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Abstract—The Burnished Flow Filter is a particle flow fil-
ter constructed from the Kalman filter measurement update
equations. The derivation for this filter begins by assuming the
classic Kalman Filter measurement update equations are the
solution to a stochastic differential equation. By using these well
known equations, the derivation of this filter follows naturally
to an engineer with a Kalman filtering background. The work
presented here shows the derivation, and application of this filter
on both linear and nonlinear problems. The Burnished Flow
Filter is benchmarked against the widely used Gromov Flow
Filter, revealing similar performance in linear problems and
demonstrating superior consistency in the nonlinear scenarios
under study. Additionally, the Burnished Flow Filter exhibits
a smoother flow compared to the Gromov Flow Filter, as
evidenced by a smaller state update during the first substep of
the measurement update.

Index Terms—particle flow, SDE, nonlinear filtering

I. INTRODUCTION

The Kalman Filter (KF) provides the optimal solution to a
linear system [1], [2]. However, for nonlinear systems, the
KF cannot guarantee optimal results, necessitating specialized
approaches. One such adaptation is the Extended Kalman
Filter (EKF), which uses a first-order Taylor series approx-
imation and is widely used in industry to address nonlinear
challenges[3]. Despite its popularity, the EKF has notable
limitations due to its dependence on Jacobians calculated along
its reference trajectory [4].

Nonlinear systems often exhibit complex, unintuitive be-
havior that requires nonlinear filters. As a result, nonlinear
filtering has been the focus of numerous studies [5]. One major
class of filters that has gained traction for handling highly
nonlinear problems is particle flow filters. These filters draw a
set of random samples from the prior distribution and solve a
differential equation, with an initial condition at each particle,
to ‘flow’ the samples toward the posterior distribution. As the
number of particles increases, the sample PDF is expected to
converge toward the posterior PDF [6].

Over the years, several particle flow filters have been
proposed, starting with the work of [7]. Subsequent particle
flow studies have fallen into two categories: deterministic
(zero-diffusion) particle flow [8]–[11] and stochastic particle
flow [12]–[14]. Deterministic particle flow filters utilize an
Ordinary Differential Equation (ODE) to flow the particles
from the prior to the posterior distribution whereas stochastic
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particle flow employs a Stochastic Differential Equation (SDE)
[15]. In [16] Dai and Daum analyze the relationship between
deterministic and stochastic flows in an effort to improve the
transient dynamics of particle flows. One noted challenge in
particle flow filtering mentioned in Dai and Daum’s work is
that the governing differential equations of particle flow are
stiff.

This work introduces a novel approach to particle flow
filtering: the Burnished Flow Filter (BFF). The BFF is a new
stochastic particle flow algorithm that combines the power of
particle flow with the familiarity of the KF update equations,
yielding a capable and accessible algorithm. Previous work
on stochastic flow finds a solution to the SDE by applying the
Fokker-Planck equation in an intricate series of manipulations
[15]. In contrast, the BFF first assumes that the solution to
the SDE takes a familiar form in the KF measurement update
equations and backfills the details accordingly.

This paper is organized as follows: in Section II, background
on previous work is presented. In Section III, the derivation
of the BFF equations is shown for linear systems. Section
IV provides additional information for implementing both the
BFF and GFF. In Sections V–VII results from simulations
ran on a linear system, a two dimensional range observation
system, and an Ikeda Map system are presented. Section VIII
concludes the major takeaways from this work.

II. BACKGROUND

Consider the following system of equations that describe
the dynamics of a state vector x and measurements of that
state vector y:

xk+1 = f (xk, t) + ν, y = h (x) + η, (1)

where t is time, f (xk, t) is the dynamics function that relates
the state and its propagation (linear or nonlinear), ν is the
process noise in the system, h (x) is the measurement function
(linear or nonlinear), and η is the measurement noise. In this
work it is assumed that ν and η are zero mean Gaussian
random vectors vectors with covariance matrices Q and R
respectively.

State estimation aims to provide an estimate of the true
state and its corresponding PDF. In this paper, the true state
is denoted as x, while the filter’s estimate of the true state
is represented as x̂. Filters generally achieve this through a
two-step process: propagation and measurement update.



