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Abstract—The incorporation of nonlinear measurement infor-
mation plays an important role in Bayesian state estimation
for real-word systems. While many methods exist for prop-
agating states through continuous-time nonlinear dynamics, a
complementary continuous solution for discrete-time nonlinear
measurements has so far remained elusive. Building on intuition
from our previous work, the Bayesian Recursive Update Filter,
we formulate the nonlinear measurement update as an ordinary
differential equation (ODE). This formulation naturally extends
to particle flow. We define two particle flows: the first is a
deterministic flow based on the ODE solution, and the second is
stochastic; the numerical integration contains a diffusion term.
The proposed particle flows demonstrate excellent performance
on a system with deterministic dynamics and a highly accurate
nonlinear measurement, a setting known to be challenging for
particle filters.

Index Terms—statistical estimation, nonlinear filtering, particle
flow, bayesian recursive update

I. INTRODUCTION

Designing tractable filtering algorithms for nonlinear sys-
tems is a perennial challenge in statistical estimation. Un-
certainty distributions are rarely available in closed form,
leading to sub-optimal state estimates. While linearization and
Gaussian approximations may be used to guess the correct
solution, there is no optimality guarantee.

One existing class of nonlinear filters is the particle filters
[1]. Particle filters represent the uncertainty distribution with
a set of state estimates, the particles, which are taken to
be samples of the uncertainty distribution. The particles are
propagated through the dynamics model, forming the prior dis-
tribution. When a measurement arrives, they are moved and/or
re-weighted based on the measurement likelihood. Often, a
resampling step is employed, which replicates particles with
higher weight and removes particles with lower weight.

Ideally, no weighting or resampling would be required. At
measurement time, the particles would simply move from
the propagated prior distribution to the Bayesian posterior
distribution. Then, again, to the next prior, and the next
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posterior, and so on, as the dynamics evolve and measurements
are received. This is the objective of particle flow. The term
“particle flow” traditionally refers to the measurement update;
the idea of steadily moving (i.e., “flowing”) particles from
the prior distribution to the posterior distribution given the
measurement information.

Daum-Huang Exact flow was an early particle flow [2], [3].
Later, Gromov flow was introduced, which includes a diffusion
term [4]. These flows are known as log-homotopy flows, since
they approximate a homotopy between the prior distribution
and the posterior distribution. Numerous log-homotopy flows
have been developed [5]. More recently, particle flows based
on Stein variational gradient descent [6] and projected cumu-
lative distributions [7] have also been proposed.

In this work, we expand on previous work by using the
Bayesian Recursive Update Filter (BRUF) [8] to induce a
particle flow. The BRUF relaxes the Extended Kalman Filter
(EKF) update by applying a series of updates, each with
inflated measurement noise covariance. This idea is related
to likelihood tempering [9], the damped iterated EKF update
proposed in [10], and progressive Gaussian filtering [11].
Perhaps the most similar existing algorithm is multiple data
assimilation (MDA) in ensemble filtering [12], though the
BRUF was derived independently.

While particle flow is a natural extension of the BRUF—
and, indeed, we have already developed an ensemble Kalman
filter (EnKF) version [13], [14]—we revisit the derivation of
the BRUF, expanding it to arrive at an ODE formulation. We
then introduce two particle flows based on the ODE solution.
The first is deterministic, and the second is stochastic. Deriving
a stochastic flow was of particular interest for comparison to
existing stochastic flows.

The remainder of this article is organized as follows: Section
II presents the derivation of the ODE formulation of the non-
linear measurement update; Section III defines the two particle
flows and shows results for a Gaussian-distributed prior state
estimate with a range measurement; Section IV presents a
dynamics example; and Section V presents conclusions and
future work.



II. BACKGROUND

Consider nonlinear measurement model

y = h(x) + ν (1)

where
ν ∼ N (0, R) (2)

is zero-mean additive Gaussian noise. Assume a state estimate
m is available with prior distribution

x ∼ N (m,P ) (3)

where P is the covariance of our uncertainty.
The Extended Kalman Filter (EKF) update is

x̂ = m+K(y − h(m))

P̂ = (I −KH̃)P
(4)

where K is the Kalman gain:

K = PH̃T (H̃PH̃T +R)−1. (5)

The Kalman gain and the covariance update depend on the
measurement Jacobian,

H̃ =
dh(x)

dx

∣∣∣∣∣
x=m

. (6)

If the linearization (6) is a poor approximation of the measure-
ment function, the EKF may diverge. Further, the EKF update
provides a Gaussian approximation of the Bayesian posterior
distribution. It cannot capture higher-order moments.

