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PROCESSING ANGLES-ONLY TRACKLETS FOR CISLUNAR
MULTI-TARGET TRACKING

Dalton Durant*, Andrey A. Popov†, Kyle J. DeMars‡, and Renato Zanetti§

This work addresses the challenge of multi-target tracking in cislunar orbits
utilizing angles-only tracklets from ground-based optical telescopes. Traditional
orbit determination methods rely on the batch processing of angles-only measure-
ments into a six-dimensional state-space. These methods encounter limitations in
handling nonlinearities within cislunar dynamics. To overcome these limitations,
this work leverages Markov Chain Monte Carlo methods for processing angles-
only tracklets in Cartesian coordinates and performs multi-target tracking with
Joint Probabilistic Data Association techniques. Numerical simulations illustrate
the superiority of the proposed methods in scenarios with multiple targets and in-
creased orbital congestion. This work contributes to a comprehensive solution for
angles-only multi-target tracking in complex cislunar environments.

INTRODUCTION

Optical telescopes detect apparent positions of space objects (or targets) as streaks or discrete
sequences on the sensor’s sensitive element. These detections are converted into azimuth/elevation
angles, essential for orbit determination algorithms to estimate target orbits. Figure 1 provides
a visual representation of how an optical telescope can generate tracklets consisting of multiple
targets.

While point-wise-in-time unobservable, a sequence of angles theoretically identifies the orbit,
yet tracklets still harbor significant range and range-rate uncertainty. In practice, angles-only mea-
surements from a tracklet are typically assimilated by orbit determination algorithms in one of two
ways: either pre-processed into an orbit estimate by a batch algorithm, or processed sequentially by
a recursive algorithm.

In Earth orbit, pre-processing angles-only tracklets into a six-dimensional state-space of orbital
element coordinates proves advantageous, resulting in nearly linear dynamics and Gaussian proba-
bility density functions.1 However, in the cislunar regime, nonlinear dynamics render Earth orbital
elements unsuitable, and Cartesian coordinates lead to non-Gaussian distributions.

Our prior work proposed using Markov Chain Monte Carlo (MCMC) to produce accurate, non-
Gaussian likelihood functions for the pre-processed algorithms.2 MCMC techniques, used for
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Figure 1: Example image shows 3 targets being tracked with a telescope at a sidereal rate. The
stars present themselves as points, whereas the targets discretely streak across the frame generating
a tracklet each.

Bayesian inversion, generate samples from a target probability density function (PDF) using rel-
atively straightforward proposal and rejection principles. The most prominent MCMC algorithm is
the Metropolis-Hastings (MH) algorithm, known for its effectiveness in tackling complex statistical
problems with high dimensions.3, 4 In recent times, MH has found application in initial orbit de-
termination,5, 6 angles-only relative orbit determination,7 and angles-only orbit determination using
tracklets from ground-based optical telescopes.8

By constructing a Gaussian Mixture Model (GMM) from MCMC samples, the non-Gaussian
measurement probability distribution in the state-space can be accurately approximated in the sam-
ple limit.2 The resulting GMM can be used as processed measurements for a single target nonlinear
filter like the Ensemble Gaussian Mixture Filter (EnGMF).2, 9, 10

This work performs Multi-Target Tracking (MTT) using MCMC processed angles-only tracklets
in conjunction with Joint Probabilistic Data Association (JPDA) techniques. To ensure accurate
orbit determination, each target is estimated using the EnGMF. This work not only enhances the
effectiveness of data association but also contributes to a more comprehensive and cost-effective
solution for MTT in cislunar orbits by associating entire tracklets with a non-Gaussian likelihood
function accurately represented through MCMC samples. The methodology is detailed, encompass-
ing kernel-based ensemble Gaussian mixture filtering, MCMC background, and JPDA methods,
with empirical results presented for a cislunar Near Rectilinear Halo Orbit (NRHO) problem using
optical telescopes.

KERNEL-BASED ENSEMBLE GAUSSIAN MIXTURE FILTERING

The EnGMF9 stands out as a powerful particle filter, exhibiting the ability to recover true Bayesian
inference with few particles. Recent applications have demonstrated its effectiveness in tracking
targets even when confronted with sparse observation data.2, 10–15 This section provides a brief in-
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troduction to the EnGMF as a single-target nonlinear filter, with comprehensive algorithmic details
available in the References 2 and 10. It utilizes the concept of kernel density estimation (KDE);16

a non-parametric method that estimates the probability density function of random variables. The
EnGMF uses KDE to combine two popular filtering techniques, particle filters and Gaussian sum
filters; producing a smoothed representation of the distribution of particles, which in the limit of en-
semble size converges to exact Bayesian inference. This can result in a more accurate representation
of the posterior distribution, and can subsequently improve state estimation performance.