The EKF makes the assumption that the state distribution is
characterized by its first two moments. This is often considered
a ‘Gaussian’ assumption because a Gaussian probability den-
sity function (PDF) is fully defined by its mean and covariance
[17], although this isn’t strictly necessary. During propagation,
the EKF propagates the state without noise and simply adds
the process noise matrix to the current covariance estimate,

x̂−
k+1 = f(x̂+

k , t), P−
k+1 = FkP

−
k F

T
k +Q,

Fk =
∂xk+1

∂xk

∣∣∣∣
x̂+
k

,
(2)

where the superscript ()+ indicates the variable is the posterior
estimate, the superscript ()− indicates the variable is the prior
estimate, the subscript ()k indicates the variable is represented
at the discrete time step k, the subscript ()k+1 indicates the
variable is represented at time step k+1, Pk is the covariance
matrix of the state, and Fk is the discrete time state transition
matrix evaluated on x̂+

k . In an EKF the measurement update is
performed in a single step based on the measurement Jacobian
at the current best estimate:
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where H is the measurement Jacobian evaluated on x̂−
k+1. It

should be noted that the covariance update shown in (3) is in
the Joseph form [3].

For initially Gaussian, linear systems with Gaussian additive
noise, the system will remain Gaussian. The EKF makes
the assumption that the system is ‘linear enough’ about the
state estimate such that the errors in the state are essentially
linear. This assumption implies that the PDF will continue
to be characterized by its first two moments through time
propagation and measurement updates. However, for highly
nonlinear systems, Jacobians can change rapidly, compromis-
ing this ‘linear enough’ assumption. As a result, the EKF is
susceptible to significant nonlinearities.

Particle flow filters on the other hand, use a collection of
random samples in order to estimate the full PDF as shown in
Figure 1, step 1. Particle flow filters propagate the dynamics of
the system by applying (1) to each particle [15]. This can be
seen in Figure 1, step 2. Here, each particle is ‘nudged’ with
its own random sample(s) from the process noise distribution.
This differs from the standard EKF where the noise term is
ignored during state propagation. This practice of ‘nudging’
particles is not unique to particle flow filters; common particle
filters like the bootstrap particle filter also apply random
samples of process noise to each particle during propagation
[6]. Another filter that leverages the same propagation and
a different measurement update is the Ensemble Gaussian

Fig. 1. A visual representation of how particles are processed in a particle
flow algorithm. Beginning with initial samples, the samples are propagated
through time, then the particles are flowed towards the posterior distribution
informed by the measurement likelihood. This cycle repeats until there are no
more measurements to process.

Mixture (EnGMF) [18]–[20]. While the propagation is iden-
tical, lending itself to classifying an EnGMF as a particle
filter, the measurement update relies on performing kernel
density estimation followed by a local Gaussian update on
each particle, resulting in an approximation of the posterior
by a Gaussian mixture model.

Although the propagation step is identical for both particle
filters and particle flow filters, the latter can perform well in the
absence of process noise while the former generally struggle.
When noise levels are low, particle filters can be subject to
particle degeneracy, a condition where only a few samples
have most of the weight [21]. Since particle flow filters weight
each particle equally, there is little risk of degeneracy and thus
these filters are more robust to low noise levels.

Once the particles are all propagated, the measurement
update is applied to each one. This is where particle flow
filters differ from particle filters, and where particle flow filters
tend to differ from one another. A common feature across
Bayesian estimation is the leveraging of the measurement
likelihood py|x (Figure 1, step 4) to update or ‘flow’ the filter
estimate to better represent the posterior distribution given
the measurement. The flow of particles is defined via a SDE
(Figure 1, step 5). This SDE takes the form [15]:

dx = g (x, λ,y) dλ+Bλ (x, λ) dwλ, (4)

where λ is a pseudotime variable, g(x, λ,y) is the drift term,
y is deterministic (i.e., it is the outcome of a random variable,
not the random variable itself), Bλ is the diffusion term, and



dwλ is a Weiner process. The diffusion term is set to zero for
deterministic flow.

