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Abstract—The accuracy of the point mass filter (PMF) relies
on the precise placement of grid points. Since the approximated
probability distributions are evaluated only at these points, sub-
optimal choices in grid placement can result in an inaccurate
representation of the posterior distribution. This work addresses
this issue by representing the propagated grid points as a
Gaussian mixture, enabling a Gaussian sum filter (GSF) update
before grid construction. The use of the GSF update enhances
the accuracy of the mean and covariance estimates, from which
a new grid can be constructed. This approach leads to improved
grid placement and reduces the number of points required to
achieve satisfactory results. A comparative analysis is conducted
between this new approach, the traditional PMF, and a PMF
variant that uses an unscented Kalman filter update before grid
construction. Using a simple bivariate example, the new variant
is shown to approximate the posterior distribution better than
the other filters. Furthermore, the new approach is evaluated
in two sequential filtering problems: the first involves the Ikeda
map, and the second focuses on terrain-relative navigation for
Martian exploration. The results show a more accurate, and
more consistent filter compared to the other two PMF variants
considered.

Index Terms—Nonlinear Estimation, Point Mass Filters, Gaus-
sian Mixtures, Grid Design

I. INTRODUCTION

Estimating quantities of interest from dynamic models and
noisy measurements poses a significant challenge, especially in
the context of nonlinear systems. A key approach to addressing
this challenge involves solving the Bayesian recursive relations
(BRR) [1]. In these relations, an initial state probability density
function (pdf) undergoes propagation using the Chapman-
Kolmogorov equation (in the context of discrete-time stochas-
tic dynamic systems). Subsequently, the pdf is updated upon
obtaining a measurement through the application of Bayes’
rule. However, these relations can become analytically in-
tractable when dealing with highly nonlinear dynamics and
measurement models [1]. Consequently, when faced with such
complexity, approximations to the solution of the BRR become
necessary.

Point mass filters (PMF) represent a common methodol-
ogy for numerically solving the BRR [2]. These types of
filters approximate the BRR solutions through the applica-
tion of deterministic grid-based integration techniques. The
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PMF specifically approximates pdfs only at the grid points,
making the strategic placement of these points pivotal for its
performance. Therefore, the majority of PMF research has
concentrated on refining grid design. Most approaches have
focused on optimizing the predictive grid, often neglecting
the integration of measurements at the current time [3]–[5].
While this strategy has proven to improve the performance
of the filter, incorporating the measurement to construct the
predictive grid has the potential to yield a more accurate
approximation of the posterior pdf.

Recent studies have advanced the idea of incorporating
measurements as additional information when creating the
predictive grid. Dunı́k et al. [6] introduced an algorithm
that leverages an auxiliary unscented Kalman filter (UKF)
to estimate the first two moments of the prior and posterior
distributions in order to increase grid resolution in the approx-
imated support of these pdfs. In a similar fashion, Choe and
Park [7] developed an algorithm using log-homotopy induced
flow to derive a grid support that accurately represents the
non-negligible region of the posterior distribution.

This work introduces a new approach for generating the
predictive grid. By representing the propagated points from
the initial filtering grid as a Gaussian mixture, a Gaussian
sum filter (GSF) update is performed, leading to a more
precise estimation of the mean and covariance of the pos-
terior pdf, similar to the techniques used in the ensemble
Gaussian mixture filter [8]–[11]. This information is then used
to construct an improved predictive grid. The application of
this new technique results in more tighter grids, requiring
fewer grid points to achieve accurate estimation performance.
To demonstrate the performance of this approach, a simple
bivariate ‘banana’ example is used, demonstrating that the new
technique outperforms other PMF variants in approximating
the posterior distribution. Furthermore, this new filter is val-
idated using two sequential filtering scenarios, one involving
the Ikeda map and the other pertaining to terrain-relative
navigation for Martian exploration.

The remainder of this paper is organized as follows: first,
background of state estimation in discrete systems is provided
in Section II. The PMF is introduced in Section III, and the
new improvement to this filter is presented in Section IV.
A graphic comparison between the PMF, a PMF using a
UKF update before grid construction, and the new variant



is illustrated in Section V using a simple bivariate example.
The performance of these filters is tested on a sequential
filtering problem using the Ikeda map in Section VI. All
filters are evaluated on a more practical example regarding
terrain-relative navigation in Section VII. Finally, Section VIII
provides conclusions and future work.