This work makes use of the Modified Kernel-Based Ensemble Gaussian Mixture Filtering method10

which is a sequential estimation filter that approximates the distribution of a system based on sparse
data. It is used to perform orbit determination for a target given an associated tracklet. The EnGMF
assumes the knowledge of the distribution at the prior time, ppxk´1q, and approximates it with N

independent and identically distributed (i.i.d.) samples (particles) xpiq
k´1,

ppxk´1q «

N
ÿ

i“1

1

N
δpxk´1 ´ x

piq
k´1q « lim

Pk´1Ñ0

N
ÿ

i“1

1

N
N pxk´1;x

piq
k´1, Pk´1q, (1)

where k is the discrete time step, δp¨q is the Dirac delta distribution and can be said to be the normal
distribution with covariance that tends towards the zero matrix 0 in the limit. The EnGMF only
makes an empirical measure assumption just before the propagation step, represented by Equation
(1). The particles are then propagated to time step k and are converted into Gaussian mixtures using
a standard KDE method, where each particle is considered a Gaussian component with non-zero
covariance of equal weights:

ppxkq «

N
ÿ

i“1

1

N
N pxk; x̄

piq
k , BSq, (2)

where x̄
piq
k is the propagated state of the ith particle of time step k. The covariance (bandwidth)

matrix BS for each component is determined using Silverman’s Rule of Thumb16 to reduce compu-
tational costs. The bandwidth matrix BS is estimated as follows:

BS “ βSP̄k “

ˆ

4

nx ` 2

˙
2

nx`4

N´ 2
nx`4 P̄k, (3)

where βS is the bandwidth parameter, nx is the dimension of the state, and P̄k is the sample covari-
ance matrix computed from the propagated samples. The measurement information is integrated
by updating the means, covariance matrices, and weights of all N Gaussian components, following
the measurement update procedure of the Gaussian sum filter (GSF) in Reference 17. In this step,
each Gaussian component can be updated using the extended Kalman filter (EKF)18 or unscented
Kalman filter (UKF).19, 20 Subsequently, N i.i.d. samples are drawn from the GMM representation
of the posterior distribution, serving as the starting point for the next iteration.

MARKOV CHAIN MONTE CARLO

Constructing a GMM from MCMC samples provides an accurate approximation of the non-
Gaussian measurement probability distribution within the state-space. This approach is especially
effective as the number of samples increases, allowing the GMM to capture the intricacies of the
distribution in the sample limit. In this work, this resulting GMM serves a dual purpose: (i) acting
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as processed measurements suitable for a nonlinear filter, like the EnGMF, and (ii) facilitating the
accurate approximation of the non-Gaussian measurement distribution. Moreover, employing KDE
alongside MCMC samples enables the arbitrary approximation of any distribution. The combination
of MCMC samples and KDE proves to be a powerful tool, as demonstrated by Reference 2. They
show that with a sufficient number of MH samples, it is possible to construct a GMM that accurately
approximates the non-Gaussian measurement distribution for processed tracklets.

The following is how this work uses the MH algorithm to generate samples from the measurement
distribution and accurately approximates it using KDE. Consider the state dynamics model and
measurement model in discrete form:

xk`1 “ fpxkq ` ϵk, (4)

yk “ hpxkq ` ηk, (5)

where xk is the state at time step k with propagation function fp¨q and white, Gaussian process
noise ϵk „ N p0, Qq. Additionally, yk is the measurement at time k with mapping function hp¨q

and white, Gaussian measurement noise ηk „ N p0, Rq uncorrelated to ϵk @ k. Then, a tracklet can
be represented by Yk`s|k “ ryk, yk`1, ¨ ¨ ¨ , yk`ss Ă Y with individual angles-only measurements
y from time steps k to the end of the tracklet k ` s; Y is the single-target measurement space.

The non-Gaussian distribution to be known is ppykq which is the measurement PDF at time step
k. With MCMC, ppykq is approximated in the state-space with

ppykq ñ ppx̃kq «

M
ÿ

u“1

1

M
N px̃k; x̃

puq

k , P̃
puq

k q, (6)

where ppx̃kq is a GMM built by M MCMC samples x̃puq

k with covariance P̃ puq

k . Each x̃
puq

k is the last
state in the Markov chain produced by the MH algorithm below and each P̃

puq

k “ βSP̃k, where βS
and P̃k are the bandwidth parameter and sample covariance, respectively, of the M MCMC samples.

Metropolis-Hastings.4

1. Choose an initial value for the states: x̃k “ x̃k,0.

2. Propose a new value for the states x̃
1

k using a proposal distribution ppx̃
1

k|x̃kq.

3. Compute the acceptance probability α “ min

"

1,
ppx̃

1

k|Yk`s|kq¨ppx̃k|x̃
1

kq

ppx̃k|Yk`s|kq¨ppx̃
1

k|x̃kq

*

.

4. Generate a uniform random number u from the interval r0, 1s.

5. If u ď α, accept and store the proposal and set x̃k “ x̃
1

k, otherwise reject the proposal and
keep x̃k unchanged.