Given a number of convenient linearity and Gaussianity
assumptions, the Gromov flow drift and diffusion terms can
be expressed in the following simplified form [22], [23]:

g (x, λ,y) =
(
P−1 + λHTR−1H

)−1
HTR−1 (y − h(x)) ,

Qλ =
(
P−1 + λHTR−1H

)−1
HTR−1H (∼)

−1
,

Qλ = BλB
T
λ = USVT ,

(5)

where (∼) indicates that the quantity in the parentheses is the
same as the previous set of parentheses in the equation, and
Qλ is an intermediate matrix used to solve for Bλ. For clarity,
the variables P,H, and R in (5) are the same as those in the
Kalman filter measurement update equations in (3). When Qλ

is not singular, Bλ =
√
Qλ. Otherwise Bλ may be found

using singular value decomposition of Qλ as Bλ = U
√
SVT

where the
√
S is the component-wise square root of the matrix

S.
The burnished flow filter (BFF) introduced in this work is

compared against the Gromov flow filter. The SDE governing
Gromov flow provides the exact Bayesian posterior in the lin-
ear/Gaussian measurement case. More information on Gromov
flow can be found in [12], [15], [22], [24]. The next section
will cover the derivation of the BFF, which is also exact for
linear/Gaussian measurements.

III. DERIVATION OF THE BFF MEASUREMENT UPDATE
EQUATIONS FOR A LINEAR MEASUREMENT

The EKF is one of the most commonly used filters for state
estimation. The intention in designing the BFF is to create a
particle flow filter that is both powerful and easy to understand.
Consider the linear measurement,

y = Hx(t) + η, (6)

where again, the measurement noise η is zero mean and Gaus-
sian. Assuming x(0) ∼ N (x̂0,P0), the posterior distribution
is also Gaussian with mean and covariance given by the KF
update (3). It should be noted that it is assumed here that
the random variables are Gaussian distributed, but this is not
necessary for the derivation. Now, assume the following SDE,

dx(λ) = (A(λ)x(λ) +B(λ)y) dλ+C(λ)dwλ(λ),

x(0) ∼ N (x̂0,P0),

λ ∈ [0, 1],

(7)

where again y is deterministic, and dwλ is zero mean white
noise with power spectral density (PSD) I . Note that given
the choices of Aλ and Bλ in (7), a linear relationship is
deliberately forced between the stochastic flow and the current
state estimate and measurement values. This allows one to
derive closed-form expressions for the matrices Aλ and Bλ

below.

If one makes the assumption that the state x(λ) remains
Gaussian at all times, integrating from zero to one, the mean
and covariance are given by,

x̂(1) = ΦA(1, 0) x̂(0) +

∫ 1

0

ΦA(1, τ)B(τ) y dτ,

P(1) = ΦA(1, 0)P(0)ΦA(1, 0)T+∫ 1

0

ΦA(1, τ)C(τ)C(τ)TΦA(1, τ)T dτ,

(8)

where ΦA(1, τ) is the state transition matrix (STM) of A from
τ to 1. As a reminder some useful properties of the STM are:

∂

∂τ
ΦA(1, τ) = −ΦA(1, τ)A(τ),

ΦA(0, 0) = I,
(9)

The solution of the SDE (8) matches the Kalman update by,

ΦA(1, 0) = (I −KH),∫ 1

0

ΦA(1, τ)B(τ) dτ = K,∫ 1

0

ΦA(1, τ)C(τ)C(τ)TΦA(1, τ)Tdτ = KRKT.

(10)

Notice K is a constant, calculating it with the prior value
of the covariance matrix. There are many possible choices of
matrices A(λ), B(λ), and C(λ) that satisfy these equations.
Next, intuitive selections for A(λ), B(λ), and C(λ) are
provided. A convenient choice for B(λ) is,

B(λ) = −A(λ)M , (11)

where M is defined later, so that∫ 1

0

ΦA(1, τ)B(τ) dτ = −
∫ 1

0

ΦA(1, τ)A(τ) dτ M

=

∫ 1

0

∂

∂τ
ΦA(1, τ) dτ M

= (I −ΦA(1, 0)) M

= KHM .

(12)

Typically the number of states, n, is greater than the number
of measurements, m, and H has full row rank. If so, one can
choose M = HT(HHT)−1 to satisfy the condition of (10).
If n ≤ m, and if the m×m matrix KH is invertible, one can
choose M = (KH)−1K to satisfy the condition of (10).

