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Abstract—Gaussian mixture-type filters have become indis-
pensable tools for modeling intricate and nonlinear systems, of-
fering a departure from traditional Gaussian-centric approaches.
This work focuses on the critical aspect of accurate weight
computation during the measurement incorporation phase of
Gaussian mixture filters. The proposed novel approach computes
weights by linearizing the measurement model about each com-
ponent’s posterior estimate rather than the the prior, as tradition-
ally done. This work proves equivalence with traditional meth-
ods in linear scenarios and empirically demonstrates improved
performance in nonlinear cases. Two illustrative examples, the
Avocado and Lorenz ’63 models, serve to elucidate the advantages
of the new weight computation technique by analyzing filter
accuracy and efficiency through varying the number of Gaussian
mixture components.

Index Terms—statistical estimation, Gaussian mixture filter,
weight update

I. INTRODUCTION

Gaussian mixture-type filters mark a departure from tradi-
tional Kalman filtering methods, which prove more effective
for systems characterized by Gaussian dynamics and observa-
tions [1]–[8]. In real-world scenarios, such as weather tracking
and orbit determination, nonlinearity and multimodality are
common; challenging the viability of Gaussian assumptions
[9]–[18]. Addressing these challenges, Gaussian mixture-type
filters tackle the intricacies of non-Gaussian state estimation
by representing probability distributions as a weighted sum of
Gaussian components [19]–[21].

Accurate weight assignment is crucial as it determines the
contribution of each Gaussian component to the overall dis-
tribution. Correctly computed weights not only ensure align-
ment with the true state’s distribution, but also enhance filter
consistency, enabling reliable tracking of dynamic changes
and accommodation of uncertainties. Conversely, inaccurate
weight computation can lead to subpar filtering performance,
causing divergence, filter degeneracy, and ultimately, inaccu-
rate and inconsistent state estimates. This work introduces a
novel method for computing the weights of Gaussian mixture-
type filters by linearizing the measurement model about each
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component’s posterior estimate rather than the prior. This ap-
proach enhances accuracy in weight computation and requires
only minimal computational overhead, maintaining the overall
efficiency of the process.

This work is organized as follows: section II gives back-
ground information on the differences between these two
different linearization techniques. Section III proves that, for
linear measurement models, the updated weights using this
new approach are equivalent to the traditional method of
linearization about the prior. Section IV gives an explanation
for improved performance for nonlinear measurement models.
And in Section V, we offer elegant alternate forms of the
improved weights. Lastly, for nonlinear measurement models,
in Section VI, our empirical results for two different exam-
ples showcase improved performance compared to traditional
methods. The first example involves a single measurement
update in two dimensions (referred to as the Avocado exam-
ple), highlighting the fundamental differences between the new
approach and traditional Bayesian methods by attempting to
estimate an Avocado-shaped posterior distribution. The second
example delves into the Lorenz ’63 system serving as a
dynamic demonstration of the applicability and superiority of
the new weighting approach in handling challenging problems.

II. BACKGROUND

This work computes the weights of Gaussian mixture-
type filters by linearizing the measurement model about each
component’s posterior estimate rather than the prior. This not
only improves accuracy but also ensures minimal additional
computational burden. In this section, we explore the dis-
tinctions between linearizing the measurement model around
the prior and the posterior estimates. Additionally, we delve
into why utilizing the posterior estimate can contribute to an
improvement in the weight update.

Suppose the measurement model is of the form:

y = h(x) + η, (1)

where, η is zero mean with finite covariance R. Equation (1)
relates the system’s true state x to the sensor measurements y
and in practical scenarios is often nonlinear.