6. Repeat steps 2-5 until the desired number of samples is obtained.
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This work uses the proposal distribution

ppx̃
1

k|x̃kq “ N px̃
1

k; x̃k, P̃k,0q “ N px̃k; x̃
1

k, P̃k,0q “ ppx̃k|x̃
1

kq, (7)

where initially x̃k “ x̃k,0 and x̃
1

k „ N px̃k,0, P̃k,0q with x̃k,0 and P̃k,0 being anything, but for a good
initial guess they can be chosen to be the Gaussian posterior update given tracklet Yk`s|k. Note the
two proposals are symmetric, inevitably canceling out in step 3 of the MH algorithm (i.e. reducing
to the Metropolis algorithm).

The target distribution is

ppx̃k|Yk`s|kq « c ¨ ppYk`s|k|x̃kq

“ c
k`s
ź

i“k

exp p´
1

2
rYi ´ hpfpx̃kqiqsTR´1rYi ´ hpfpx̃kqiqsq,

(8)

where ppx̃k|Yk`s|kq « c ¨ ppYk`s|k|x̃kq because the prior ppx̃kq is assumed to be diffuse. The
unknown constant c in Equation (8) will cancel out with itself when computing the acceptance ratio
α. Furthermore, Equation (8) represents the likelihood of the tracklet of measurements Yk`s|k given
a proposed state x̃k. In other words, it is the likelihood that the proposed Markov Chain state is a
feasible realization (through time) for every angles-only measurement of the tracklet. Equation (8)
can similarly be used to compute ppx̃

1

k|Yk`s|kq by swapping x̃k with x̃
1

k. For each tracklet, this work
produces a GMM of M “ 100 samples with a Markov chain length of 10 acceptances.

JOINT PROBABILISTIC DATA ASSOCIATION

Although not particularly attractive, JPDA can be simple to implement and it provides the re-
quired framework for labeling/assignment of target-tracklet pairs. Additionally, it enables this work
to showcase the benefits of processing tracklets using MCMC and how it can be incorporated into
data association methods for MTT.

Similar to the suboptimal JPDA filter21 and the Fitzgerald ad hoc method,22 this work simplifies
the optimal JPDA filter.23 This simplification assumes the probability of detection for each target is
one or very nearly one and there exists good track initiation: all of the targets will be detected. The
probability of an event θk given the set of all state-space MCMC processed tracklets X̃k at time k
can be represented by*

Ppθ|X̃q “
1

c

m
ź

j“1

rppνjqsτj , (9)

where τj “ 1 if tracklet j is assigned any target t “ 1 : T and zero otherwise. This leaves
the problem of calculating the PDF ppνjq for all possible joint target-to-tracklet assignments. The
Fitzgerald ad hoc method eliminates the need to compute all possible joint events by replacing the
joint events with partial joint events called single events Gtj . Fitzgerald’s ad hoc JPDA or “cheap
JPDA” calculates the suboptimal probability of target t being associated only with tracklet j:

Ptj “
Gtj

St ` Sj ´ Gtj ` B
, (10)

*The subscript k, denoting the time step, is now dropped to avoid confusion with the subscripts denoting the targets
and tracklets, t and j, respectively. For the rest of this section and subsequent sections, all variables exist at the same time
step k unless otherwise noted.
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where
Gtj “ ppνjq,

St “

m
ÿ

j“1

Gtj ,

Sj “

T
ÿ

t“1

Gtj ,

B “ constant which depends on clutter density.

(11)

This ad hoc method exhibits traits similar to the optimal Joint Probabilistic Data Association
(JPDA) filter. Specifically, it strongly weights tracklets within only one target gate and lightly
weights tracklets situated in regions where multiple target gates intersect and compete. This method
prioritizes greater weights for tracklets in close proximity to the predicted targets. Fitzgerald sug-
gests that B “ 0 gives satisfactory results in all cases except very dense clutter. Finally, if there is
only one target that associates with a tracklet and there is only one unique tracklet for every target,
then Reference 21 reduces the suboptimal probability to

Ptj “
Gtj

řm
j“1Gtj

. (12)

In a scenario where targets dominate the environment, Fitzgerald advocated abandoning the op-
timal Joint Probabilistic Data Association (JPDA) filter in favor of the Nearest Neighbor Joint
Probabilistic Data Association (NNJPDA) approach. The NNJPDA approach closely resembles
the conventional recursive method of associating targets with tracklets. Typically in each gate, the
statistical distance from predicted targets to tracklets is calculated, and a two-dimensional assign-
ment determines which tracklet is chosen to update a target.21, 22, 24, 25 The simplest approach is the
nearest neighbor algorithm, assigning each target the tracklet with the closest position to the pre-
dicted target.21, 22, 26 However, this method is limited to low-density target and clutter environments
as it neglects alternative target associations.