We would like to define an alternative recursive measure-
ment update in which the state estimate moves slowly from m
to x̂. We will use this iterative scheme to induce a particle flow.
The updated particle distribution will better match the true
statistics of the Bayesian posterior distribution than a single
state estimate with a Gaussian uncertainty approximation.

Beginning with the full expression for the Bayesian poste-
rior distribution,

p(x|y) = C · exp
{
− 1

2
(m− x)TP−1(m− x)

}
· exp

{
− 1

2
(y − h(x))TR−1(y − h(x))

}
(7)

we start by re-expressing the argument of the measurement
likelihood function as a weighted sum:

p(x|y) = C · exp
{
− 1

2
(m− x)TP−1(m− x)

}
· exp

{
− 1

2

n−1∑
i=0

αi(y − h(x))TR−1(y − h(x))
}

(8)

where
n−1∑
i=0

αi = 1. (9)

Using a convenient exponential identity, we can now express
the posterior distribution as the product of the prior distribution
and n likelihood functions.

p(x|y) = C · exp
{
− 1

2
(m− x)TP−1(m− x)

}
·
n−1∏
i=0

exp
{
− 1

2
αi(y − h(x))TR−1(y − h(x))

}
(10)

Alternatively, we can write:

p(x|y) = C · exp
{
− 1

2
(m− x)TP−1(m− x)

}
·
n−1∏
i=0

exp
{
− 1

2
(y − h(x))T

(
1

αi
R

)−1

(y − h(x))
}
. (11)

Since each αi ≪ 1, the term 1
αi
R is an inflation of the

measurement noise covariance. For example, if αi = 1
n for

all i, then the inflated measurement noise covariance matrix
in each likelihood function is nR.

We would like to approximate the product of Gaussians in
(11) as a single Gaussian with mean x̂ and covariance P̂ .
Beginning with the prior and the first likelihood function, we
can write

p(x|y) ≈ C · exp
{
− 1

2
(x̂(1) − x)TP−1

1 (x̂(1) − x)
}

·
n−1∏
i=1

exp
{
− 1

2
(y − h(x))T

(
1

αi
R

)−1

(y − h(x))
}

(12)

where the first exponential function now has the mean and
covariance values

x̂(1) = m+ K̃0(y − h(m)) (13)

P1 = (I − K̃0H̃0)P (14)

K̃0 = PH̃T
0

(
H̃0PH̃T

0 +
1

α0
R

)−1

(15)

and H̃0 is evaluated at x = m. The appropriate normalization
constants have been absorbed into C.

This approximation holds as long as the state update is small
enough that h(x̂(1)) ≈ h(m)+H̃0

(
x̂(1) −m

)
; in other words,

as long as the updated state stays within the linear region of
h(x) evaluated at x = m. If the linear approximation is valid,
then x and y are jointly Gaussian, and x̂(1) is the minimum
mean-square-error (MMSE) and maximum a posteriori (MAP)
estimate of x given inflated measurement noise covariance
1
α0

R [15] (Chs. 2–3). The linearization is certainly valid if
1
α0

R is very large. The measurement y will hardly be trusted,
and the estimate x̂(1) will remain close to the prior mean.
However, by making a Gaussian approximation of this first
posterior distribution, we lose higher-order information about
the true uncertainty distribution of the state.

Continuing, we can recursively define:

x̂(i+1) = x̂(i) + K̃i

(
y − h

(
x̂(i)

))
(16)



Pi+1 = (I − K̃iH̃i)Pi (17)

K̃i = PiH̃
T
i

(
H̃iPiH̃

T
i +

1

αi
R

)−1

(18)

with x̂(0) = m and P0 = P . This leads to the Gaussian
approximation of the posterior distribution:

p(x|y) ≈ C · exp
{
− 1

2
(x̂(n) − x)TP−1

n (x̂(n) − x)
}
. (19)

We have now collapsed the right-hand side of (11) into a single
Gaussian, fully incorporating the measurement information.

