𝜎𝑦
+ 𝜂𝛿𝑦 )

)
(51)

and 𝑓𝑔𝑥
, 𝑓𝑔𝑦

, 𝑓𝑔𝑧 are the components of the gravity acceleration in F𝐵. Further details on the derivation of Eqs. (47)–(49)
can be found in Appendix .A.6.

3. Relative position
The kinematic equations for LV position are written as follows

¤𝑟
¤𝜃
¤𝜙

 =


0 0 −1
0 1

𝑟 cos 𝜙 0
1
𝑟

0 0


©«R𝐸𝐵


𝑢𝑎

𝑣𝑎

𝑤𝑎

 +

𝑢𝑤

𝑣𝑤

𝑤𝑤

 [𝐸 ]

ª®®®¬ (52)

(53)

4. Attitude
The kinematics of quaternions is represented as follows[

¤𝑒0

¤𝒆

]
=

1
2

([
−𝒆𝑇

𝑒0𝑰 + [𝒆 ×]

])
𝝎𝐵𝐸 (54)

the equation in question represents the variation of the rigid body’s attitude concerning the reference frame F𝐸 , where

𝝎𝐵𝐸 = 𝝎𝐵𝐼 − R𝐵𝐸𝝎𝐸𝐼 (55)

being 𝝎𝐸𝐼 the NED-to-ECI angular velocity in F𝐸

𝝎𝐸𝐼 = [( ¤𝜃 + 𝜔⊕) cos 𝜙, − ¤𝜙, −( ¤𝜃 + 𝜔⊕) sin 𝜙]𝑇 (56)



Since the MEKF approach involves a multiplicative error formulation (in place of the classical additive formulation), a
quaternion error vector 𝛿𝒒 is introduced as

𝛿𝒒 = �̂�−1 ⊗ 𝒒 (57)

where the symbol ˆ refers to the estimated quantity and 𝒒 = [𝑒0 𝒆]𝑇 and the operator ⊗ is the Hamilton quaternion
product.

The equations of attitude kinematics are[
¤̂𝑒0
¤̂𝒆

]
=

1
2

[
0 −�̂�𝑇

𝐵𝐸

�̂�𝐵𝐸 −[�̂�𝐵𝐸×]

]
︸                      ︷︷                      ︸

𝛀(�̂�)

[
𝑒0

𝒆

]
(58)

and, in compact form

¤̂𝒒 =
1
2

[
0

�̂�𝐵𝐸

]
⊗ �̂� (59)

Accordingly, the quaternion error dynamics reads [8]

𝛿 ¤𝒒 = −
[

0
[�̂�𝐵𝐸×]𝒆

]
+ 1

2
𝛿𝒒 ⊗

[
0

𝛿𝝎𝐵𝐸

]
(60)

the first-order approximation of which is

𝛿 ¤𝒒 = −
[

0
[�̂�𝐵𝐸×]𝒆

]
+ 1

2

[
0

𝛿𝝎𝐵𝐸

]
(61)

In order to obtain the process equation for the attitude error, the error dynamics is rewritten in terms of 𝛿𝜶 = 2𝛿𝒆, as

𝛿 ¤𝒆0 = 0 (62)
𝛿 ¤𝜶 = −[�̂�𝐵𝐸×]𝛿𝜶 + 𝛿𝝎𝐵𝐸 (63)

At this point, Eq. (55) is considered for the expression of the error on angular rate 𝛿𝝎𝐵𝐸 = 𝝎𝐵𝐸 − �̂�𝐵𝐸 , where the
matrix R𝐵𝐸 is associated with the one estimated through the attitude error, in the form

R𝐵𝐸 = R𝐵𝐸 (𝛿𝒒)R̂𝐵𝐸 (𝒒) (64)

When the Euler’s angles are sufficiently small the first-order approximation of the rotation matrix can be used, that
is, R𝐵𝐸 (𝛿𝒒) ≈ 𝐼3𝑥3 − [𝛿𝜶×] [8]. By substituting the approximation (𝑰3𝑥3 + 𝚲𝜔)−1 ≈ (𝑰3𝑥3 − 𝚲𝜔) into Eq. (40) and
assuming that scale factors are small enough, Eq. (63) becomes

𝛿 ¤𝜶 =[(𝑰3𝑥3 − �̂�𝜔) (�̃�𝐵𝐼 − �̂�𝜔)×]𝛿𝜶 −
[( 

�̃�𝐵𝐼,𝑥 0 0
0 �̃�𝐵𝐼,𝑦 0
0 0 �̃�𝐵𝐼,𝑧

︸                          ︷︷                          ︸
Ω̃𝑔

−

𝛽𝜔,𝑥 0 0

0 𝛽𝜔,𝑦 0
0 0 𝛽𝜔,𝑧

︸                      ︷︷                      ︸
�̂�𝑔

) (
𝝀𝜔 − �̂�𝜔

)
+

+(𝑰3𝑥3 − �̂�𝜔) (𝜷𝜔 − �̂�𝜔) + (𝑰3𝑥3 − �̂�𝜔)𝜂𝜔

]
− R̂𝐵𝐸 (𝒒) (𝝎𝐸𝐼 − �̂�𝐸𝐼 )

(65)

5. Wind components
The time derivatives of wind velocity components are represented as first-order Markov processes where the

steady-state wind profile is assumed known with𝑊 the mean and 𝜆 the wind direction. For the Down velocity component



of the wind, the mean is considered equal to zero. Accordingly,
¤𝑢𝑤
¤𝑣𝑤
¤𝑤𝑤

 [𝐸 ]