A more effective assignment method for NNJPDA is the greedy nearest neighbor algorithm.21

This algorithm selects the target-to-tracklet association with the closest score, eliminates all other
associations for that target and tracklet, and proceeds to the next closest assignment. While it re-
sults in a nonconflicting set of target-tracklet associations, it is not optimal, yet remains valuable and
computationally more efficient than the optimal JPDA filter. Additionally, unlike the nearest neigh-
bor algorithm, the greedy nearest neighbor algorithm considers other target-tracklet assignments
when making decisions. Furthermore, by eliminating all associations after making an assignment,
it prevents assigning duplicate tracklets arising from potential conflicting assignments.

This work uses the NNJPDA with the greedy assignment algorithm. The two-dimensional as-
signment is

P P RTˆm. (13)

Furthermore, this work assumes that each target’s gate encompasses every tracklet (i.e. each target
has possible associations with every tracklet). This means that every Ptj has the same denominator
and can be removed from the greedy algorithm. Thus, Equation (12) reduces to

Ptj “ Gtj . (14)
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Therefore, the main assumptions made are: (1) every tracklet is processed into the state-space to
the same discrete time step k — (2) Every target is assigned a unique tracklet by the greedy algo-
rithm. These assumptions imply that the gates of each target are large enough to encompass every
processed tracklet at time step k (i.e. every tracklet has the possibility of being uniquely associated
with every target at k).

The rest of this section explores the different methods for performing NNJPDA by computing the
single events Gtj given processed tracklet data. The methods presented are:

1 NNJPDA for Gaussians.

2 NNJPDA for Gaussian Mixtures.

NNJPDA for Gaussians

Using Batch Least Squares Processed Tracklets. The batch least squares information filter27 is
a batch processing algorithm used to compute the Maximum a Posteriori (MAP) estimate of the
state from all available raw measurements in a given tracklet. It condenses a tracklet’s raw measure-
ments into a single mean and covariance in the state-space at time step k, serving as “processed”
measurements for the assigned target’s EnGMF. Then, the components of the EnGMF are indi-
vidually updated via the EKF. This subsequently updates the target’s GMM approximation of the
posterior distribution. See Reference 2 for details.

For this to work for MTT, the batch processed tracklets must be assigned to the best possible
target. In Figure 2, the single event Gtj is computed between the batch output of tracklet j and
the weighted EnGMF GMM components of target t at time step k. Let the processed tracklet j be

Figure 2: Illustration of computing the single event between a tracklet’s measurement distribution
(represented by the batch least squares solution) and a target’s state distribution (represented by the
weighted sum of components of the propagated EnGMF GMM).

represented by a random variable x̃ distributed by ppx̃; x̃j , P̃jq “ N px̃j , P̃jq, and let the target
t be represented by a different random variable indepent of x̃ and distributed by ppx; xt, Ptq “

N pxt, Ptq. Since the distribution of the processed tracklet j is Gaussian and the distribution of the
target t is also Gaussian, then can calculate the negative log of their difference and reassign Gtj :

Gtj “ ´ log pppx; xt, Ptq ´ ppx̃; x̃j , P̃jqq

“ ´ log pppx ´ x̃;xt ´ x̃j , Pt ` P̃jqq

“
1

2
pxt ´ x̃jq

T pPt ` P̃jq
´1pxt ´ x̃jq `

1

2
log |Pt ` P̃j | ` const.,

(15)

7



where pxt, Ptq P X Ă X are the state and covariance of the target t, and px̃j , P̃jq P X̃ Ă X̃ are
the state and covariance of the processed tracklet j. X represents the single-target space and X̃
represents the processed single-tracklet space. The single events are computed for every possible
target-tracklet combination.

Using MCMC Processed Tracklets. Instead of processing raw measurements through a batch
least squares algorithm, a better approach may be to use the MCMC Metropolis-Hastings method3, 4, 28

to sample from the target measurement distribution directly (see Reference 2 for details). Once
enough samples are collected, a GMM is constructed using KDE and Silverman’s rule of thumb such
that each sample is weighted equally and has the same covariance. This means that the weighted
Gaussian mixture covariance is equivalent to the sample covariance of all the MCMC samples. Ad-
ditionally, the weighted Gaussian mixture mean is equivalent to the sample mean of all the MCMC
samples. These are leveraged to perform JPDA. In Figure 3, the single event Gtj is computed be-
tween the weighted GMM components of the MCMC output and the weighted GMM components
of the EnGMF. The joint PDF is computed for every possible target-tracklet combination using
Equation (15) and stored into the two-dimensional assignment matrix P .

Figure 3: Illustration of computing the single event between a tracklet’s measurement distribution
(represented by the weighted sum of components of the MCMC GMM) and a target’s state distri-
bution (represented by the weighted sum of components of the propagated EnGMF GMM).

NNJPDA for Gaussian Mixtures

Using MCMC Processed Tracklets. The previous two methods are based on the assumption
that the probability distributions of both the processed tracklets and the predicted targets have a
single mean and covariance each. When these distributions cannot be expressed with simply mean
and covariance, Equation (15) may not accurately capture the true statistical characteristics of the
state-data relationship. For example, when non-Gaussian information is forced into a Gaussian
framework, there may be a loss of important information, leading to poor data association and
tracking results.