A non-Gaussian prior probability density function (PDF)
can be approximated as a weighted sum of n simpler distribu-
tions (such as Gaussians) with associated prior weights w−

i :

px(x) ≈
n∑

i=1

w−
i pxi

(x). (2)

From it an approximation to the posterior is computed:

px|y(x|y) ≈
n∑

i=1

w+
i pxi|yi

(x|y), (3)

where the updated weights of the i-th component (also referred
to as mixand) are given by:

w+
i =

w−
i pyi(y)

py(y)
, (4)

and,

py(y) ≈
n∑

j=1

w−
j pyj (y), (5)

pyi(y) = N (y; h(xi), P (i)
yy ), (6)

where xi and P
(i)
yy are the i-th component’s current state and

measurement innovation covariance, respectively. To compute
this covariance, a common technique is to use a first-order
Taylor series expansion of the measurement model around the
i-th component’s prior state estimate x̄i:

y ≈ ȳi = h(x̄i) + H̄i(x− x̄i) + η, (7)

where H̄i = H(x̄i) is the Jacobian matrix, which captures the
gradient of the measurement model with respect to the state
evaluated at the prior estimate. It then follows that P̄

(i)
yy is

calculated 1:

P̄ (i)
yy = Ex,y[ϵ̄i ϵ̄

T
i ]

= Ex,y[(y − h(x̄i)) (y − h(x̄i))
T ]

≈ H̄iP̄iH̄
T
i + R.

(8)

The updated weights of the GMM in (4) are typically
computed using this linearization. Linearization around the
prior is a common assumption whose implications have not
been explored in depth and that can hinder the performance
of Gaussian Sum Filters (GSF) [19]–[21], Ensemble Gaussian
Mixture Filters (EnGMF) [9], [10], [12]–[15], [18], [22], and
other Gaussian Mixture Model (GMM)—type filters [23]–[25].

Better weights can be computed by linearizing the mea-
surement model about each component’s posterior estimate x̂i

rather than the prior x̄i:

y ≈ ŷi = h(x̂i) + Ĥi(x− x̂i) + η, (9)

where Ĥi = H(x̂i) is the Jacobian matrix, which now captures
the gradient of the measurement model with respect to the state
evaluated at the posterior estimate. It then follows that P̂ (i)

yy is
calculated 2:

1See A.38 in the Appendix for expansion of this calculation.
2See A.39 in the Appendix for expansion of this calculation.

P̂ (i)
yy = Ex,y[ϵ̂i ϵ̂

T
i ]

= Ex,y[(y − h(x̂i)) (y − h(x̂i))
T ]

≈ ĤiP̂
(i)ĤT

i +R− ĤiKiR− (ĤiKiR)T ,

(10)

where Ki = P̄ (i)H̄T
i P̄

(i)−1

yy .
Using the covariances from (8) and (10), two approxima-

tions, pŷ(y) and pȳ(y), are explored in lieu of the elusive true
distribution py(y):

pŷ(y) ≈
n∑

j=1

w−
j pŷj

(y), (11)

pŷi(y) = N (y; h(x̂i), P̂ (i)
yy ), (12)

and,

pȳ(y) ≈
n∑

j=1

w−
j pȳj

(y), (13)

pȳi
(y) = N (y; h(x̄i), P̄ (i)

yy ). (14)

This work proposes employing pŷ(y) to compute GMM
weights and proves that, in linear cases, both approximations
yield equivalent results. Additionally, this work empirically
demonstrates, in nonlinear cases, improved GMM filter per-
formance when linearizing the measurement model about the
posterior estimates. The improvement is observed when lin-
earizing the measurement model about the posterior estimates
offers a more accurate approximation of the truth compared
to linearizing about the prior.

III. PROOF OF EQUIVALENCE FOR LINEAR MODELS

This section proves, for linear measurement models, that
using the posterior estimate in the weight update leads to
weights that are equivalent to those obtained by using the prior.

Theorem III.1. (Equivalent Weights Under Linear Measure-
ment Models)

Given the prior weights w−
i and considering the Gaussian

measurement probability distributions pŷ(y) and pŷi
(y) as

computed from (11) and (12), respectively, based on the
posterior estimates, and pȳ(y) and pȳi(y) as computed from
(13) and (14), respectively, using the prior estimates; the
traditional weights take the following form:

w̄+
i =

w−
i pȳi

(y)

pȳ(y)
, (15)

and the improved weights have the form:

ŵ+
i =

w−
i pŷi

(y)

pŷ(y)
, (16)

where both w̄+
i and ŵ+

i share the same prior weights w−
i . The

linear case yields y = Hxi + η, H(x̂i) = H(x̄i) = H
and will give:

ŵ+
i =

w−
i pŷi

(y)

pŷ(y)
=

w−
i pȳi

(y)

pȳ(y)
= w̄+

i . (17)



Proof. Starting from (17), the prior weights cancel on both
sides:

pŷi
(y)

pŷ(y)
=

pȳi
(y)

pȳ(y)
, (18)

then taking the log of both sides yields,

log pŷi
(y) − log pŷ(y) = log pȳi

(y) − log pȳ(y). (19)

Since the measurement Jacobians are not state dependent, this
results in constant measurement innovation covariances such
that P̂ (i)

yy = P̂yy and P̄
(i)
yy = P̄yy. Equation (19) simplifies to:

1

2
ϵ̂Ti P̂−1

yy ϵ̂i + log

n∑
j=1

w−
j exp−1

2
ϵ̂Tj P̂−1

yy ϵ̂j

=
1

2
ϵ̄Ti P̄−1

yy ϵ̄i + log

n∑
j=1

w−
j exp−1

2
ϵ̄Tj P̄−1

yy ϵ̄j .

(20)

So now, we only need to prove the following to prove (17):

ϵ̂Ti P̂−1
yy ϵ̂i = ϵ̄Ti P̄−1

yy ϵ̄i. (21)

Reference [8] has previously established the proof of (21) for
linear measurement models. Inherently, this also serves as a
natural validation for the proof of (17) in the contributions
presented in this work.

For linear models, we can now conclude that calculating
the weights of the posterior distribution from the posterior
Gaussian components is equivalent to the traditional method
of using the prior Gaussian components.

IV. NONLINEAR MODELS

The nonlinear case y = h(xi) + η results in P̂
(i)
yy ̸= const.,

P̄
(i)
yy ̸= const., and H(x̂i) ̸= H(x̄i). This means terms do

not simplify as they did for the linear case and we can only
conclude that:

ŵ+
i =

w−
i pŷi(y)

pŷ(y)
̸= w−

i pȳi(y)

pȳ(y)
= w̄+

i . (22)

However, we can demonstrate empirically that:

ŵ+
i =

w−
i pŷi(y)

pŷ(y)
i.b.t

w−
i pȳi(y)

pȳ(y)
= w̄+

i , (23)

where ‘i.b.t’ (is better than) is used here to mean the new
weights ŵ+

i are improved or better than the traditional weights
w̄+

i . 3 This is because the posterior is assumed to be a
better approximation of the truth, thus the linearization and
by extension the weights are a more accurate representation of
the truth. The set of examples in this work provide empirical
evidence for improving the weights independently for each
GMM component; improving the precision of the overall
conditional mean Ex|y[x|y].

3This does not imply that the improved weights are greater than the
traditional weights, but only that they have been improved.

V. COMPUTING THE IMPROVED WEIGHTS

Some alternate equivalent forms of P̂
(i)
yy for numerical

stability:

P̂ (i)
yy = ĤiP̂

(i)ĤT
i + R − ĤiKiR − (ĤiKiR)T 1

P̂ (i)
yy = (Ĥi − H̄i)P̂

(i)(Ĥi − H̄i)
T + RP̄ (i)−1

yy RT 2

P̂ (i)
yy = (Ĥi − H̄i)P̂

(i)(Ĥi − H̄i)
T 3

+ (I − H̄iKi)P̄
(i)
yy (I − H̄iKi)

T

Notice that 1 is not necessarily enforcing semi-positive defi-
niteness, but is enforcing symmetry. Both 2 and 3 enforce
semi-positive definiteness and symmetry, however, 2 requires
an explicit inversion of P̄yy. Therefore, the recommended most
numerically stable option is 3 which this work is coining the
“Joseph Form” [26] of the measurement innovation covariance
for the improved weights.