=


− 1

𝜏𝑤𝑙
(𝑢𝑤[𝐸 ] +𝑊 sin(𝜋/2 + 𝜆)𝜂𝑊 ) + 𝜂𝑢𝑤

− 1
𝜏𝑤𝑙

(𝑣𝑤[𝐸 ] +𝑊 cos(𝜋/2 + 𝜆)𝜂𝑊 ) + 𝜂𝑣𝑤

− 1
𝜏𝑤𝑑

(𝑤𝑤[𝐸 ] ) + 𝜂𝑤𝑤

 (66)

with process noise that takes into account the uncertainty on the mean value of wind speed in the form 𝜂𝑊 ∼ N(0, 𝑄𝑊 ),
and the turbulence noise, namely, 𝜂𝑢𝑤 ∼ N(0, 𝑄𝑢𝑤 ), 𝜂𝑣𝑤 ∼ N(0, 𝑄𝑣𝑤 ) and 𝜂𝑤𝑤

∼ N(0, 𝑄𝑤𝑤
). In order to use the

wind acceleration in Eqs. (47),(48) and (49), Eq.(66) is written in the F𝐵 frame
¤𝑢𝑤
¤𝑣𝑤
¤𝑤𝑤

 = R𝐵𝐸


¤𝑢𝑤
¤𝑣𝑤
¤𝑤𝑤

 [𝐸 ]

+ 𝝎𝐵𝐸×R𝐵𝐸


𝑢𝑤

𝑣𝑤

𝑤𝑤

 [𝐸 ]

(67)

The constant values of correlation times 𝜏𝑤𝑙 and 𝜏𝑤𝑑 are obtained using an autocorrelation of the lateral (north and east)
and Down components of the wind velocity respectively. Figure 1 shows an example of the normalized autocorrelation

Fig. 1 Normalized autocorrelation function of the North component of the wind velocity 𝑢𝑤[𝐸 ] .

function of the North component of wind speed. The correlation time is obtained as one-third of the time shift (marked
in the figure by a red bar line) where the function value is 0.05 [16]. This gives the same value, 𝜏𝑤𝑙 = 71/3 s, for the
lateral components, and 𝜏𝑤𝑑 = 28/3 s for the downward component.

6. Elastic displacement
The last process equations deal with the angular displacements, due to the elastic degrees of freedom at the gimbal

point, which are modeled as first-order Markov processes, that is

¤𝛿𝜎𝑦
= − 1

𝜏𝜎𝑦

𝛿𝜎𝑦
+ 𝜂𝛿𝜎𝑦

(68)

¤𝛿𝜎𝑧
= − 1

𝜏𝜎𝑧

𝛿𝜎𝑧
+ 𝜂𝛿𝜎𝑧

(69)

The correlation times 𝜏𝜎𝑦
= 𝜏𝜎𝑧

= 5/3 s have been specified by a trial and error procedure, while 𝜂𝛿𝜎𝑦
∼ N(0, 𝑄 𝛿𝜎𝑦

)
𝜂𝛿𝜎𝑧

∼ N(0, 𝑄 𝛿𝜎𝑧
).



Summing up, the process noise vector 𝜼 ∈ R23 is

𝜼 =

[
𝜂𝑎,𝑥 , 𝜼𝜔 , 𝜂𝛿 , 𝜂𝑊 , 𝜂𝑢𝑤 , 𝜂𝑣𝑤 , 𝜂𝑤𝑤

, 𝜂𝛿𝜎𝑦
, 𝜂𝛿𝜎𝑦

, 𝜼𝛽𝑎 , 𝜼𝛽𝜔
, 𝜼𝜆𝑎

, 𝜼𝜆𝜔

]
(70)

B. Measurement model
Turning to the measurement model of the filter, the acceleration �̃�IMU provided by IMU is written as

𝒂IMU = 𝒂 +
(
𝝎𝐵𝐼 × (𝝎𝐵𝐼 × 𝒅IMU) + ¤𝝎𝐵𝐼 × 𝒅IMU + 2𝝎𝐵𝐼 × ¤𝒅IMU + ¥𝒅IMU

)
+ 𝝃𝑎 (71)

where only the 𝑦 and 𝑧 components are employed as measurements, and 𝝃𝑎 ∼ N(0,𝝈2
𝑤𝑎

). Next, 𝒅IMU represents the
position vector of the IMU in F𝐵, while the terms ¤𝒅IMU and ¥𝒅IMU are related to the sensor-shift in position due to c.g.
variation in time and the elastic degrees of freedom.

𝑎𝑦 =
1
𝑚

(
1
2
(𝑃1 + 𝜉𝑃1 )𝑉2

𝑇 arctan

(
𝑣𝑎√︁

𝑢2
𝑎 + 𝑤2

𝑎

)
− 𝑇 sin(𝛿𝑐𝑚𝑑

𝑧 + 𝛿𝜎𝑧
+ 𝜉𝛿) cos(𝛿𝑐𝑚𝑑

𝑦 + 𝛿𝜎𝑦
+ 𝜉𝛿)

)
(72)

𝑎𝑧 =
1
𝑚

(
−1

2
(𝑃2 + 𝜉𝑃2 )𝑉2

𝑇 arctan
(
𝑤𝑎

𝑢𝑎

)
+ 𝑇 sin(𝛿𝑐𝑚𝑑

𝑦 + 𝛿𝜎𝑦
+ 𝜉𝛿)

)
(73)

The same model given by Eqs. (50)-(51) has been adopted for the 𝑎𝑦 and 𝑎𝑧 components of the true acceleration
𝒂 at c.g. location, where the measurement noise has been added as shown in Eq.(72) and Eq.(73), where, as for the
process equations, the measurement noise on the nozzle commands (𝛿𝑐𝑚𝑑

𝑦 and 𝛿𝑐𝑚𝑑
𝑧 ) is considered as 𝜉𝛿 ∼ N(0, 𝜎2

𝑤𝛿
).