In cislunar orbit determination, nonlinearities often play a significant role in target motion and
measurement processes. GMM’s can better capture the effects of these nonlinearities and model
uncertainties. In Figure 4, the single event Gtj is computed between the MCMC GMM of tracklet
j and the propagated EnGMF GMM of target t at time step k.

This work proposes using the single event of Gaussian mixtures such that each component of the
propagated target’s GMM is compared with each component of the processed tracklet’s GMM. This
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Figure 4: Illustration of computing the single event between a tracklet’s measurement distribution
(represented by the individual components of the MCMC GMM) and a target’s state distribution
(represented by the components of the propagated EnGMF GMM).

results in the negative log, single event for GMMs:

Gtj “ ´ log pppx; xt, Ptq ´ ppx̃; x̃j , P̃jqq

“ ´ log

˜

1

N ¨ M

N
ÿ

i“1

M
ÿ

u“1

´

ppx; x
piq
t , P

piq
t q ´ ppx̃; x̃

puq

j , P̃
puq

j q

¯

¸

“ ´ log

˜

1

N ¨ M

N
ÿ

i“1

M
ÿ

u“1

ppx ´ x̃;x
piq
t ´ x̃

puq

j , P
piq
t ` P̃

puq

j q

¸

,

(16)

where x
piq
t and P

piq
t are the state and covariance of the i-th GMM component of target t, and x̃

puq

j

and P̃
puq

j are the state and covariance of the u-th GMM component of tracklet j. Equation (16)
can be computed using a log-sum-exponential trick for numerical stability. The components of the
targets GMM all share the same covariance such that P piq

t “ βStPt and can be calculated using
Silverman’s Rule of Thumb from Equation (3). Similarly, the GMM components of the processed
tracklet’s MCMC samples all share the same covariance such that P̃ puq

j “ βSj P̃j and also can be
calculated using Silverman’s Rule of Thumb from Equation (3). The single event Gtj is computed
for every possible target-tracklet combination to construct P .

Additional Considerations. In addition to computing single events Gtj between just Gaussians
or between just Gaussian mixtures, a combination of the two can be made to mix-and-match meth-
ods; conceptually, mix-and-matching Figures 2, 3, and 4. Single events can therefore be computed
between a single Gaussian and Gaussian mixture resulting in more flexibility and potential com-
putational savings. Single events can be between the processed batch least squares solution and
the individual components of the propagated EnGMF GMM; between the weighted sum of com-
ponents of the MCMC GMM and the individual components of the propagated EnGMF GMM, or
between the individual components of the MCMC GMM and the weighted sum of components of
the propagated EnGMF GMM.

Assignment

Up until this point, this work has only shown how to compute the single events Gtj of the two-
dimensional assignment matrix P . Figure 5 shows an example of the two-dimensional matrix con-
taining these single events. To actually perform the assignments, this work uses a greedy nearest
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Figure 5: Two-dimensional assignment matrix with columns representing m tracklets and rows
representing T targets. The elements of P are the individual single evenets between targets and
tracklets.

neighbor algorithm. The minimum single event of P is found to assign the most likely target-tracklet
combination. It then eliminates the corresponding row and column from future assignments to pre-
vent duplicate assignments. This greedy approach allows for the consideration of all target-tracklet
assignments when making a decision.

Algorithm 1 shows this assignment process. It takes input: the number of targets T , the number of
tracklets m, the set X “ tpx1, P1q, px2, P2q, ¨ ¨ ¨ , pxT , PT qu Ă X of the propagated targets, the set
X̃ “ tpx̃1, P̃1q, px̃2, P̃2q, ¨ ¨ ¨ , px̃m, P̃mqu Ă X̃ of the processed tracklets, and the two-dimensional
assignment matrix P . It outputs

A Ă X ˆ X̃
“ tpx1, P1, x̃1, P̃1q, px2, P2, x̃2, P̃2q, ¨ ¨ ¨ , pxT , PT , x̃T , P̃T qu,

(17)

where A is the assigned target-tracklet subset of the combined single-target space X and single-
tracklet space X̃. Noticeably, if there are more tracklets than targets such that m ą T , then A will
contain the assignments of the most likely T combinations throwing away the remaining tracklets.