II. STATE ESTIMATION FOR DISCRETE SYSTEMS

In this section, brief background on state estimation for
discrete systems is provided. Given the evolution of a state
xk governed by discrete dynamics fk and measurements hk,

xk+1 = fk (xk, qk) , (1)
yk = hk (xk,ηk) , (2)

where yk is the associated measurement, qk is the process
noise and ηk is measurement noise, state estimation deals with
determining the time evolution of the pdf of the state given
the dynamic knowledge and measurements obtained.

The solution to the state estimation problem is obtained by
solving the BRR. Starting from an initial pdf, the Chapman-
Kolmogorov equation is used to propagate this pdf over
time [1],

p (xk+1|yk) =

∫
S(xk)

p (xk+1|xk) p (xk|yk) dxk, (3)

where S (xk) denotes the support of xk. Once a measurement
is obtained (k ←− k + 1), the pdf is updated using Bayes’
rule [1],

p (xk|yk) =
p (yk|xk,yk−1) p (xk|yk−1)

p (yk|yk−1)
. (4)

The solution to these relations can become intractable when
dealing with highly nonlinear dynamics or measurements. In
such cases, state estimation involves implementing efficient
and accurate approximations to iteratively solve these two
equations until a desired time is reached.

III. POINT MASS FILTER

The PMF aims to solve the state estimation problem de-
terministically through a structured grid of point particles.
Despite the increased computational overhead, this filter has
shown superior estimation accuracy compared to standard
particle filters, especially in cases involving distributions with
heavy tails [5]. For this filtering strategy, instead of describ-
ing the state pdf with realizations of exchangeable samples
(as done in particle filters), the state pdf is discretized by
strategically placing a finite number of possible realizations
at deterministic grid points, where each point is assigned a
finite probability.

In the PMF, the initial posterior pdf can be approximated
as a Dirac mixture, such that [2],

p (xk|yk) ≈
N∑
i=1

w
(i)
k|kδ

(
xk −X (i)

k|k

)
, (5)

where X (i)
k|k are the posterior discretization points, w

(i)
k|k

represent the probability of each point, and N is the total

number of points. Using the Chapman-Kolmogorov equation,
the approximated pdf is then propagated,

p (xk+1|yk) ≈
∫

S(xk)

p (xk+1|xk)

N∑
i=1

w
(i)
k|kδ

(
xk −X (i)

k|k

)
dxk,

(6)

=

N∑
i=1

w
(i)
k|k

∫
S(xk)

p (xk+1|xk) δ
(
xk −X (i)

k|k

)
dxk,

(7)

=

N∑
i=1

w
(i)
k|k p

(
xk+1|X (i)

k|k

)
. (8)

Using a Dirac mixture approximation, the resulting predic-
tive distribution can be expressed as,

p (xk+1|yk) ≈
M∑
j=1

w
(j)
k+1|kδ

(
xk+1 −X (j)

k+1

)
, (9)

where X (j)
k+1 are the M new discretization points, and the

propagated weights are proportional to:

w
(j)
k+1|k ∝

N∑
i=1

w
(i)
k|k p

(
X (j)

k+1|X
(i)
k|k

)
. (10)

It is important to note that the number of grid points, M , in
the discretization of the support of xk+1, does not have to be
the same as in the initial discretization, N , of the support of
xk. To generate the discretization points for the predictive pdf,
a new grid is constructed, referred to as the predictive grid.
The center of the grid is obtained by calculating the mean of
the propagated points, while the orientation and expanse of
the grid is given by the propagated covariance. In the case
of zero-mean additive process noise with covariance Qk, the
mean and covariance of the propagated points are given by [2]:

x̂k+1|k =

N∑
i=1

w
(i)
k|kfk

(
X (i)

k|k

)
, (11)

Pk+1|k = Qk − x̂k+1|kx̂
T
k+1|k

+

N∑
i=1

w
(i)
k|k

[
fk

(
X (i)

k|k

)
fk

(
X (i)

k|k

)T
]
. (12)

Once the new grid has been generated and a new measure-
ment has been obtained (k ←− k + 1), the weights of the grid
are updated to generate the filtering grid. Using Bayes’ rule,

p (xk|yk) ∝ p (yk|xk) p (xk|yk−1) , (13)

≈
M∑
j=1

w
(j)
k|k−1p (yk|xk) δ

(
xk −X (j)

k

)
, (14)