Also, a noise is associated with the uncertain parameters

𝑃1 = 𝜌𝑆𝐶𝑌𝛽 𝑃2 = 𝜌𝑆𝐶𝑁𝛼
(74)

being 𝜉𝑃1 ∼ N(0, 𝜎2
𝑃1
), 𝜉𝑃2 ∼ N(0, 𝜎2

𝑃2
).

Note that in the present measurement model the terms ¤𝒅IMU and ¥𝒅IMU terms are neglected in the measurement
model, and the additive noises 𝜉𝑎,𝑦 ∼ N(0, 𝜎2

𝑤𝑎,𝑦
), 𝜉𝑎,𝑧 ∼ N(0, 𝜎2

𝑤𝑎,𝑧
) are used to take into consideration the effects of

the (otherwise unmodeled) elastic dynamics.
The measurement equations of the GNSS sensor are written as follows

𝒓GNSS[𝐹 ] = 𝒓 [𝐹 ] + R𝐹𝐵 𝜹GNSS[𝐵] + 𝝃𝑟 (75)

𝒗GNSS[𝐹 ] = R𝐹𝐸

(
R𝐸𝐵𝒗𝑎 + 𝒗𝑤 + [𝝎⊕[𝐸 ] ×]R𝐸𝐹 𝒓 [𝐹 ]

)
+ R𝐹𝐵 [𝝎𝐵𝐸 ×] 𝜹GNSS[𝐵] + 𝝃𝑣

where 𝝃𝑟 ∼ N(0, 𝑹𝑟 ) and 𝝃𝑣 ∼ N(0, 𝑹𝑣) have the known meaning and 𝜹𝐺𝑁𝑆𝑆 is the receiver lever arm from the LV
c.g.

The position vector of the LV center of gravity in the frame F𝐹 is

𝒓 [𝐹 ] = 𝑟 [cos 𝜃 cos 𝜙, sin 𝜃 cos 𝜙, sin 𝜙]𝑇 (76)

whereas 𝝎𝐵𝐸 is the vehicle angular rate with respect to the NED reference frame, with components in F𝐵. 𝝎⊕[𝑬]
=

𝜔⊕ [− cos 𝜃 cos 𝜙, − sin 𝜃, − cos 𝜙 sin 𝜙]𝑇 is the Earth angular rate in the F𝐸 frame.
Note that R𝐹𝐵 is obtained as (R𝐵𝐸R𝐸𝐹)𝑇 , where R𝐵𝐸 is given by Eq. (4), and R𝐸𝐹 is a transformation matrix

depending only on the LV latitude and longitude, given by

R𝐸𝐹 =


− cos 𝜃 sin 𝜙 − sin 𝜃 sin 𝜙 cos 𝜙

− sin 𝜃 cos 𝜃 0
− cos 𝜃 cos 𝜙 − cos 𝜙 sin 𝜃 − sin 𝜙

 (77)

The true airspeed measurement equation is

𝑉T =

√︃
𝑢2
𝑎 + 𝑣2

𝑎 + 𝑤2
𝑎 + 𝜉𝑉T (78)



where 𝜉𝑉𝑇
∼ N(0, 𝜎2

𝑤𝑇
). In conclusion, the measurement vector 𝑦 ∈ R9 and the measurement noise vector 𝝃 ∈ R12 are

as follows

𝒚 =

[
𝑎IMU,𝑦 , 𝑎IMU,𝑧 , 𝒓𝐺𝑁𝑆𝑆 , 𝒗𝐺𝑁𝑆𝑆 , 𝑉𝑇

]
(79)

𝝃 =

[
𝜉𝑎,𝑦 , 𝜉𝑎,𝑧 , 𝝃𝒗 , 𝜉𝑉𝑇

, 𝜉𝛿 , 𝜉𝒓 , 𝜉𝑃1 , 𝜉𝑃2

]
(80)

C. Consider Multiplicative Extended Kalman Filter
The challenge in the estimation problem at hand for the nonlinear dynamical system described in III.A is represented

by the high number of parameters, primarily linked to the IMU systematic error sources. Additionally, there is the
estimation of the quaternions, which are not represented by vectors but rather by groups, while a Kalman filter is
designed to estimate states represented by vectors. The solution implemented in the present work is a Consider
Multiplicative Extended Kalman Filter (CMEKF) [17, 18]. The filter performs an iterative estimation of the state vector
by merging information from sensor measurements, that is, IMU, GNSS, and ADS (for the TAS). To enhance accuracy,
uncertain parameters in the model may be disregarded if their impact on the state propagation is minimal. Alternatively,
for improved precision, uncertain parameters can be treated as unknown values and estimated alongside other states.
However, the latter approach increases the state dimension and consequently the computational burden. The Consider
version of the EKF offers a solution by explicitly addressing the uncertainty associated with certain model parameters
without estimating their values. This leads to a state estimator that exhibits robustness concerning parametric model
uncertainty while keeping the state dimension unchanged. The CMEKF formulation implies partitioning the state vector
as

𝒙 =

[
𝒙𝑐, 𝒑

]𝑇
(81)

where
𝒙𝑐 =

[
𝑢𝑎, 𝑣𝑎, 𝑤𝑎, 𝑢𝑤 , 𝑣𝑤 , 𝑤𝑤 , 𝛿𝜎𝑦

, 𝛿𝜎𝑧
, 𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑟, 𝜙, 𝜃, 𝜆𝑎,𝑥

]
(82)

and
𝒑 =

[
𝛽𝑎,𝑥 , 𝛽𝑎,𝑦 , 𝛽𝑎,𝑧 , 𝛽𝜔,𝑥 , 𝛽𝜔,𝑦 , 𝛽𝜔,𝑧 , 𝜆𝑎,𝑦 , 𝜆𝑎,𝑧 , 𝜆𝜔,𝑥 , 𝜆𝜔,𝑦 , 𝜆𝜔,𝑧

]
(83)