Algorithm 1 - Greedy Nearest Neighbor Assignment of Tracklets to Targets

Input: T , m, X , X̃ , P
Output: A

1: P˚ “ P
2: A “ tu

3: for t “ 1 to T do
4: glob min “ min pP˚q Get global minimum value in P˚

5: r idx, idy s “ findpP ““ glob minq Find global minimum location in P
6: Attu “ pXtidxu, X̃tidyuq

7: Shrink P˚ by removing row associated with glob min
8: Shrink P˚ by removing column associated with glob min
9: end for
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NRHO EXAMPLE

Problem Setup

During a lunar month lasting 27.3 days, the Moon undergoes waxing and waning phases across
Earth’s horizon.29 Optimal Moon visibility occurs during either the first quarter or last quarter lunar
phase, striking a balance between excessive sunlight and complete darkness (i.e. midway between
Full Moon and New Moon phases). The Moon is visible for about 12 hours daily from moonrise to
moonset.29

To evaluate the performance of the presented methods, two numerical examples are considered.
A sensitivity study on the accuracy and consistency of each method is performed for tracking 3
targets and for tracking T targets. The system dynamic equations are numerically integrated with
an embedded Runge-Kutta 8(7) method.30 Angle measurements are simulated using an Earth-based
optical ground telescope mapped to the Barycenter of the system. In this simulation, tracking passes
are short and sparse. Raw angle measurements are available every 5 minutes and formed into
tracklets that last 8 hours according to lunar moonrise to moonset visibility constraints.29 A break
in each tracklet occurs for 16 hours and then continues for another 8 to simulate the Moon not being
visible during portions of the day. The system is propagated a month and the cycle continues: 8
hours sensing at a rate of 5 minutes, 16 hours propagate, 8 hours sensing at a rate of 5 minutes,
propagate a month. This cycle is performed 3 times, so, for each target there will be 6 distinct
tracklets of data.

Dynamics Model. This work models cislunar Near Rectilinear Halo Orbit (NRHO) dynamics
using the Circular Restricted Three Body Problem (CR3BP) for the Earth-Moon system with a 6
dimensional state-space represented by x “ rr1, r2, r3, v1, v2, v3sT:

9r1 “ v1

9r2 “ v2

9r3 “ v3

9v1 “ r1 ` 2v2 ´
p1 ´ µqpr1 ` µq

r3
C

´
µpr1 ´ 1 ` µq

r3$

9v2 “ r2 ´ 2v1 ´
p1 ´ µqr2

r3
C

´
µr2
r3$

9v3 “ ´
p1 ´ µqr3

r3
C

´
µr3
r3$

,

(18)

where r1, r2, r3 and v1, v2, v3 represent the scaled Cartesian positions and velocities of the satellite
with-respect-to the Barycenter origin, µ is the scaled Moon geocentric gravitational constant, and
rC and r$ are the distances of the satellite with-respect-to the Earth and Moon in the Barycenter
reference frame:

µ “
µ$

µC ` µ$
, (19)

rC “

b

pr1 ` µq2 ` r22 ` r23, (20)

r$ “

b

pr1 ´ 1 ` µq2 ` r22 ` r23. (21)
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In this work, µC “ G ¨mC and µ$ “ G ¨m$. The gravitational constant G “ 6.6743e´11 [ m3

s2kg ],
the mass of the Earth mC “ 5.972e24 [kg], and the mass of the Moon m$ “ 7.342e22 [kg]. The
units for distance and time were non-dimensionalized by length units LU “ 384400e3 [m] and time

units TU “

b

LU3{ pµC ` µ$q [s].

Measurement Model. The raw measurement vector y “ rα, δsT contains right ascension α and
declination δ of the observed target as seen by an Earth-based optical ground telescope mapped to
the Barycenter origin. The right ascension α and declination δ are

α “ tan´1

ˆ

r2 ´ rS2

r1 ´ rS1

˙

, (22)

δ “ sin´1

ˆ

r3 ´ rS3

||rr1, r2, r3sT ´ rS ||2

˙

, (23)

where || ¨ ||2 is the 2-norm, and rS “ rrS1 , rS2 , rS3sT is the position of the telescope, which,
in this work, is at the Barycenter of the system, defined to be the origin: rS “ r0, 0, 0sT. The
measurements are corrupted by additive zero-mean Gaussian white noise with standard deviation of
100 arc-seconds for both the right ascension and declination observations. Light travel time delay
and measurement biases are not considered.

Initial Conditions. Each target truth and each EnGMF GMM component are initialized by the
same distribution centered at the non-dimensional coordinates31 and covariance32

x0 “ r1.0110350588, 0, ´0.1731500000, 0, ´0.0780141199, 0sT (24)

P0 “ diagpr2.5e ´ 5, 2.5e ´ 5, 2.5e ´ 5, 1e ´ 6, 1e ´ 6, 1e ´ 6s2q. (25)

Each target is spaced apart by 2.5 hours. This means when the targets are created they are propagated
to be 2.5 hours apart along their trajectory. The non-dimensional period of each target is roughly
1.3632096570 from Reference 31. One key assumption this work makes is that the measurement
data has already undergone some preprocessing to delineate the available tracklets. Therefore, it
does not account for any simulated clutter, births, deaths, nor target spawning of the like. The
last key assumption, for the following results, is that there exists the same number of tracklets and
targets, although, the methods presented can handle varying numbers of tracklets and targets.