Finally, the improved weights ŵ+
i are:

ŵ+
i ∝ w−

i N (y; h(x̂i), P̂ (i)
yy ) (24)

And to explicitly compute them:

ŵ+
i =

w−
i N (y; h(x̂i), P̂

(i)
yy )

pŷ(y)

≈ w−
i N (y; h(x̂i), P̂

(i)
yy )∑n

j=1 w
−
j N (y; h(x̂j), P̂

(j)
yy )

.

(25)

The computational expense associated with the above is com-
parable to computing the weights with the prior. In essence,
the computational overhead is minimal, making it practically
negligible.

VI. NUMERICAL EXPERIMENTS

The following examples will demonstrate empirically that
the new GMM weights proposed can lead to improved perfor-
mance compared to using the traditional weights.

In the first example, the compared filters will execute a
single measurement update in two dimensions. This approach
aims to demonstrate the effectiveness of the new weight update
scheme, showcasing its broad applicability across all GMM-
type filters and decoupling it from the effects of resampling,
pruning, propagation, and so forth. As such, the results pre-
sented are relevant for GSF, EnGMF, and other GMM-type
filters of a similar nature.

In the second example, the compared filters will grapple
with the dynamic complexities of the Lorenz ’63 system. This
system is notorious for its chaotic nature, which means it’s
highly sensitive to initial conditions. Even minor errors in
the initial state or measurement data can trigger substantial
divergence in the estimated state. Consequently, accurately
estimating the system’s state over time becomes a formidable
challenge. Adding to the complexity, the Lorenz ’63 system
is inherently nonlinear. This nonlinearity can result in non-
Gaussian probability distributions for the state variables. As
a result, conventional filters tailored for linear and Gaussian



systems prove inadequate for providing precise estimates in
this scenario. To address these challenges, more advanced
estimation techniques like GMM-type filters come into play.
In this sensitive dynamic context, the EnGMF stands out
as a robust choice when contrasted with a basic Gaussian
Sum Filter (GSF). Its ability to handle the chaotic, nonlinear,
and non-Gaussian characteristics of the Lorenz ’63 system
positions it as the preferred option. The EnGMF has been
selected, in this example, as the preferred representative filter
for conducting a comparative analysis of the different weight
updates for GMM-type filters.

A. Example: Avocado Distribution

We now demonstrate the improved weights through a single
update, two dimensional example visualized by Fig. 1. The
results are expressed as Gaussian Mixture Filter (GMF),
because they are applicable for the GSF, EnGMF, and other
GMM-type filters of like kind due to the fact that there isn’t
any resampling, pruning, propagation, etc.

Fig. 1. A plot of the single update, two dimensional example. Comparing
the posterior PDF estimates of the UKF, GMF(EKF), GMF(UKF), and
GMF(EKF*) averaged over 100 Monte Carlo simulations. The GMM-type
filters use 100 components or mixands.

The prior is expressed as a Gaussuan distribution:

N
([

−3.5
0

]
,

[
1 − 1

2
− 1

2 1

])
, (26)

which is off-center from the origin with the two variables
correlated. The nonlinear measurement mapping is of the form

h(x) =

[
(x1)

2

(x2)
2

]
, (27)

with a measured value of

y =

[
0
0

]
, (28)

which means the measured value was poorly predicted by our
prior knowledge. Additionally there is high confidence in the
measurement:

R = (0.42)I2×2, (29)

where I2×2 is the two dimension identity matrix. This ex-
ample compares the GMF with the new improved weights
against the traditional weights. For fair comparison, each
GMF has the same number of components, N , with uniform
prior weights w−

i = 1/N . For notation, the GMF(EKF) is
the GSF/EnGMF/GMM-type filter performing individual EKF
updates for each component and is using the traditional weight
update described by (15). Conversely, the GMF(EKF*) is the
GMM-type filter performing individual EKF updates for each
component, but is using the new improved weight update
described by (16) and more explicitly by (25). We include
the UKF for good measure with tuning parameters α = 1,
β = 2, and κ = 3 − m (m = 2; size of state-space) [3]. Of
course UKF’s can be tuned to fail, which is why we include
the GMF(UKF) that has the same tuning specs as the UKF.
It is also using the traditional weight update. The GMF filters
(with a sufficient number of components) will outlast a typical
UKF for non-Gaussian distributions.