For a continuous-discrete EKF [8], with an initial state estimate �̂�0 |0 and initial state covariance matrix 𝑷0 |0, the
a priori estimate of the system state at time 𝑡𝑘 , �̂�𝑘 |𝑘−1 with covariance 𝑷𝑘 |𝑘−1, is determined by solving the Cauchy
problem

¤̂𝒙 = 𝒇 (�̂�, 𝒖, 𝜼, 𝑡) ∀𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘] (84)
¤𝑷 = 𝑭(𝑡)𝑷(𝑡) + 𝑷(𝑡)𝑭(𝑡)𝑇 + 𝑮 (𝑡)𝑸(𝑡)𝑮 (𝑡)𝑇 ∀𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘] (85)
�̂�(𝑡𝑘−1) = �̂�𝑘−1 |𝑘−1 (86)
𝑷(𝑡𝑘−1) = 𝑷𝑘−1 |𝑘−1 (87)

where the matrices 𝑭 and 𝑮 are obtained differentiating the system ¤̂𝒙𝑃 = 𝒇 (�̂�𝑃 , �̂�𝑘 |𝑘−1, 𝒖, 𝜼, 𝑡) w.r.t �̂�𝑃 and 𝜼
respectively. The vector 𝒙𝑃 is defined as

𝒙𝑃 =

[
𝑢𝑎, 𝑣𝑎, 𝑤𝑎, 𝑢𝑤 , 𝑣𝑤 , 𝑤𝑤 , 𝛿𝜎𝑦

, 𝛿𝜎𝑧
, 𝛿𝜶, 𝑟, 𝜙, 𝜃, 𝜷𝑎, 𝜷𝜔 , 𝝀𝑎, 𝝀𝜔

]
(88)

where the vector part of the attitude error quaternion 𝛿𝜶 replace 𝒒- Moreover, the matrix R𝐵𝐸 in 𝒇 (�̂�𝑃 , �̂�𝑘 |𝑘−1, 𝒖, 𝜼, 𝑡)
is written as a function of 𝛿𝜶, R𝐵𝐸 (𝒒𝑘 |𝑘) = (𝐼3𝑥3 − [𝛿𝜶×])R𝐵𝐸 ( �̂�𝑘 |𝑘−1), and

𝒇 = 𝒇 (�̂�𝑃 , �̂�𝑘 |𝑘−1, 𝒖, 𝜼, 𝑡)
���
𝜼=0

𝑭 =
𝜕 𝒇

𝜕𝒙𝑃

����
�̂�𝑘 |𝑘−1 , 𝛿𝜶=0,𝒖𝑘 ,𝜼=0,𝑡

𝑮 =
𝜕 𝒇

𝜕𝜼

����
�̂�𝑘 |𝑘−1 , 𝛿𝜶=0,𝒖𝑘 ,𝜼=0,𝑡

(89)

The a posteriori estimate of state �̂�𝑘 |𝑘 and covariance 𝑷𝑘 |𝑘 , which accounts for the measures at time 𝑡𝑘 , reads

�̂�𝑘 |𝑘 = �̂�𝑘 |𝑘−1 + 𝑲𝑘

[
𝒚𝑘 − 𝒉

(
�̂�𝑃,𝑘 |𝑘−1, �̂�𝑘 |𝑘−1, 𝒖𝑘

) ]︸                                   ︷︷                                   ︸
𝚫𝒚𝑘

(90)

𝑷𝑘 |𝑘 =
[
𝑰 − 𝑲𝑘𝑯𝑘 ( �̂�𝑘 |𝑘−1)

]
𝑷𝑘 |𝑘−1

[
𝑰 − 𝑲𝑘𝑯𝑘 (�̂�𝑘 |𝑘−1)

]𝑇 + 𝑲𝑘𝑫𝑘𝑹𝑘𝑫
𝑇
𝑘𝑲

𝑇
𝑘 (91)



where 𝚫𝒚𝑘 represents the measurement residual while the Eq.(91) is the Joseph form [19] of the error covariance update
which helps maintain numerical stability in the presence of nonlinearities. The quaternion states are updated differently,
as follows

�̂�𝑘 |𝑘 = �̂�𝑘 |𝑘−1 ⊗
1
2

[
1

𝛿�̂�𝑘 |𝑘

]
(92)

and a normalization is then carried out in order to guarantee that �̂�𝑇
𝑘 |𝑘 �̂�𝑘 |𝑘 = 1.

The Kalman gain 𝑲𝑘 is defined as

𝑲𝑘 = 𝑷𝑘 |𝑘−1𝑯𝑘 |𝑘−1 ( �̂�𝑘 |𝑘−1)𝑇
[
𝑯𝑘 |𝑘−1 (�̂�𝑘 |𝑘−1)𝑷𝑘 |𝑘−1𝑯𝑘 |𝑘−1 ( �̂�𝑘 |𝑘−1)𝑇 + 𝑫𝑘𝑹𝑘𝑫

𝑇
𝑘

]︸                                                                   ︷︷                                                                   ︸
𝑺

−1 (93)

where the rows corresponding to the CMEKF parameter vector 𝒑 are set to zero so that 𝒑𝑘 |𝑘 = 𝒑𝑘 |𝑘−1 [20]. The
measurement vector 𝒚𝑘 at time 𝑡𝑘 is

𝒚𝑘 = 𝒉(�̂�𝑃,𝑘 |𝑘 , �̂�𝑘 |𝑘 , 𝒖𝑘 , 𝝃𝑘 , 𝑘) (94)
whereas 𝑺 is the measurement residual covariance matrix and

𝑯𝑘 =
𝜕𝒉

𝜕𝒙𝑃

����
�̂�𝑘 |𝑘−1 , 𝛿𝜶=0,𝒖𝑘 ,𝝃𝑘=0,𝑡𝑘

𝑫𝑘 =
𝜕𝒉

𝜕𝝃

����
�̂�𝑘 |𝑘−1 , 𝛿𝜶=0,𝒖𝑘 ,𝝃𝑘=0,𝑡𝑘

(95)

Finally, the aerodynamic angles are determined as functions of the estimated airspeed components, according to
Eqs.(11)–(12). Their estimated covariance is computed using the relation 𝑯𝑉𝑎

𝑷𝑯𝑇
𝑉𝑎

, where 𝑯𝑉𝑎
represents the Jacobian

of Eqs.(11) and (12) with respect to the estimated airspeed components, and 𝑷 is the estimated error covariance matrix.