=

M∑
j=1

w
(j)
k|kδ

(
xk −X (j)

k

)
, (15)

where the new weights are proportional to the measurement
likelihood,

w
(j)
k|k ∝ w

(j)
k|k−1p

(
yk|X (j)

k

)
. (16)



The new weighted points then become the posterior dis-
cretization points, such that,

X (j)
k|k = X (j)

k , (17)

where the first two moments of the approximated posterior pdf
are calculated as:

x̂k|k =

M∑
j=1

w
(j)
k|kX

(j)
k|k, (18)

Pk|k =

M∑
j=1

w
(j)
k|k

[
X (j)

k|k

(
X (j)

k|k

)T
]
− x̂k|kx̂

T
k|k. (19)

These equations summarize the standard PMF, which
achieves accurate and consistent results when the grid sep-
aration is smaller than the standard deviation of the process
noise. In situations where there is low process noise, this filter
can result in denser grids and higher computational costs. In
this work, a different approach for constructing the predictive
grid is introduced, aiming to achieve more accurate results
while using a reduced number of grid points.

IV. FUSION MASS FILTER

This section introduces a new method for creating the
predictive grid in the PMF, referred to as the fusion mass
filter (FMF) since it leverages information from both dynamics
and measurements to construct a more accurate grid. This
approach begins with a similar approximation to the PMF, by
discretizing the initial posterior state pdf as a Dirac mixture,
however, it introduces a subtle distinction by reformulating
the Dirac mixture as a Gaussian mixture with infinitesimal
covariance,

p (xk|yk) ≈
N∑
i=1

w
(i)
k|kδ

(
xk −X (i)

k|k

)
, (20)

=

N∑
i=1

w
(i)
k|k lim

P→0
N
(
xk;X (i)

k|k, P
)
, (21)

Assuming zero-mean additive process noise with covariance
Qk and using the GSF algorithm [12], [13], the resulting
Gaussian mixture can be propagated in time to approximate
the predictive distribution as:

p (xk+1|yk) ≈
N∑
i=1

w
(i)
k+1|kN

(
xk+1;fk

(
X (i)

k|k

)
, Qk

)
, (22)

where,
w

(i)
k+1|k = w

(i)
k|k. (23)

Instead of constructing a predictive grid directly from the
propagated points, this new approach uses a GSF update
prior to assembling the predictive grid. This process has the
potential to improve the estimation of the mean and covariance
of the state pdf thus resulting in a more accurate representation
of the posterior pdf.

Once a measurement arrives (k ←− k + 1), a posterior
distribution can be approximated from the prior Gaussian
mixture [12], [13], such that,

p (xk|yk) ≈
N∑
i=1

w̃
(i)
k|kN

(
xk; X̃

(i)

k|k, P̃
(i)
k|k

)
, (24)

where the notation ·̃ signifies that these are auxiliary variables
obtained with the GSF update. Each mean and covariance of
the Gaussian mixture are given by:

X̃
(i)

k|k = X (i)
k|k−1 +K

(i)
k ν

(i)
k , (25)

P̃(i)
k|k = Qk−1 −K

(i)
k W

(i)
k K

(i)T
k , (26)

with the intermediate variables defined as:

X (i)
k|k−1 = fk−1

(
X (i)

k−1|k−1

)
, (27)

ν
(i)
k = yk − hk

(
X (i)

k|k−1

)
, (28)

K
(i)
k = Qk−1H

(i)T
k

(
W

(i)
k

)−1

, (29)

W
(i)
k = H

(i)
k Qk−1H

(i)T
k +Rk, (30)

H
(i)
k =

∂hk (x)

∂x

∣∣∣
x=X (i)

k|k−1

. (31)

The weights of this Gaussian mixture are defined as pro-
portional to the probability of the obtained measurement,

w̃
(i)
k|k ∝ w

(i)
k|k−1N

(
yk;hk

(
X (i)

k|k−1

)
,W

(i)
k

)
. (32)

As mentioned previously, rather than creating a predictive
grid with the propagated mean and covariance estimates, this
approach discretizes the support based on the updated mean
and covariance estimates. The predictive grid is assembled
after the GSF update, using both the updated mean and
covariance estimates, given by:

x̃k|k =

N∑
i=1

w̃
(i)
k|kX̃

(i)

k|k, (33)