To assess filter performance, the root mean square error
(RMSE) and the Kullback–Leibler divergence (KLD) or rela-
tive entropy are used. RMSE is computed by

RMSE =

√
1

m
(x− x̂)T (x− x̂), (30)

where m is the size of the state-space, x is the truth, and x̂ is
the posterior state estimate. KLD is computed by

DKL(P ||Q) =
1

nx

∑
x

1

2
(logP (x|y) − logQ(x|y))2, (31)

where nx is the number of discrete values of x on the grid, and
P (x|y) and Q(x|y) are the approximated and true posterior
PDF’s, respectively. In this example, P (x|y) is the estimated
PDF produced by the filter after the update represented by a
contour PDF in Fig. 1 and Q(x|y) is the truth represented by
the green shaded PDF in Fig. 1.

RMSE is a measure of how accurate the state estimate is
with respect to the truth. A lower RMSE indicates a more
accurate filter. In the context of Table I, using the improved
weights, GMF(EKF*), gives better accuracy when compared
to the other filters including the traditional weight update,
GMF(EKF); suggesting improved performance.

KLD, on-the-other-hand, is a measure of the dissimilarity
between two probability distributions. Though it is not a true
distance metric as it is not symmetric and does not satisfy
the triangle inequality, it is useful in quantifying how the
true probability distribution differs from the approximating
distribution. A lower KLD indicates there is less information
needed to match the approximated distribution to the truth. Ta-
ble I shows that using the improved weights can substantially
decrease KLD; again improving filter performance.



TABLE I
NUMERICAL OUTPUT OF THE SINGLE UPDATE, TWO DIMENSIONAL

AVOCADO EXAMPLE. COMPARING THE ROOT MEAN SQUARE ERROR AND
THE KULLBACK–LEIBLER DIVERGENCE FOR THE UKF, GMF(EKF),

GMF(UKF), AND GMF(EKF*). AVERAGED OVER 100 MONTE CARLO
SIMULATIONS. THE GMM-TYPE FILTERS USE 100 COMPONENTS OR

MIXANDS.

RMSE KLD

UKF 0.9613 —
GMF(EKF) 0.2899 12.594
GMF(UKF) 0.3113 16.640
GMF(EKF*) 0.2378 0.8226

To aid in our justification, we varied the number of GMM
components in the GMF. The RMSE and KLD results vs num-
ber of components are shown in Fig. 2 and Fig. 3, respectively.
Noticeably, the UKF suffers and is not visible in the plotting
frames due to it’s approximation of Gaussian distributions.
This was understood previously from it’s poor performance
in Fig. 1 and Table I. For the GMM-type filters, with smaller
number of components, there is a clear indication of improved
performance when using the new weights over the traditional
ones. As the number of components increases, a noteworthy
trend emerges: the filters utilizing traditional weights, namely
GMF(EKF) and GMF(UKF), appear to gradually converge
towards the performance exhibited by the filter employing the
improved weights, denoted as GMF(EKF*). As the number
grows, then the prior covariance becomes smaller, the update
becomes smaller, and hence the difference between prior and
posterior also becomes smaller. In the limit as the number of
components goes to infinity, the two should be identical.

Fig. 2. Comparing the impact on state estimate accuracy with-respect-to the
truth, represented by root mean square error (RMSE), by varying the number
of GMM components in the single update Avocado example. Featuring the
UKF, GMF(EKF), GMF(UKF), and GMF(EKF*). The UKF results are plotted
out of frame. Plots are averaged across 100 Monte Carlo simulations for each
GMM component test case.

Fig. 3. Comparing the impact on PDF accuracy with-respect-to the truth,
represented by Kullback–Leibler divergence (KLD), by varying the number
of GMM components in the single update Avocado example. Featuring the
UKF, GMF(EKF), GMF(UKF), and GMF(EKF*). The UKF results are plotted
out of frame. Plots are averaged across 100 Monte Carlo simulations for each
GMM component test case.