IV. Results and Discussion
This section presents the results obtained by considering the first-stage flight of the ARES-I LV, the model of which

is reported in Ref. [11], from the Kennedy Space Center towards the International Space Station (ISS). Following the
initial upward movement within the first 5 seconds of liftoff, there is a predetermined pitch-over rotation occurring
between 5 and 10 seconds. This rotation initiates a Zero Lift Gravity Turn (ZLGT) maneuver lasting from 10 to 120
seconds. During this phase, the rocket utilizes gravity to adjust its velocity trajectory while simultaneously minimizing
lateral aerodynamic forces. This is achieved by maintaining a low angle of attack and aligning the vehicle with the
relative velocity vector. During this phase of flight, the LV reaches Mach 1 speed after 48 seconds. When the engines
burn out, the LV is at an altitude of approximately 44 km with a velocity of about 1.2 km/s.

In the simulation, the primary maneuver of the LV is executed in the pitch plane, and the direction of the wind is 44
degrees from the North.

(a) Pitch angle vs. altitude (b) Wind amplitude vs. altitude

Fig. 2 Vehicle pitch angle and wind profile for the simulated flight phase.

Figure 2 shows the pitch angle variation as a function of the altitude (Fig. 2a) and the specified wind profile (Fig.
2a). The latter is obtained by summing a three-dimensional stochastic wind vector, which passes a white noise signal
through a Dryden filter, to a steady-state profile (black line) [21].



(a) Angle of attack, 𝛼 (b) Sideslip angle, 𝛽

(c) Estimation error on 𝛼 (d) Estimation error on 𝛽

Fig. 3 Results of the CMEKF filter for the aerodynamic angles: true (light blue), estimated (orange), 3-𝜎
bounds (red), and estimation error (black).

Figure 3 reports the results of the estimation process and, in particular, the true and estimated values of the
aerodynamic angles (light-blue and orange lines, respectively) are shown in Figs. 3a and 3b. Figures 3c and 3d
complement this analysis by showing the estimation errors (black lines) and the 3-𝜎 bounds (red lines), that are computed
by taking the square root of the diagonal elements of the estimated covariance matrix.

(a) North wind, 𝑢𝑤 [𝐸 ] (b) East wind, 𝑣𝑤 [𝐸 ] (c) Down wind, 𝑤𝑤 [𝐸 ]

(d) Estimation error on 𝑢𝑤 [𝐸 ] (e) Estimation error on 𝑣𝑤 [𝐸 ] (f) Estimation error on 𝑤𝑤 [𝐸 ]

Fig. 4 Results of the CMEKF filter for the wind components: true value (light blue), estimated (orange), 3-𝜎
bounds (red), and estimation error (black)

True and estimated variables, as well as estimation error and bounds, are shown in Fig. 4, for the North, East, and
Down wind components. It is apparent that the filter is effective and provides adequate accuracy, most notably in the
central portion of the flight. The accuracy of the aerodynamic angles estimation (Figs. 3a and 3b) is rather low in the first
part of the simulation (about 12 s) when the LV velocity is low and significant variations of 𝛼 and 𝛽 are determined by
relatively limited variations of wind speed. The estimation error also increases in the final part of the flight, particularly
on the wind components (Figs. 4a and 4b) due, in this case, to the high speed of the vehicle (in comparison with wind
speed) and the decreasing amplitude of aerodynamic actions being the air density very low at high altitude.

A. Monte Carlo analysis
The assessment of filter consistency and performance entails a comprehensive approach through Monte Carlo

simulations. In these simulations, scattering uniformly distributed within specified ranges is introduced across model
parameters, IMU systematic error sources, and wind and atmospheric characteristics. As for the scattering of model



parameters, specific attention is given to aerodynamic factors such as 𝐶𝑎, 𝐶𝑁𝛼
and 𝐶𝑌𝛽 , that undergo variations of

±10% of their nominal values. Thrust is scattered through a range of ±2%. As a consequence, the LM mass is scattered
according to 2.

¤𝑚 = − 𝑇

𝑔0𝐼𝑆𝑃
(96)

where 𝑔0 denotes the acceleration due to gravity, and ISP represents the specific impulse. The time variations of thrust
and mass are reported in Fig. 5b and Fig. 5c, where their nominal values (the data available for the filter) are depicted in
black, and their scattered values are shown in gray. The scattering ranges values for the model parameters reported in
Tab.2 Furthermore, IMU biases and scale factors, atmospheric density (𝜌), wind direction (𝜆), and mean wind speed
(𝑊), the latter shown in Fig. 5a (black line for the nominal value of mean wind and blue lines for its scattered values),
are randomly specified within the ranges shown in Tab.3.

Table 2 Scattering ranges for the Monte Carlo campaign.

LV model parameters

𝛿𝑦 𝛿𝑧 𝐶𝑎 𝐶𝑁𝛼
𝐶𝑌𝛽 T m

±0.1 deg ±0.1 deg ±10% ±10% ±10% ±2% follows the mass-flow rate Eq.(96)

Table 3 Scattering ranges for the Monte Carlo campaign.