Now select a constant A such that,

A = log(I −KH) =

∞∑
k=1

(−1)k+1

k
(−KH)k, (13)

which one can think of as the pseudotime derivative of the
KF update. Redefining the matrix A such that A = −ÃH ,
hence,

Ã =

∞∑
k=1

(−1)k

k
(−KH)k−1K, (14)



and, once again choosing M = HT(HHT)−1 or M =
(KH)−1K, whichever exists,

−ÃH = A

−ÃHM = AM

Ã = −AM = B

(15)

and
dx(λ) = (−BHx(λ) +By)dλ+C(λ)dν(λ),

x(0) ∼ N (x̂0,P0),
(16)

then, finally, choose C(λ) as,

C(λ) = ΦA(1, λ)−1KR1/2. (17)

This is the final variable definition required in (7). In sum-
mary, during the BFF measurement update, one integrates the
following in λ from 0 to 1:

dx(λ) = B (y −Hx(λ))dλ+C(λ)dν(λ),

x(0) ∼ N (x̂0,P0),

B = − log(I−KH) M,

K = P0H
T
(
HP0H

T +R
)−1

,

M = H(HHT )−1 or = (KH)−1K,

C(λ) = eA(λ−1)KR1/2.

(18)

Written differently for ease of comparison with the GFF, the
BFF equations can be written as:

g (x, λ,y) = B (y − ŷ) ,

Bλ =
√
Qλ = eA(λ−1)KR1/2 = C,

(19)

where ŷ = h(x̂) is the estimated measurement based on the
current estimate of the state.

For a nonlinear system, the equations are altered in a similar
manner to that of the classical KF to the EKF. Each of the
Jacobians listed becomes the Jacobian of the nonlinear system
evaluated on the most recent best estimate of the state.

The following section details the implementation of the
algorithms for the BFF and GFF.

IV. IMPLEMENTATION OVERVIEW

First, a brief discussion of the propagation step. The propa-
gation for the BFF and GFF is handled identically. Each of the
systems covered in Sections V–VII is a discrete time system.
Each propagation step is treated as a single discrete time step
that applies random noise samples to each particle. Once all
particles have been propagated, x̂− and P− are calculated
using the particles in (20).

x̂k =
1

Np

Np∑
i=1

xi
k,

Pk =
1

Np

Np∑
i=1

(xi
k − x̂i

k)(x
i
k − x̂i

k)
T ,

(20)

where xi
k is the ith particle of time step k and Np is the

number of particles. In (18), P0 = P−.

In the measurement update step the BFF and GFF have
similar mechanics. Both use their solution to the SDE (7) and
(4) to perform a fixed number of pseudotime steps, Nλ, via
Euler-Maruyama propagation for each particle.

xj+1 = xj + dλg(xj , λ,y) +Bλdwλ, dλ =
1

Nλ
, (21)

where j represents the current pseudotime step. The GFF uses
(5) to define g(xj , λ,y) and Bλ while the BFF uses (18). The
number of pseudotime steps varies problem to problem in this
study, but is fixed for each scenario for ease of comparison.

Lastly, (20) is used to calculate x̂+ and P+ at the end of
each time step.

It should be noted here that the computational cost of
performing a matrix logarithm and matrix exponential in (13)
and (18) causes the runtime for the BFF to be nearly double
that of the GFF as the algorithms are implemented for this
work. With additional care, this difference can be mitigated.

The following sections detail simulated examples to demon-
strate the BFF and compare it against the GFF.

V. LINEAR SYSTEM

This section covers the results from running both the BFF
and GFF on a linear system of equations over a 50 step time
period with a measurement every step. Each filter is run using
the same truth data (i.e. true state and measurements) for 100
Monte Carlo (MC) runs with a varying numbers of particles.
The number of pseudotime steps used is Nλ = 2.

Consider the following system of equations,

xk+1 = Fxk + ν, F =

[
0 0.1
−1 0

]
,

yk = Hxk + η, H =
[
1
2 0

]
,

(22)

that contains the governing equations for both the true system
of equations as well as the system of equations in the filter.
The initials state is drawn from x0 ∼ N ([1,−1]T , I), with
errors ν ∼ N (0, 0.01I), and η ∼ N (0, I).