P̃k|k=

N∑
i=1

w̃
(i)
k|k

(
P̃(i)
k|k + X̃

(i)

k|k

(
X̃

(i)

k|k

)T

− x̃k|kx̃
T
k|k

)
, (34)

where the center of the grid is placed at the updated mean, and
the orientation and expanse are set to align with the updated
covariance. With the new grid, the posterior distribution is
approximated as a Dirac mixture,

p (xk|yk) ≈
M∑
j=1

w
(j)
k|kδ

(
xk −X (j)

k

)
, (35)

where X (j)
k are the new grid points, and w

(j)
k|k are the new

weights of each point. To calculate these new weights and
generate the filtering grid, the posterior pdf is expressed as,

p (xk|yk) =

∫
S(xk−1)

p (xk,xk−1|yk) dxk−1, (36)



Fig. 1. Comparative analysis between the generation of the predictive grid in the PMF (top) and in the FMF (bottom). The FMF updates the propagated
points via a GSF update before creating the new grid. Once the predictive grid has been assembled, the grid points are weighted to create the filtering grid.

where,
p (xk,xk−1|yk) ∝ p (yk|xk) p (xk|xk−1) · . . .

p (xk−1|yk−1) .
(37)

Which results in weights proportional to:

w
(j)
k|k ∝ p

(
X (j)

k |yk

)
, (38)

≈
N∑
i=1

p
(
X (j)

k ,X (i)
k−1|k−1|yk

)
, (39)

=

N∑
i=1

p
(
yk|X (j)

k

)
p
(
X (j)

k |X
(i)
k−1|k−1

)
w

(i)
k−1|k−1. (40)

Just as with the PMF, the new weighted points become the
posterior discretization points and the first two moments of
the approximated posterior pdf are calculated as in (18) and
(19). These equations summarize the new methodology for
constructing a more precise predictive grid within the PMF
framework, offering the potential to improve accuracy and
consistency in filtering outcomes.

Figure 1 presents a comparative analysis between the gen-
eration of the predictive grid in the PMF and in the proposed
FMF. The FMF describes each propagated point as a Gaus-
sian distribution with an associated covariance, facilitating a
GSF update. By updating the propagated points prior to grid
creation, there is an improvement in the accuracy of mean
and covariance estimates. This can result in a comparatively
tighter grid in the FMF as opposed to the PMF. The difference
in grid sizes may suggest a potential benefit in scenarios with
low process noise or when seeking accurate results with a
small number of grid points.

V. ILLUSTRATION WITH A SIMPLE BANANA EXAMPLE

To illustrate the potential improvement in grid construc-
tion of the FMF, a simple two-dimensional problem is pre-
sented [14]. The problem starts from a Gaussian posterior
distribution,

p(xk|yk) ∼ N

−3.5
0

 ,

1 0

0 1

 . (41)

From this posterior distribution, a uniform grid composed
of 625 points, centered at the mean and scaled up to 3σ, is
created. The dynamics are assumed to induce a correlation
between the two states such that,

p(xk+1|yk) ∼ N

−3.5
0

 ,

 1 0.5

0.5 1

 . (42)

Using this predictive distribution, a uniform predictive grid
is created for the PMF with the same number of points as
the starting grid, but centered at the new mean and scaled
by the new covariance. The new points of the predictive grid
are convoluted with the starting grid using zero-mean additive
process noise with a covariance matrix of Q = 2× 10−1I2×2.
The points on the predictive grid are weighted to generate the
filtering grid, according to the following measurement,

y = h (x) =
√

x2
1 + x2

2, (43)

with a value of y = 1 and associated scalar measurement error
covariance of R = 0.12.



Fig. 2. Comparison between the PMF (left), UMF (center) and FMF (right). The prior distribution is shown in blue, the measurement likelihood is plotted in
red, and the true posterior distribution is depicted in yellow, resembling the shape of a banana. All filtering grids are shown in purple, with each grid point
plotted based on its weight. Larger points indicate higher weights, while smaller points carry lower weights.

For the FMF, 625 different realizations are sampled from
the prior distribution, from which a GSF update is performed
by using the same measurement, measurement covariance and
process noise covariance matrices as for the PMF. With the
updated mean and covariance estimates obtained from the GSF
update, a new uniform grid is created centered at the updated
mean and scaled by the updated covariance. The new points of
the grid are weighted as in (40), generating the filtering grid.