IMU and atmospheric parameters

𝝀𝑎 |𝑡=0 𝝀𝜔 |𝑡=0 𝜷𝑎 |𝑡=0 𝜷𝜔 |𝑡=0 𝑾 𝜆 𝜌

±50 ppm ±30 ppm ±100 𝜇g ±0.02 deg/h ±20% ±180 deg ±5%

(a) Scattered values of mean wind inten-
sity vs. altitude

(b) Scattered thrust vs. time (c) Scattered mass vs. time

Fig. 5 Monte Carlo campaign: nominal values (black lines), scattered values (grey lines), scattered wind mean
(blue lines).

Following filter tuning, the covariance matrix of measurement noise 𝑹, assumed diagonal with dimension coherent
with Eq.(80), reads

𝑹 = diag
(
(9.81 × 10−6)2 ·

𝜎2
𝑎,𝑦

𝑇𝑠
, (9.81 × 10−6)2 ·

𝜎2
𝑎,𝑧

𝑇𝑠
, 𝜎2

𝑤𝑣,𝑥
, 𝜎2

𝑤𝑣,𝑦
, 𝜎2

𝑤𝑣,𝑧
, 𝜎2

𝑤𝑇
, ( 𝜋

180
)2 · 𝜎2

𝜎𝛿
,

, 𝜎2
𝑤𝑟,𝑤,𝑥

, 𝜎2
𝑤𝑟,𝑤,𝑦

, 𝜎2
𝑤𝑟,𝑤,𝑧

, 1.42, 1.42
) (97)

with 𝑇𝑠 = 0.005, that is, the IMU sample time. The majority of its nonzero elements correspond to the squares of the
standard deviations of the noises in the measurement equations, with the 𝜎 values reported in Table1. The covariance
matrix of process noise, 𝑸, is as follows



𝑸 = diag
(
(9.81 × 10−6)2 · 𝜎2

𝑎,𝑥 ,

( 𝜋

180

)2 1
60

· 𝜎2
𝜔,𝑥 ,

( 𝜋

180

)2 1
60

· 𝜎2
𝜔,𝑦 ,

( 𝜋

180

)2 1
60

· 𝜎2
𝜔,𝑧 ,

( 𝜋

180

)2
· 𝜎2

𝛿
, 72, 12

12, 2.52, 0.6 × 10−3, 1.8 × 10−3,
( 𝜋

180

)2 1
603 · 𝜎2

𝑤𝑏𝜔,𝑥
,

( 𝜋

180

)2 1
603 · 𝜎2

𝑤𝑏𝜔,𝑦
,

( 𝜋

180

)2 1
603 · 𝜎2

𝑤𝑏𝜔,𝑧
,

(9.81 × 10−6)2 1
60

· 𝜎2
𝑤𝑏𝑎,𝑥

, (9.81 × 10−6)2 1
60

· 𝜎2
𝑤𝑏𝑎,𝑦

, (9.81 × 10−6)2 1
60

· 𝜎2
𝑤𝑏𝑎,𝑧

,

0.1 × 10−10, 0.1 × 10−10, 0.1 × 10−10, 0.1 × 10−6, 0.1 × 10−10, 0.1 × 10−10
)

(98)

where some unit conversion is needed to use the IMU data in Tab.1 which are associated with the power spectral density
PSD of the IMU input signal. A Monte Carlo analysis of 200 simulation runs is conducted, with the same sampling
frequency of 10 Hz for all sensors, in order to evaluate the consistency, robustness, and accuracy of the filter. Figure
6 shows the consistency of the airspeed velocity and wind components, whereas Fig. 7 shows the consistency of the
attitude and position states. Figure 8 reports the consistency of the estimation of elastic rotations at the gimbal and
scale factor on 𝑎𝑥 . The continuous black lines represent the standard deviation of the estimation error as predicted by
the filter, expressed as 3-𝜎 values, while the dashed blue lines give the standard deviations of the errors calculated
directly from the Monte Carlo samples, once again computed as 3-𝜎, the consistency of the filter being provided by the
overlapping of these two lines. Finally, the continuos blue line corresponds to the mean of the samples.

The expected value of the error is very close to zero, which means that the filter works as an unbiased filter, in line
with the theoretical expectations for the minimum mean square error (MMSE) estimators. It is noteworthy in Fig. 6 that
the filter slightly underestimates the error covariance in the time range between 40 s and 60 s, while it overestimates the
error covariance in the latter part of the flight (after 80 s). The former discrepancy may be attributed to the dynamic
pressure reaching its peak, causing uncertain aerodynamic terms to exert more influence on the force balance than other
factors. On the other hand, in the last part of the flight, wind turbulence diminishes significantly compared to level in
the troposphere and, consequently, the constant value of process noise adopted in this study for the sake of simplicity
proves to be inadequate to capture this effect. After approximately 80 s of flight the low value of density make the wind
poorly observable, so that the covariance of the filter starts to increase. It is also apparent in Fig. 4c that the downward
component of the wind is poorly estimated in the last part of the flight.

(a) Airspeed component x, 𝑢𝑎 (b) Airspeed component y, 𝑣𝑎 (c) Airspeed component z, 𝑤𝑎

(d) Wind component x, 𝑢𝑤 [𝐸 ] (e) Wind component y, 𝑣𝑤 [𝐸 ] (f) Wind component z, 𝑤𝑤 [𝐸 ]

Fig. 6 Monte Carlo campaign: CMEKF 3𝜎 covariance (black lines), estimation errors (grey lines), mean of MC
samples (continuous blue lines), covariance of MC samples (dotted blue lines).