The Root Mean Square Error (RMSE) is used to measure
the error in the estimate from the filters. RMSE at each time
step is defined as:

RMSEk =

√√√√ 1

NMC

NMC∑
i=1

(x̂i
k − xi

k)
2, (23)

where NMC is the number of MC runs.
The Scaled Normalized Estimation Error Squared (SNEES)

is used to measure the statistical consistency of the state
estimates and covariance values from the filters. The SNEES
at each time step is defined as:

SNEESk =
1

nNMC

NMC∑
i=1

(x̂i
k − xi

k)
T (Pi

k)
−1(∼). (24)

It should be noted that a RMSE of 0 implies no error and a
SNEES value of 1 indicates perfect consistency. To simplify
the results both the RMSE and SNEES are taken and averaged
over the time span of the simulation.



Fig. 2. Average RMSE of the filter estimate compared with the true state
across simulation time and across MC runs versus number of particles used
in the filter for the BFF and GFF. The black line shows a similar RMSE value
from 100 MC runs through a KF.

Fig. 3. Average SNEES of the filter estimate compared with the true state
across simulation time and across MC runs versus number of particles used
in the filter for the BFF and GFF. The black line shows a similar SNEES
value from 100 MC runs through a KF.

Figures 2 and 3 show the results from running a 100 run
MC simulation using the system of equations in (22). When
varying the number of particles in both filters, the RMSE and
SNEES both improve with a classic elbow in the curve where
the benefit of adding more particles becomes lessened. In both
figures, this occurs around 40 particles for both the BFF and
GFF. As the number of particles in the filters increases, the
solution that the filter yields approaches the solution from
the Kalman filter, both in the RMSE and in the SNEES. It
should be noted again that the BFF and GFF algorithms utilize
an ensemble covariance rather than relying on a companion
filter to obtain their estimates of the covariance of the state.
Utilizing an ensemble covariance allows the filters to evolve
their covariance estimates based directly on the evolution of
the particles themselves, but can degrade the performance on
a linear system for small numbers of particles.

Now briefly examining the stiffness of the two filters, Table
I shows the norm of the initial step size taken by the BFF
and GFF starting from the mean of the prior distribution at
the initial time step. It is important to note that the substep
size is the same for both filters, dλ = 1

λ . The BFF shows a
more moderate initial update, indicating that the BFF is less
stiff than the GFF in this example.

It is clear that the BFF yields very similar results to the
GFF when applied to linear systems. In the next section, the
results for a nonlinear system are shown.

TABLE I
INITIAL SUBSTEP UPDATE STARTING FROM THE MEAN OF THE INITIAL

DISTRIBUTION FOR THE BFF AND GFF FOR THE LINEAR SYSTEM.

Filter ||dx1||
BFF 0.2340
GFF 0.4985

VI. TWO DIMENSIONAL RANGE OBSERVATION SYSTEM

This example displays the results from applying the BFF
and GFF to a nonlinear system. Similar to the relationship
between the KF and the EKF, the derivation of the equations
that govern the BFF for a nonlinear system is nearly the
same as for a linear system. In the derivation in Section III
the measurement is a linear function of the state. Now it is
assumed that the measurement model can be approximated by
a first-order Taylor expansion about the most recent estimate.
While this is a similar assumption for the BFF as the EKF,
the BFF takes small pseudotime steps towards the posterior
distribution, which allows for the recursive recalculation of H
as the state moves through the update steps. The number of
pseudotime steps used in this scenario is Nλ = 10. All of the
same equations from Section III still apply with the caveat
that H is now a function of x̂.

Consider a range measurement for a two dimensional state
space:

x =

[
x1

x2

]
, y =

√
x2
1 + x2

2 + η,

H =
∂h

∂x

∣∣∣∣
x̂

=
1

∥x̂∥
[
x̂1 x̂2

]
,

(25)

In this example, the particles are taken through a single
measurement update without time propagation. The initial
distribution (prior distribution) of the particles in this problem
is Gaussian, centered on [−3, 0]T with an uncertainty of
σ2
1 = σ2

2 = 1, σ1σ2 = σ2σ1 = 0.5. The measurement
uncertainty for this system is R = 0.01. By Bayes Rule,
the posterior distribution is obtained by multiplying the prior
distribution by the measurement likelihood distribution:

px =
1

2π
√
|P0|

exp

(
−1

2
(x− x̄)

T
P−1
0 (x− x̄)

)
= N

([
−3
0

]
,

[
1 0.5
0.5 1

])
,

py|x =
1

2π
√
R

exp

(
− 1

2R

(
y −

√
x2
1 + x2

2

)2
)
,

px,y =
1

c
pxpy|x,

(26)

where px is the initial bivariate Gaussian pdf, py|x is the mea-
surement likelihood pdf given the state, px,y is the posterior
pdf of the state, and c is a normalization constant to ensure
px,y is a valid pdf.