For comparison purposes, a third filter, incorporating the
concepts presented by Dunı́k et al. [6] that are compatible with
the framework discussed in this work, is used to compare the
FMF to related work. For this filter, instead of using a GSF
update to estimate a posterior mean and covariance, a UKF
update is applied before assembling the new grid. This PMF
variant will be referred to as the unscented mass filter (UMF).
Just as with the FMF, once the updated mean and covariance
estimates are obtained, a new uniform grid is centered at the
updated mean, scaled by the updated covariance and weighted
as described in (40).

Figure 2 shows the resulting filtering grids for the three
approaches. The left figure illustrates the grid obtained using
the PMF, the center figure shows the grid obtained with the
UMF, while the right figure presents the grid from the FMF.
From this figure, it can be seen that the FMF results in
a filtering grid that more accurately approximates the true
posterior distribution compared to the PMF and UMF. By
incorporating a GSF update before grid creation, the filtering
grid in the FMF is closely centered on the true posterior,
depicted in yellow and resembling the shape of a banana.
Additionally, the resulting grid covers a smaller area, resulting
in more points located near the true posterior. In contrast, the
PMF generates a predictive grid that is too large, resulting in
a filtering grid with only a few points in proximity to the true
posterior distribution. Similarly, the UKF linear update in the
UMF is not as effective as the GSF update in the FMF, making
the placement of the grid less efficient.

VI. SEQUENTIAL FILTERING WITH THE IKEDA MAP

The following example aims to demonstrate the perfor-
mance improvement of the FMF by conducting a grid study
in a sequential filtering problem. To this end, the Ikeda map
is used, representing a discrete-time dynamical system:

x
(1)
k+1 = 1 + u

(
x
(1)
k cos tk − x

(2)
k sin tk

)
, (44)

x
(2)
k+1 = u

(
x
(1)
k sin tk + x

(2)
k cos tk

)
, (45)

tk = 0.4− 6

1 +
(
x
(1)
k

)2
+
(
x
(2)
k

)2 , (46)

This dynamical system is designed to model light circulating
within a nonlinear optical resonator [15], [16]. To introduce
chaos and create a more challenging sequential filtering prob-
lem, the parameter u is set to u = 0.9 and the dynamics
are propagated with additive white Gaussian process noise
with covariance matrix Q = 1 × 10−2I2×2. A nonlinear
measurement model is assumed, with measurements given by:

yk =

√(
x
(1)
k

)2
+
(
x
(2)
k

)2
+ ηk, (47)

where ηk represents white Gaussian measurement noise with
scalar covariance matrix R = 1. For every tested filter
configuration, different grid sizes scaled up to 3σ are used
to estimate the state in 1000 distinct trajectories simulated
for 50 time steps, each with an initial true state defined as
x0 ∼ N (02×1, I2×2).

To compare each filter, two metrics are used. The time-
averaged root mean squared error (RMSE) is used to assess
the accuracy of the filter. For this work, the RMSE is defined
as,

RMSE =

Nt∑
k=1

1

Nt

Nm∑
j=1

1

Nm

√√√√√ Ns∑
i=1

(
x
(i)
k,j − x̂

(i)
k|k,j

)2
Ns

, (48)



where Nt is total number of discrete steps in each simulation,
Nm is the number of independent trajectories, Ns is the total
number of states, x

(i)
k,j is the true state and x̂

(i)
k|k,j is the

estimated state. Figure 3 shows the RMSE for the PMF, UMF
and FMF as a function of the total grid points. As expected,
with an increment in grid points, all filters show improved
accuracy. The RMSE curve for the FMF consistently remains
below that of the PMF and UMF, showing improved accuracy
with a reduced requirement of grid points.

100 200 300
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0.4
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SIR ! 1

Fig. 3. Root mean squared error for the PMF (blue with diamond markers),
UMF (red with square markers) and FMF (purple with cross markers) as a
function of total grid points. The cyan line represents the results obtained with
a regularized particle filter with 10000 particles.