The results on the evaluation of attitude and position, reported in Fig. 7, show that the filter exhibits a very



good consistency and convergence of the estimates. In particular, Fig. 7a shows that the bound of the samples is
slightly underestimated between 80 s and 100 s, due to an inaccurate estimation of the bound of the scale factor 𝜆𝑎,𝑥

(reported in Fig.8c). The errors in the states associated with elastic displacements, as illustrated in Figure 8, indicate an
overestimation of the filter’s covariance compared to the covariance of the samples. However, they serve to enable the
filter to incorporate the uncertainty associated with these states in estimating the other state variables. Particularly, this
approach resulted in a more accurate estimate compared to including them as parameters in the consider filter. Finally,
Fig.9 illustrates the uncertainty in the estimation of aerodynamic angles obtained a posteriori.

(a) Radius, r (b) Longitude, 𝜃 (c) Latitude, 𝜙

(d) Yaw, Ψ (e) Pitch, Θ (f) Roll, Φ

Fig. 7 Monte Carlo campaign: CEKF 3𝜎 covariance (black lines), estimation errors (grey lines), mean of MC
samples (continuous blue lines), covariance of MC samples (dotted blue lines).

(a) Elastic rotation at gimbal y, 𝛿𝑦 (b) Elastic rotation at gimbal z, 𝛿𝑧 (c) Scale factor x, 𝜆𝑎,𝑥

Fig. 8 Monte Carlo campaign: CEKF 3𝜎 covariance (black lines), estimation errors (grey lines), mean of MC
samples (continuous blue lines), covariance of MC samples (dotted blue lines).

A better understanding of these trends can be obtained by examining the RMSE values reported in Tab. 4, where
the filter performance is evaluated in terms of root-mean-square error (RMSE) on 𝛼, 𝛽, 𝛼tot =

√︁
𝛼2 + 𝛽2, airspeed

components 𝑢𝑎,𝑣𝑎,𝑤𝑎 and wind velocity components 𝑢𝑤 [𝐸 ] ,𝑣𝑤 [𝐸 ] ,𝑤𝑤 [𝐸 ] . The RMSE of the estimated values is
computed as

𝑥RMSE =

√︄
1
𝑡 𝑓

∫ 𝑡 𝑓

0
𝑥2 (𝑡)𝑑𝑡 (99)



(a) Angle of attack, 𝛼 (b) Angle of sideslip, 𝛽

Fig. 9 Monte Carlo campaign: CEKF 3𝜎 covariance (black lines), estimation errors (grey lines), mean of MC
samples (continuous blue lines), covariance of MC samples (dotted blue lines).

where 𝑥(𝑡) stays for the variable of interest.

Table 4 RMSE on estimated variables (gravity turn phase).

RMS error (t > 10 s)

𝛼 [deg] 𝛽 [deg] 𝛼tot [deg] 𝑢𝑎 [m/s] 𝑣𝑎 [m/s] 𝑤𝑎 [m/s] 𝑢𝑤 [𝐸 ] [m/s] 𝑣𝑤 [𝐸 ] [m/s] 𝑤𝑤 [𝐸 ] [m/s]

0.51 0.82 0.96 2.09 2.27 2.68 2.90 2.14 2.10

In terms of the estimation of aerodynamic angles (𝛼tot), the results indicate adequate accuracy, with a maximum
RMSE of approximately 0.96 degrees. It is worth observing that the estimation of the vertical wind component
demonstrates a slightly higher accuracy compared to 𝑣𝑤𝑁

and 𝑣𝑤𝐸
because it consistently exhibits a lower RMSE, but

this is probably due to the limited steady-state variation of the vertical wind component with altitude, in contrast to the
other two components that show altitude-dependent variations. Note that the evaluation of the RMSE does not include
the initial 10 seconds of simulation (from lift-off to the end of pitch-over) because of the uneven and large variations of
the aerodynamic angles associated with the low speed of the vehicle. Table 5 reports the RMSE values of both position

Table 5 RMSE on estimated variables (gravity turn phase).

RMS error on position and attitude (t > 10 s)

Ψ [deg] Θ [deg] Φ [deg] 𝑟 [m] 𝜃 [deg] 𝜙 [deg]

0.228 0.176 0.124 0.770 1.331 × 10−5 7.755 × 10−6

and attitude errors. In contrast to the initial attitude uncertainty with a 1-𝜎 value of 0.57 deg, a significant reduction in
attitude error has been obtained with the filtering process, indeed during the gravity turn phase, measured in terms
of Root Mean Square Error (RMSE) there is a reduction of 60%, 70%, and 80% for yaw, pitch, and roll, respectively.
Additionally, the positional range error is maintained at precision levels below 1 m as result of the filtering process.
Considering that the Global Navigation Satellite System (GNSS) measurement has a precision of approximately 6 m for
each component, this improvement in position accuracy represents a tenfold enhancement. In the end, measurement
residuals are shown in Fig.10. Grey lines represent the residual errors in measurement estimations 𝚫𝒚𝑘 , while the red
curves represent the RMS over the Monte Carlo simulations per each time of ±3

√︁
diag(𝑺), where diag(𝑺) indicates

the diagonal elements of the measurement residual covariance matrix 𝑺. It is apparent that each vector of residuals is
contained within the bounds imposed by the measurement residual covariance matrix.



(a) acceleration x, �̃�IMU,𝑦 (b) acceleration z, �̃�IMU,𝑧
(c) True airspeed, �̃�𝑇

(d) GNSS velocity x, �̃�𝐺𝑁𝑆𝑆,𝑥 [𝐹 ] (e) GNSS velocity y, �̃�𝐺𝑁𝑆𝑆,𝑦 [𝐹 ] (f) GNSS velocity z, �̃�𝐺𝑁𝑆𝑆,𝑧 [𝐹 ]

(g) GNSS position x, 𝑥𝐺𝑁𝑆𝑆,𝑥 [𝐹 ] (h) GNSS position y, 𝑥𝐺𝑁𝑆𝑆,𝑦 [𝐹 ] (i) GNSS position z, 𝑥𝐺𝑁𝑆𝑆,𝑧 [𝐹 ]

Fig. 10 Monte Carlo campaign: CEKF 3𝜎 measurement residual covariance covariance (red lines), measurement
residuals (grey lines).