Figures 4 and 5 show contour plots of the prior, measure-
ment likelihood, and posterior distributions for this example.



Fig. 4. BFF results for the range observation example. The blue contour lines
and circles show the prior distribution and samples. The red contour lines show
the measurement distribution. The yellow contour lines and star show the true
posterior distribution and its mean. The purple circles and star correspond to
the results from running the initial samples through the measurement update
of the BFF and their mean.

Fig. 5. GFF results for range observation example. The cyan circles and
star correspond to the results from running the initial samples through the
measurement update of the GFF and their mean.

It should be noted that the true posterior distribution is not
analytically available. The contour plots are generated by
computing the values of px, py|x, and px,y on a fine grid using
(26). Figure 4 shows the results of the BFF update, and Figure
5 shows the results of the GFF update. Inspecting Figures 4
and 5, it is clear that both the BFF and GFF perform well in
representing the posterior distribution.

To quantify how well the BFF and GFF represent the
posterior distribution, a discrete Kullback-Leibler divergence
(KL-divergence) test is conducted. Discrete samples of the
true posterior distribution are generated on a fine grid over
the space in Figures 4 and 5. The normalization constant is
calculated by numerically integrating the product of the prior
and measurement likelihood distributions over the grid. The
particles from the particle flow filters act as their own equally-
weighted discrete samples. The KL-divergence determines the
divergence between the two distributions. A KL-divergence
value of 0 indicates that the distributions are equal almost
everywhere [25]. The results can be found in Table II.

The KL-divergence of the BFF compared with the true
posterior distribution is lower than the KL-divergence of the
GFF. This is a clear indication that the BFF produces results
that are more consistent with the posterior distribution. With
this result in mind, Figures 4 and 5 also appear to support that
the results from the BFF more closely resemble the posterior
distribution. The cyan circles that represent the GFF spill over

TABLE II
RESULTS FROM A KL-DIVERGENCE TEST USING 1000 POINTS FROM THE

BFF AND GFF RESPECTIVELY.

Filter KL-divergence
BFF 0.3266
GFF 0.4720

Fig. 6. Plot to visualize the progression of state estimates from the BFF and
GFF in a single measurement update with 10 substeps of size 1

10
.

the edges of the yellow posterior contour while the purple
circles of the BFF are more well contained.

One possible explanation as to why the BFF yields more
statistically consistent results is due to the stiffness of the two
filters. A diagram showing the substeps of the BFF and GFF
in a single measurement update from the mean is shown in
Figure 6. Additionally, Table III shows the magnitude of the
initial update applied by each filter.

It is well know that particle flows can be extremely stiff
[16]. This can be observed by looking at the size of the
update during the first substep for both the BFF and GFF.
While the BFF’s initial substep update is still much larger
than its subsequent substep updates, the GFF’s update is
nearly twice as large as the BFF’s. Additionally, the BFF
has an overall smoother flow towards the desired posterior
distribution. Again, it is important to note that the substep size
is the same for both filters, dλ = 1

λ . This behavior indicates
that the BFF is less stiff than the GFF in this scenario.

The next section covers the results from a nonlinear system
with both nonlinear dynamics and nonlinear measurements.

TABLE III
INITIAL SUBSTEP UPDATE STARTING FROM THE MEAN OF THE INITIAL

DISTRIBUTION FOR THE BFF AND GFF FOR THE 2D RANGE OBSERVATION
SYSTEM.

Filter ||dx1||
BFF 1.207
GFF 2.206



VII. IKEDA MAP

Consider the following system of equations:

xk+1 = C2

[
cos(zk) − sin(zk)
sin(zk) cos(zk)

]
xk +

[
C4

0

]
+ ν,

zk = C1 −
C3

1 + ∥xk∥2
,

y =
√

x2
1 + x2

2 + η, H =
∂h

∂x

∣∣∣∣
x̂k

=
1

∥x̂∥
[
x̂1 x̂2

]
,

(27)

where C1 = 0.4, C2 = C4 = 0.9, and C3 = 6. In this example,
the initial state is drawn from x0 ∼ N (0, I), with errors ν ∼
N (0, 0.1I), and η ∼ N (0, 1).