To evaluate the consistency of the filter, the time-averaged
scaled normalized estimation error squared (SNEES) is used,

SNEES =

Nt∑
k=1

1

Nt

Nm∑
j=1

1

NmNs

Ns∑
i=1

eT
k,j

(
Pk|k,j

)−1
ek,j , (49)

where,
ek,j = xk,j − x̂k|k,j , (50)

is the estimation error, and Pk|k,j is the estimated covariance.
A consistent filter will obtain a SNEES close to one. If the
SNEES value significantly exceeds one, it suggests overconfi-
dence in the estimator. Conversely, if the value is considerably
smaller than one, the estimator is overly conservative [1]. It is
important to note that for this work, any SNEES value over
1× 104 was disregarded as a numerical instability.

Figure 4 shows the SNEES for all filters as a function of
total grid points. Similar to the RMSE figure, all filters exhibit
increasing consistency with the use of more grid points. Both
the UMF and FMF approach a SNEES close to one at around
300 grid points, while the PMF requires more than 400 grid
points to achieve comparable values. Furthermore, the FMF
consistently outperforms the UMF and PMF in this aspect, as
the SNEES curve of the FMF resides below that of the UMF
and PMF, approaching a value closer to one across all of the
grid sizes tested.

Considering that both the UMF and FMF involve one
additional step compared to the PMF, specifically the UKF

100 200 300

Grid points
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5

10

15

20

S
N

E
E
S

PMF
UMF
FMF
SNEES = 1

Fig. 4. Scaled normalized estimation error squared for the PMF (blue with
diamond markers), UMF (red with square markers) and FMF (purple with
cross markers) as a function of total grid points. The light blue dashed line
shows a SNEES value of one.

or GSF update, it is important to quantify the computational
run time of these three algorithms. Figure 5 illustrates the
RMSE of each filter as a function of their required run time
for a single propagation and update. All filters have been
implemented to maximize their run time efficiency for fair
comparisons. The extra step in the UMF and FMF is evident
by the slight shift of the curve to the right compared to the
PMF. Regardless, as it was shown before, less grid points are
needed for the FMF to achieve more accurate results when
compared to the PMF and UMF. The use of the GSF update
allows the implementation of smaller grids, which translates
into faster run time accompanied by a low RMSE. This benefit
in run time for the FMF can be seen in Fig. 5, as the time
curve consistently lies below that of the PMF and UMF.
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Fig. 5. Root mean squared error for the PMF (blue with diamond markers),
UMF (red with square markers) and FMF (purple with cross markers) as a
function of required run time for one propagation and update.

VII. MARS TERRAIN-RELATIVE NAVIGATION

The PMF is a common approach for terrain-relative nav-
igation [6], [17], [18]. In this type of problem, an onboard



elevation map is used to estimate the horizontal position
of a spacecraft based on measurements from a barometric
sensor and an altimeter and velocity estimates provided by an
onboard inertial navigation system (INS) [6], [17]. To show the
performance of the FMF in a more practical setup, a grid study
is presented for a Mars terrain-relative navigation problem. A
trajectory over the Nili Fossae, located north of Jezero Crater,
is simulated. Figure 6 shows the digital elevation map1, gen-
erated from the Mars Reconnaissance Orbiter (MRO) Context
Camera (CTX) [19], and the simulated nominal trajectory. The
nominal trajectory follows a constant-velocity and constant-
altitude flight over a valley, reminiscent of possible reconnais-
sance flights on Mars by small helicopters, such as Ingenuity,
but with a longer flying range.

Fig. 6. Digital elevation map of the Nili Fossae, located north of Jezero
Crater. The simulated nominal trajectory is shown in cyan.

The true dynamics of the trajectory are given by:

x
(1)
k+1 = x

(1)
k +∆tkv

(1), (51)

x
(2)
k+1 = x

(2)
k +∆tkv

(2), (52)

where ∆tk is the time-step and v is velocity. The dynamics
used by the filter are,

x
(1)
k+1|k = x

(1)
k|k +∆tkv̂

(1)
k , (53)

x
(2)
k+1|k = x

(2)
k|k +∆tkv̂

(2)
k , (54)

where v̂k represents the velocity estimated by the INS. In this
work, the true dynamics are propagated with additive white
Gaussian process noise with covariance matrix Q = 0.5I2×2

and the estimated velocity is sampled at each time step
from vk ∼ N

(
10/
√
2I2×1 m/s, 0.1I2×2 m2/s2

)
, suggesting

accurate and uncorrelated INS estimates. In this case, the co-
variance matrix of the transitional pdf used for the convolution
in the PMF, and to describe the predictive distribution in the
UMF and FMF, has to account for the uncertainty in velocity,
where,

Qk = ∆t2k (0.1I2×2) +Q. (55)

1Elevation map obtained from The Pacific Regional Planetary Data Center
hosted by the Hawai‘i Institute of Geophysics and Planetology.