B. Example: Lorenz ’63

This dynamic example will now demonstrate the strength
of the improved GMM weighting scheme. The EnGMF is
being used to tackle the complicated Lorenz ’63 system [27] to
compare the improved weights against the traditional weights.
We again include the UKF for good measure with tuning
parameters α = 1, β = 2, and κ = 3 − m (m = 3; size
of state-space) [3].

The Lorenz ’63 dynamics used are

ẋ1 = 10(x2 − x1) + ν1

ẋ2 = x1(28 − x3) − x2 + ν2

ẋ3 = x1x2 − 8

3
x3 + ν3,

(32)

where process noise ν = [ν1 ν2 ν3]
T ∼ N (0, Q) and

Q = 4× 10−3

 0.86 0.86 −0.01
0.86 1.1 −0.01
−0.01 −0.01 1.02

 . (33)

The states are propagated using (32) in the classical 4th-
order Runge-Kutta integrator. The initial states are

x0 = [0 1 0]T . (34)

The initial uncertainty is

P0 = I3×3. (35)

For the nonlinear measurement, we take the range from one
of the equilibrium points:

y =

√
(x1 − 6

√
2)2 + (x2 − 6

√
2)2 + (x3 − 27)2 + η

(36)



where measurement noise η ∼ N (0, R) and

R =
1

100
. (37)

A measurement is recorded every ∆t = 0.5 time units.
For analysis, the first 100 estimates are discarded since the
initial conditions are not yet on the attractor. Fig. 4 shows the
trajectory for the simulation.

Fig. 4. A plot of Lorenz ’63 trajectory with the black marker as the initial state
x0 and the red marker as the equilibrium point where the range is mapped
to. The initial state is not on the attractor which motivates discarding the first
100 estimates during analysis.

The dynamics form a distinct shape like wings on a
butterfly. Similar to the example in Section VI-A, this is a
challenging scenario for linear filters like the UKF. The long
propagation time step enables the states to spread out between
measurement updates. The prior covariance is large, but the
measurements are highly accurate.

Again, we varied the number of GMM components (or
ensemble sizes to be pedantic for the EnGMF). The RMSE
verses the number of components and wall-clock-time verses
RMSE results are shown in Fig. 5 and Fig. 6, respectively.
Again, the UKF suffers and is not visible in the plotting frames
due to it’s approximation of Gaussian distributions and the
system’s large propagation time step.

It is evident that the EnGMF(EKF*) outperforms the other
filters in terms of both accuracy and efficiency. Notably,
its computational performance surpasses that of the En-
GMF(UKF), offering a more cost-effective alternative, espe-
cially considering the lack of tuning requirements for the En-
GMF(EKF*). This finding underscores its practical advantages
in terms of efficiency and resource utilization.

Moreover, the study reveals nuanced insights into the com-
parative performance of the different EnGMF’s concerning the
number of components. In scenarios with smaller numbers, the
EnGMF(EKF*) demonstrates improved accuracy compared
to its counterparts. However, as the number of components

expands, the accuracy of all three filters converges just like
in Section VI-A. This observation suggests that, under certain
conditions, the performance gains of EnGMF(EKF*) may di-
minish with more components, warranting further investigation
into the changes of the number of components and filter
accuracy. These nuanced findings contribute valuable insights
to the understanding of filter performance in varying ensemble
configurations.

Fig. 5. Comparing the impact on state estimate accuracy with-respect-to the
truth, represented by root mean square error (RMSE), by varying the number
of component members in the Lorenz ’63 example. Featuring the UKF,
EnGMF(EKF), EnGMF(UKF), and EnGMF(EKF*). The UKF results are
plotted out of frame. Plots are averaged across 100 Monte Carlo simulations
for each GMM component test case.

Fig. 6. Comparing the impact on computational performance, represented by
the wall-clock-time in seconds, against the root mean square error (RMSE)
by varying the number of component members in the Lorenz ’63 example.
Featuring the UKF, EnGMF(EKF), EnGMF(UKF), and EnGMF(EKF*). The
UKF results are plotted out of frame. Plots are averaged across 100 Monte
Carlo simulations for each GMM component test case.