This system in (27) is used to generate both the truth data
and in the filters themselves. A simulation with 100 MC runs
is conducted and the results are found in Figures 7 and 8.

In Figure 7, in addition to the results for the BFF and GFF
filters, the results from a regularized particle filter (RPF) with
10,000 particles are also included. This result acts as a lower
bound for what the RMSE (23) might be for the system. In
Figure 7, the BFF and GFF display similar performance in the
accuracy of their estimates.

This section covers the results from testing the BFF and
GFF on a nonlinear system with dynamics defined by a 2D
Ikeda Map [26] and range measurements over a 50 step
time period with measurements every step. The number of
pseudotime steps used in this scenario is Nλ = 10. This
system is extremely nonlinear and thus is an excellent test
for the BFF.

In Figure 8, it shows that the BFF provides more statistically
consistent results than the GFF as the number of particles
considered in the filter is increased. At around 30 particles,
the GFF transitions from statistically under representing the
amount of noise in the system to over representing the amount
of noise in the system. The BFF on the other hand, achieves
a closer asymptote to the ideal SNEES (24) value of 1. This
indicates that the flow solution in the BFF algorithm is more
statistically consistent than that of the GFF.

Finally, briefly examining the stiffness of the BFF and GFF
by examining the first substep of the measurement update
from the initial prior distribution shown in Table IV. The first

Fig. 7. Average RMSE of the filter estimate compared with the true state
across simulation time and across MC runs versus number of particles used
in the filter for the BFF and GFF. The black line shows a similar RMSE value
from 100 MC runs through a RPF with 10,000 particles.

Fig. 8. Average SNEES of the filter estimate compared with the true state
across simulation time and across MC runs versus number of particles used
in the filter for the BFF and GFF. The black line shows a SNEES value of 1.

TABLE IV
INITIAL SUBSTEP UPDATE STARTING FROM THE MEAN OF THE INITIAL
DISTRIBUTION FOR THE BFF AND GFF FOR THE IKEDA MAP SYSTEM.

Filter ||dx1||
BFF 2.154
GFF 4.568

substep update provided by the GFF is nearly twice as large
as the first substep update provided by the BFF. This is an
indication that the BFF is less stiff than the GFF.

VIII. CONCLUSIONS

The BFF is a particle flow filter that leverages the Kalman
update equations to transport particles from the prior distri-
bution to the posterior distribution for a given measurement.
The BFF is compared against the GFF in three examples. It is
shown that the BFF is capable of providing more statistically
consistent results than the GFF. These results give confidence
that the BFF is a good choice for highly nonlinear systems.

The results presented in Section V demonstrate the BFF
provides an estimate for a linear, Gaussian system just as well
as the GFF. Section VI demonstrates that the BFF provides a
more statistically consistent estimate than the GFF for a system
that transforms from a Gaussian to a non-Gaussian due to a
nonlinear measurement. Section VII shows that the BFF is
capable of providing a more statistically consistent estimate
of a system with both nonlinear dynamics and nonlinear
measurements.

In each scenario it is clear that the SDE that governs the BFF
is less stiff than the GFF. In each scenario, the initial substep
update of the GFF is nearly twice the size of the BFF’s substep
update. This analysis demonstrates that the BFF should be
studied further in order to understand this persistent difference
in performance. However, the BFF’s initial substep update
is still large compared to the subsequent substep updates. In
future work, analysis should be done to examine how the BFF
might benefit from a variable substep size.

Another avenue for future work, is to examine other ways
to to reduce the computational complexity of the BFF. The
current form of the BFF calls for a matrix log and a matrix
exponential at each update step. It is possible that the need



for at least one of these operations may be obviated by minor
changes to the derivation in Section III.

Not only is the derivation of the BFF accessible, but,
more importantly, the results it produces are competitive.
More studies should be conducted to better understand the
conditions that cause the BFF to yield more consistent results
than the GFF. Additionally, more studies should be performed
comparing the BFF against additional nonlinear filters.
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