V. Conclusion

A filtering technique based on a Consider Multiplicative Extended Kalman filter (CMEKF) has been presented with
the aim of estimating the aerodynamic angles and the atmospheric wind components during the ascent flight of a large,
flexible, launch vehicle (LV). The filter presents a novel formulation where the airspeed components are considered as
state variables in place of the aerodynamic angles. A multiplicative error quaternion formulation for attitude estimation
is adopted to improve the accuracy over traditional (additive) formulation. The preliminary analysis here presented
takes into consideration four significant sources of uncertainty, that are often neglected in similar works, that is i) the
deviation of thrust direction due to elastic effects at the gimbal location, ii) the influence of non-collocated IMU and
GNSS sensors, iii) the presence of systematic errors, such as bias, non-orthogonality, and scale factors, and iv) large
discrepancies between pre-flight forecast and in-flight values of the magnitude and direction of the wind.

The obtained results suggest the suitability and effectiveness of the filter in a simulation scenario with high-turbulence
wind and scattered (yet close-to-nominal) flight conditions. A Monte Carlo analysis has been carried out, scattering a
considerable amount of structural, aero-propulsive, and flight parameters, to comprehensively assess their impact on the
filter performance. In this respect, the obtained results are encouraging as the novel filter formulation provides a suitable
tool to estimate LV aerodynamic angles and wind components by using a small subset of commonly used pre-flight data
and in-flight measurements.

Future research endeavors could explore the estimation of atmospheric characteristics as a distinct aspect, rather
than incorporating them as uncertainties within the system alongside a correction of aero-propulsive coefficients that
characterize the LV. Enhancement in estimation accuracy can be achieved by employing a smoothing technique, to
avoid the intrinsic limitations of sequential filtering methods. Smoothing techniques such as the Rauch–Tung–Striebel
(RTS) or Fraser Potter smoother are deemed of particular interest and promise avenues for improvement in the overall
estimation process. Additionally, real flight data could be used to further validate and refine the filter’s performance.
This work has implications for enhancing the safety, reliability, and efficiency of launch vehicle operations, contributing
to the advancement of aerospace technology and exploration.



Appendix

A. Reference frames

1. Earth-centered inertial (ECI)
The not-rotating ECI frame, F𝐼 , has the 𝑧-axis normal to the equatorial plane, coinciding with the Earth rotation

axis and pointing to the North Pole. The 𝑥-axis lies in the equatorial plane pointing towards the vernal equinox. The
𝑦-axis is in the equatorial plane and completes the right-handed Cartesian system.

2. Earth-centered Earth-fixed (ECEF)
The rotating ECEF reference frame, F𝐹 , has the 𝑧-axis defined as for the ECI frame. The 𝑥-axis lies in the equatorial

plane pointing towards the Greenwich meridian, and the 𝑦-axis is in the equatorial plane.

3. North-East-Down (NED)
The NED frame, F𝐸 , has the origin located at the vehicle center of gravity (c.g.), and is oriented with the 𝑥-axis

pointing in the direction of North Pole, The 𝑧-axis is perpendicular to the 𝑥-axis and oriented along the local vertical,
and the 𝑦-axis completes the right-hand frame.

4. Body-fixed (B)
The B frame, F𝐵, is fixed to the principal axes of inertia of the vehicle, assumed rigid, with origin in the c.g. The

𝑥-axis is along the vehicle longitudinal axis, the 𝑦-axis is arbitrarily chosen in the plane orthogonal to the 𝑥-axis, due to
the axial symmetry of the LV model, while the 𝑧-axis completes the right-handed frame.

5. Nozzle-fixed (N)
The N frame, F𝑁 , is fixed to the nozzle with origin in its c.g. The 𝑥-axis points along the nozzle pivot point, the

𝑦-axis is perpendicular to the axis of symmetry of the nozzle and is parallel to the 𝑦-axis of the frame F𝐵, pointing to
the same direction, while the 𝑧-axis completes the right-handed frame.

6. Structural-fixed (S)
The S frame has its origin on the top of the nose of the LV with 𝑥-axis direct to the c.g. and the 𝑦-axis aligned with

the 𝑦-axis in F𝐵, the 𝑧-axis completes the right-handed frame.

B. Force equation
The momentum equation for the LV is written as

𝑚 [ ¤𝒗 + (𝝎𝐵𝐼 + R𝐵𝐹𝝎⊕) × 𝒗] + R𝐵𝐹 [𝝎⊕ × (𝝎⊕ × p[𝐹 ])] = F (100)

where F = F𝐴 + F𝑔 + T, 𝒗 = V𝑎 + 𝒗𝑤 , and the wind velocity vector in F𝐵 is expressed as

𝒗𝑤 = R𝐵𝐸


𝑣𝑤𝑁

𝑣𝑤𝐸

𝑣𝑤𝐷

 (101)

Equation (100) is rewritten in terms of non gravitational acceleration at c.g. location (a) as

¤𝒗 = a − (𝝎𝐵𝐼 + R𝐵𝐹𝝎⊕) × 𝒗 − R𝐵𝐹 [𝝎⊕ × (𝝎⊕ × p[𝐹 ])] (102)

By expressing ¤𝒗 in term of wind velocity, Eq. (102) reads

¤V𝑎 = −¤𝒗𝑤 + a − (𝝎𝐵𝐼 + R𝐵𝐹𝝎⊕) × V𝑎 − (𝝎𝐵𝐼 + R𝐵𝐹𝝎⊕) × 𝒗𝑤 +𝝕 + 𝒇𝑔 (103)

where 𝝕 = −R𝐵𝐹 [𝝎⊕ × (𝝎⊕ × p[𝐹 ])] and 𝒇𝑔 the gravity force.
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