VII. CONCLUSION

This work establishes a novel method for computing weights
in Gaussian mixture-type filters, showcasing its equivalence to
traditional methods in linear scenarios and improved perfor-
mance in nonlinear cases. The empirical evaluation using the
Avocado and Lorenz ’63 models demonstrates the practical
advantages of the proposed approach, notably outperforming
traditional methods in terms of accuracy and efficiency. The
exploration of varying the number of Gaussian mixture com-
ponents adds valuable insights into filter performance under
different configurations. This work demonstrates improved
accuracy and computational efficiency, especially in scenarios
with fewer components, underlining its practical applicability
and resource effectiveness.

Further research could explore the validity of (23), which
hinges on the assumption that the linearization about the
posterior is a better approximation of the truth compared to
the prior. It would be interesting to examine the changes in
performance when this assumption is not met.

APPENDIX

Some of the calculations in this work are too long to fit
nicely within the main body. For the reader’s reference, these
are the step-by-step expanded derivations of the measurement
innovation covariances for the i-th Gaussian component.
Expansion of P̄ (i)

yy :

P̄ (i)
yy = Ex,y[ϵ̄i ϵ̄

T
i ]

= Ex,y[(y − h(x̄i)) (y − h(x̄i))
T ]

= Ex,y[(H̄i(x− x̄i) + η) (H̄i(x− x̄i) + η)T ]

= Ex,y[H̄i(x− x̄i)(x− x̄i)
T H̄T

i

+ 2H̄i(x− x̄i)η
T + ηηT ]

≈ H̄iP̄iH̄
T
i + R.

(A.38)

Expansion of P̂ (i)
yy :

P̂ (i)
yy = Exy[ϵ̂i ϵ̂

T
i ]

= Exy[(y − h(x̂i)) (y − h(x̂i))
T ]

= Exy[Ĥi(x− x̂i) + η)(Ĥi(x− x̂i) + η)T ]

= Exy[(Ĥi(x− x̂i)(x− x̂i)
T ĤT

i

+ Ĥi(x− x̂i)η
T

+ η(Ĥi(x− x̂i))
T + ηηT ]

= ĤiExy[(x− x̂i)(x− x̂i)
T ]ĤT

i

+ ĤiExy[(x− x̂i)η
T ]

+ Exy[η(x− x̂i)
T ]ĤT

i + Exy[ηη
T ]

≈ ĤiP̂
(i)ĤT

i +R− ĤiKiR− (ĤiKiR)T ,

(A.39)

this results from solving

Exy[(x− x̂i)(x− x̂i)
T ] ≈ P̂ (i)

= P̄ (i) − P̄ (i)H̄T
i P̄

(i)−1

yy H̄iP̄
(i)

= P̄ (i) − KiH̄iP̄
(i), (A.40)

Exy[(x− x̂i)η
T ]

= Exy[(x− x̄i −Ki(y − h(x̄i)))η
T ]

≈ −KiR, (A.41)

Exy[ηη
T ] = R. (A.42)

REFERENCES

[1] R. E. Kalman et al., “A new approach to linear filtering and prediction
problems,” Journal of basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[2] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter
to nonlinear systems,” in Signal processing, sensor fusion, and target
recognition VI, vol. 3068. Spie, 1997, pp. 182–193.

[3] R. van der Merwe and E. Wan, “Sigma-point Kalman filters for prob-
abilistic inference in dynamic state-space models,” Ph.D. dissertation,
The faculty of the OGI School of Science & Engineering at Oregon . . . ,
2004.

[4] A. Gelb et al., Applied optimal estimation. MIT press, 1974.
[5] T. Lefebvre, H. Bruyninckx, and J. De Schuller, “Comment on” a

new method for the nonlinear transformation of means and covariances
in filters and estimators”[with authors’ reply],” IEEE transactions on
automatic control, vol. 47, no. 8, pp. 1406–1409, 2002.

[6] I. Arasaratnam, S. Haykin, and R. J. Elliott, “Discrete-time nonlinear
filtering algorithms using Gauss–Hermite quadrature,” Proceedings of
the IEEE, vol. 95, no. 5, pp. 953–977, 2007.