Estimation Accuracy Criterion

The hypothetical scenario above describes a process with sparse-in-time angles-only measure-
ments. This provides a case that is not terribly far fetched from reality for optical telescopes and
allows us to test the performance of our data association methods.

It has become common practice to use Optimal Subpattern Assignment (OSPA)33 to evaluate
MTT filter performance. In this work, the OSPA computes the filter error of the state estimates
with-respect-to the truth and combines the errors of every target. The general OSPA takes into
account different cardinalities between the number of estimated targets and number of true targets;
whereas, this work assumes the same cardinality always. That said, given the set of filter estimates
for T targets X̂ “ tx̂1, x̂2, ¨ ¨ ¨ , x̂T u and the set of truths for T targets X “ tx1, x2, ¨ ¨ ¨ , xT u,
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this work reduces the OSPA to

d̄ppX, X̂q ”

˜

1

T

T
ÿ

t“1

dpxt, x̂tq
p

¸1{p

, (26)

where dpa, bq can be any metric as defined by Reference.33 This work chooses dpa, bq “ ||a´ b||2
which is the 2-norm of the difference between a and b. Additionally, the OSPA parameter p “ 2
which is common practice. A low OSPA value means good filter and tracking accuracy.

Estimation Consistency Criterion

The filter and tracking consistency is examined using the scaled normalized estimation error
squared (SNEES) which is defined as34

SNEES “
1

nx

M
ÿ

i“1

1

M

T
ÿ

t“1

1

T
px

piq
t ´ x̂

piq
t qTpP̂

piq
t q´1px

piq
t ´ x̂

piq
t q, (27)

where M is the number of Monte Carlo iterations, nx is the size of the state-space, T is the number
of targets, xpiq

k are the true states, x̂piq
k are the estimated states, and P̂

piq
k is the estimated covariance

of the ith Monte Carlo iteration for target t. The size of the state-space nx “ 6 is used to scale the
NEES value.34 A SNEES value of 1 means good filter and tracking consistency. Anything less than
1 tells that the filter is conservative and anything greater than 1 tells that the filter is too confident.

RESULTS

Simulation Results for 3 Targets

This set of results tracks 3 closely spaced targets on the same NRHO trajectory using an Earth
ground-based optical telescope. The trajectories of the 3 targets are shown in Figure 6. The obser-
vations are collected over 2 months, featuring the following different NNJPDA single event compu-
tation methods:

1. Batch-EnGMF: single events computed between the processed batch least squares solution
and the weighted sum of components of the propagated EnGMF GMM. This is a Gaussian to
Gaussian comparison.

2. Batch-EnGMF(GMM): single events computed between the processed batch least squares
solution and the individual components of the propagated EnGMF GMM. This is a Gaussian
to Gaussian mixture comparison.

3. MCMC-EnGMF: single events computed between the weighted sum of components of the
MCMC GMM and the weighted sum of components of the propagated EnGMF GMM. This
is a Gaussian to Gaussian comparison.

4. MCMC-EnGMF(GMM): single events computed between the weighted sum of components
of the MCMC GMM and the individual components of the propagated EnGMF GMM. This
is a Gaussian to Gaussian mixture comparison.

13



5. MCMC(GMM)-EnGMF: single events computed between the individual components of the
MCMC GMM and the weighted sum of components of the propagated EnGMF GMM. This
is a Gaussian mixture to Gaussian comparison.

6. MCMC(GMM)-EnGMF(GMM): single events computed between the individual compo-
nents of the MCMC GMM and the individual components of the propagated EnGMF GMM.
This is a Gaussian mixture to Gaussian mixture comparison.

Figure 7 compares the OSPA results in [km] and [km/s]. Both batch least squares methods,
(1.) Batch-EnGMF and (2.) Batch-EnGMF(GMM), are not able to capture the nonlineariteies in
the measurement distribution when processing the raw tracklets of data. This leads to poor data
association which then subsequently leads to an inaccurate EnGMF filter. The MCMC methods
on-the-other-hand perform well and are able to handle the non-Gaussianities. For tracking 3 targets,
all MCMC methods have similar accuracy performances and are significantly better and more stable
than the batch least squares methods.

Next, to get an idea of overall MTT filter consistencies, Figure 8 compares the SNEES of each
method. Figure 8 shows that over the course of the 2 months of sensing, the Gaussian assumption
made by method (3.) MCMC-EnGMF is too strong and over time it produces estimates that are
too confident. The MCMC methods that account for Gaussian mixtures during data association:
(4.) MCMC-EnGMF(GMM), (5.) MCMC(GMM)-EnGMF, (6.) MCMC(GMM)-EnGMF(GMM);
provide the best overall filter consistency suggesting that they are able to successfully label and
track the correct targets. Furthermore, for this 3 target case, the MCMC GMM methods are the
better methods in both accuracy and consistency because they are effectively using most of the
information provided by the nonlinear, non-Gaussian system.