The measurement used for this problem is the terrain eleva-
tion given by the map at the current position, simulating possi-
ble measurements from a barometric sensor and an altimeter.
As the map provides elevations at discrete positions, cubic
spline interpolation is used to obtain the elevation at the query
positions. Each measurement is corrupted with additive white
Gaussian noise with scalar covariance matrix R = 0.0252,
based on the laser altimeter Garmin LIDAR-Lite V3 [20].

For every filter tested, all grids are constructed up to 5σ and
1000 distinct trajectories are simulated for 250 seconds with
a time-step of ∆t = 1 second, each with an initial true state
defined as:

x0 ∼ N

2300
800

m,

50 0

0 50

m2

 . (56)

Figure 7 shows the RMSE for the PMF, UMF and FMF
as a function of the total grid points used. Just as with the
Ikeda map, the curve for the FMF remains below the curve of
the PMF and UMF, showing a clear improvement in filtering
accuracy. Figure 8 shows the SNEES for the three filters as
a function of total grid points. In addition to being more
accurate, this figure shows that the FMF is a more consistent
filter than the PMF and UMF, specifically for lower grid sizes,
as the SNEES for this filter stays closer to one. The SNEES
of the PMF shows that this filter struggles with lower number
of grid points, as the results show high SNEES values up until
around the use of 700 grid points.

PMF
UMF
FMF
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Fig. 7. Root mean squared error for the PMF (blue with diamond markers),
UMF (red with square markers) and FMF (purple with cross markers) as a
function of total grid points.

The FMF also proves to be more efficient in terms of
computational cost for this problem setup, as smaller grid
sizes are needed to achieve accurate and consistent results.
To calculate the efficiency gains of the FMF over the PMF
and UMF, the run time required for the filters to achieve
an RMSE of 1.3 meters was determined by interpolating
the results shown in Fig. 7 and the recorded run time. This
resulted in a speed-up of 4.174x for the FMF over the PMF
and approximately 1.596x for the FMF over the UMF. It
is important to note that the derivative of the measurement
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Fig. 8. Scaled normalized estimation error squared for the PMF (blue with
diamond markers), UMF (red with square markers) and FMF (purple with
cross markers) as a function of total grid points. The light blue dashed line
shows a SNEES value of one.

model, used to perform the GSF update, was obtained through
numerical differentiation with cubic spline interpolation of
the elevation map. More efficient methods for calculating this
derivative could be used, representing a potentially significant
improvement in efficiency.

VIII. CONCLUSIONS

In this work, a new variant of the point mass filter has
been introduced. In this new variant, coined the fusion mass
filter, a Gaussian sum filter update is performed before the
creation of the predictive grid. The resulting updated mean
and covariance estimates are then used to generate the grid.
Through a simple bivariate example, it was shown that in-
corporating the update prior to grid creation yields a tighter
grid. This tighter grid provides a more accurate description of
the posterior distribution compared to both the standard point
mass filter and a point mass filter with an unscented Kalman
filter update performed before creating the grid. Furthermore,
by applying this new technique to two different sequential
filtering examples, it was observed that the fusion mass filter
outperforms the point mass filter and the unscented Kalman
filter variation in terms of accuracy and consistency.

While this paper has shown potential improvements in
the point mass filter, it is essential to consider additional
developments from both theoretical and practical perspectives.
On the theoretical side, there is an opportunity to explore
various expressions for the predictive distribution in (22),
with the aim of potentially yielding more favorable outcomes
during the Gaussian sum filter update. Furthermore, it is worth
considering alternative methodologies for assigning weights to
the new predictive grid, which, in turn, may contribute to the
derivation of a more effective filtering grid.

From a practical standpoint, multi-density grids have been
used in the point mass filter to improve its computational
run time. A potential opportunity for future work lies in
evaluating the performance of this new algorithm within the

context of more efficient grid choices, such as sparse or
non-uniform grids. Moreover, instead of exclusively relying
on a point mass approximation for the posterior distribution,
exploring alternative methodologies, such as describing this
starting distribution using uniform kernels, offers a possibility
to potentially improve the effectiveness of this approach.
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