[7] I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Trans-
actions on automatic control, vol. 54, no. 6, pp. 1254–1269, 2009.

[8] R. Zanetti, “Adaptable recursive update filter,” Journal of Guidance,
Control, and Dynamics, vol. 38, no. 7, pp. 1295–1300, 2015.

[9] J. L. Anderson and S. L. Anderson, “A Monte Carlo implementation of
the nonlinear filtering problem to produce ensemble assimilations and
forecasts,” Monthly weather review, vol. 127, no. 12, pp. 2741–2758,
1999.

[10] S. Yun, R. Zanetti, and B. A. Jones, “Kernel-based ensemble Gaussian
mixture filtering for orbit determination with sparse data,” Advances in
Space Research, vol. 69, no. 12, pp. 4179–4197, 2022.

[11] S. Yun, N. Ravago, B. L. Reifler, R. Zanetti, and B. A. Jones, “General-
ized labeled multi-Bernoulli filter with kernel-based ensemble Gaussian
mixture filtering for orbit determination with sparse data,” in AMOS
Conf. Proc, 2022.

[12] A. A. Popov and R. Zanetti, “Ensemble Gaussian mixture filtering with
particle-localized covariances,” in 2023 26th International Conference
on Information Fusion (FUSION). IEEE, 2023, pp. 1–7.

[13] ——, “An adaptive covariance parameterization technique for the ensem-
ble Gaussian mixture filter,” arXiv preprint arXiv:2212.10323, 2022.

[14] ——, “Ensemble-localized kernel density estimation with applications to
the ensemble Gaussian mixture filter,” arXiv preprint arXiv:2308.14143,
2023.

[15] D. Durant, A. A. Popov, and R. Zanetti, “MCMC EnGMF for sparse
data orbit determination,” in Astrodynamics Specialist Conference, Big
Sky, MT, no. 23(356). AAS/AIAA, 2023.

[16] Z. Li, “Applications of Gaussian mixture model to weather observa-
tions,” Ph.D. dissertation, The faculty of the School of Electrical &
Computer Engineering at The University of Oklahoma . . . , 2011.

[17] B. L. Reifler, S. Yun, B. A. Jones, and R. Zanetti, “Multi-target ensemble
Gaussian mixture tracking with sparse observations,” in AMOS Conf.
Proc, 2021.

[18] B. L. Reifler, A. A. Popov, B. A. Jones, and R. Zanetti, “Large-scale
space object tracking in a proliferated LEO scenario,” in 2023 26th
International Conference on Information Fusion (FUSION). IEEE,
2023, pp. 1–8.

[19] H. W. Sorenson and D. L. Alspach, “Recursive Bayesian estimation
using Gaussian sums,” Automatica, vol. 7, no. 4, pp. 465–479, 1971.

[20] D. Alspach and H. Sorenson, “Nonlinear Bayesian estimation using
Gaussian sum approximations,” IEEE transactions on automatic control,
vol. 17, no. 4, pp. 439–448, 1972.

[21] S. Yun and R. Zanetti, “Sequential Monte Carlo filtering with Gaus-
sian mixture sampling,” Journal of Guidance, Control, and Dynamics,
vol. 42, no. 9, pp. 2069–2077, 2019.

[22] B. W. Silverman, Density estimation for statistics and data analysis.
Routledge, 1998.



[23] A. S. Stordal, H. A. Karlsen, G. Nævdal, H. J. Skaug, and B. Vallès,
“Bridging the ensemble Kalman filter and particle filters: the adaptive
Gaussian mixture filter,” Computational Geosciences, vol. 15, pp. 293–
305, 2011.

[24] D. Raihan and S. Chakravorty, “Particle Gaussian mixture filters-i,”
Automatica, vol. 98, pp. 331–340, 2018.

[25] ——, “Particle Gaussian mixture filters-ii,” Automatica, vol. 98, pp.
341–349, 2018.

[26] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with applica-
tions to tracking and navigation: theory algorithms and software. John
Wiley & Sons, 2001.

[27] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of atmospheric
sciences, vol. 20, no. 2, pp. 130–141, 1963.