Figure 6: Two sets of 8 hour trajectories for 3 closely spaced targets in the same orbit. The true
trajectories are distinguished by the red, green, blue solid lines. The tracklets of raw measurements
are shown by the white markers and have not been assigned a target yet. Notice the trajectories of
the targets all pass through the same volume of measurements.
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Figure 7: Comparing the OSPA position and velocity metrics for tracking 3 targets closely spaced
in the same NRHO trajectory using a Earth ground-based optical telescope collecting angles-only
observations over the course of 2 months. Averaged over 100 Monte Carlo iterations. The Batch-
EnGMF method fails to produce numerical results and is not within reason to compare. The MCMC
methods are highlighted in red and zoomed in on the right.

Figure 8: Comparing the SNEES for tracking 3 targets closely spaced in the same NRHO tra-
jectory using a Earth ground-based optical telescope collecting angles-only observations over the
course of 2 months. Averaged over 100 Monte Carlo iterations. The Batch-EnGMF and Batch-
EnGMF(GMM) NNJPDA methods are plotted out of frame and are not within reason to compare.
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Simulation Results for Varying Targets

Using the same problem setup and target spacing as the 3 target case, the following are the time-
averaged results ranging from 2 targets to 10 targets. This to show how the algorithms compare
as the orbit becomes more congested. Figure 9 shows that as the number of targets increases, the
MCMC methods retain similar accuracies. Noticeably, the batch least squares methods have poor
performance (again) and do not produce numerical results after trying to track 3 targets. Next, to
show the MTT filter consistencies, Figure 10 compares the time-averaged SNEES of each method.

Figure 10 shows that over the course of the 2 months of sensing and introducing more congestion,
the MCMC methods are able to provide consistent estimates implying they are able to successfully
label and track the correct targets. The most consistent being the MCMC(GMM)-EnGMF(GMM)
do to it’s full GMM to GMM data assocaition between tracklets and targets. To see the assignment
accuracy, Figure 11 shows how accurate the different methods are at assigning the correct corre-
sponding target after data association. The accuracy is computed by counting the number of correct
associations and averaging it over time, the number of Monte Carlo iterations, and by the number
of true targets.

In Figure 11, the assignment accuracies of the batch least squares methods are poor and they fail
to produce numerical results after adding just 3 targets to the constellation. The accuracies of the
MCMC methods waiver near 100% with the most accurate being the MCMC(GMM)-EnGMF(GMM)
method. These results provide insight that processing raw tracklets with MCMC methods and per-
forming data association on Gaussian mixtures is important for accurate and consistent estimates,
and the accurate assignment of targets.

Figure 9: Comparing the OSPA position and velocity metrics for tracking 2-10 targets closely
spaced in the same NRHO trajectory using a Earth ground-based optical telescope collecting angles-
only observations. Averaged over 2 months and 100 Monte Carlo iterations. The Batch-EnGMF
and Batch-EnGMF(GMM) methods both fail to produce numerical results after just 3 targets and
are not within reason to compare. The MCMC methods are highlighted in red and zoomed in on the
right.
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Figure 10: Comparing the SNEES for tracking 2-10 targets closely spaced in the same NRHO
trajectory using a Earth ground-based optical telescope collecting angles-only observations. Aver-
aged over 2 months and 100 Monte Carlo iterations. The Batch-EnGMF and Batch-EnGMF(GMM)
NNJPDA methods are plotted out of frame and are not within reason to compare.

Figure 11: Comparing the assignment accuracy for tracking 2-10 targets closely spaced in the same
NRHO trajectory using a Earth ground-based optical telescope collecting angles-only observations.
Averaged over time and by 100 Monte Carlo iterations. After adding 3 targets, the batch least
squares methods fail to produce numerical results.
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CONCLUSION

This work presents an approach to address the intricate challenges of MTT in cislunar orbits uti-
lizing angles-only tracklets from ground-based optical telescopes. By leveraging MCMC methods,
this work processes angles-only tracklets for Cartesian coordinates, providing a more suitable al-
ternative to traditional methods in the presence of nonlinearities. In addition, JPDA is performed
between the measurement components of the MCMC generated GMM and the filter components of
the EnGMF GMM. JPDA in this work uses a nearest neighbor greedy approach, preventing dupli-
cate target-tracklet assignments.

The empirical results, showcased through numerical simulations tracking multiple closely spaced
targets on a NRHO trajectory, underscore the superiority of MCMC methods over traditional batch
processing approaches. The findings reveal the effectiveness of MCMC-based MTT methods in ac-
curately associating tracklets with targets, even in scenarios with increased orbital congestion. The
proposed methods maintain accuracy and consistency over time, thereby offering valuable insights
for practical implementations in real-world cislunar tracking scenarios.

This research opens avenues for further exploration and refinement of MCMC-based methodolo-
gies in improving the robustness and efficiency of space target tracking. Future work in this area
is to expand the research to other data association methods like Random Finite Sets, leveraging the
the technique of processing data via MCMC.
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