We now face a classic tradeoff between step size αi and
computational cost. Clearly, the linear region criteria discussed
above hold for αi → 0. In this case, 1

αi
R → ∞, and the state

update goes to zero. We would like to automatically choose
step sizes αi small enough that the linear approximation holds,
but large enough that we can solve the problem in a reasonable
number of steps. This is difficult to do for the recursion in (16)-
(18). The step αi appears in the denominator in (18); the term
1
αi
R is then added to another matrix, and the whole expression

is inverted again. Further, the expression for x̂(i+1) contains a
nonlinear function of x̂(i).

As a more palatable alternative to the Kalman update in
(16)-(18), consider the forward form of the Kalman gain

K̃i = Pi+1H̃i
T
R−1 (20)

where the gain is now expressed in terms of the updated
covariance matrix. We can now express the update in (16)-
(18) as

x̂(i+1) = x̂(i) + αiPi+1H̃
T
i R

−1
(
y − h

(
x̂(i)

))
(21)

Pi+1 = Pi − αiPi+1H̃
T
i R

−1H̃iPi (22)

where we have replaced the Kalman gain K̃i with the form in
(20), and the terms αi have been pulled out of the measure-
ment noise covariance inversion.

We can now write down differential equations for x̂ and P
by evaluating

dx̂(i)

dα
= lim

αi→0

x̂(i+1) − x̂(i)

αi

= lim
αi→0

αiPi+1H̃
T
i R

−1
(
y − h

(
x̂(i)

))
αi

= lim
αi→0

Pi+1H̃
T
i R

−1
(
y − h

(
x̂(i)

)) (23)

dPi

dα
= lim

αi→0

Pi+1 − Pi

αi

= lim
αi→0

−αiPi+1H̃
T
i R

−1H̃iPi

αi

= lim
αi→0

−Pi+1H̃
T
i R

−1H̃iPi

(24)

The key is to recognize that as αi → 0, then Pi+1 → Pi.
Hence, removing time indices and changing the discrete step
αi to the pseudotime parameter τ ,

dx

dτ
= PH̃TR−1 (y − h(x)) (25)

dP

dτ
= −PH̃TR−1H̃P (26)

where

H̃ =
dh(x)

dx
. (27)

The measurement update is computed by numerically integrat-
ing (25)-(26) on the interval τ ∈ [0, 1].

The terms on the right-hand side of (25)-(26) are analogous
to the measurement update terms in the Kalman-Bucy filter.
The Kalman-Bucy filter is a continuous-time filter. The state
dynamics evolve in time as measurements are received in a
constant stream. The use of limit evaluations to derive the
differential equations (25)-(26) follows the derivation of the
Kalman-Bucy filter in [15] (Ch. 9). In the Appendix, we show
that (25)-(26) can also be derived from the information filter
equations.

It is important to note that Eqs. (25)-(26) form a system of
differential equations that must be integrated together. They
are inextricably coupled, since the state evolution depends on
the covariance, and both the state and the covariance dynamics
depend on the current state to evaluate H̃ .

All numerical ODE solutions presented in this work were
computed in MATLAB using ode45 with the default settings
[16], [17]. Sections III-IV also contain results generated by
a numerical stochastic differential equation (SDE) solver, Re-
jection Sampling with Memory (RSwM1) [18]. The absolute
and relative tolerances used by RSwM1 were chosen to match
the ode45 defaults.

III. PARTICLE FLOW

We begin with a motivating example for generalizing (25)-
(26) to particle flow. While integrating (25)-(26) for a single
state estimate gives a Gaussian approximation of the posterior
distribution, we will show that applying (25)-(26) to a set of
particles with a Gaussian prior distribution can successfully
redistribute the particles over a non-Gaussian posterior.

Consider the range measurement

y = ∥x∥+ ν (28)

where ν ∼ N (0, 0.12). The measurement Jacobian is

H̃ =
xT

∥x∥
. (29)

Fig. 1 shows the state trajectory that results from numerically
integrating (25)-(26) given measurement

y = 1 (30)

with prior state estimate

x =
[
−3.5 0

]T
(31)

and covariance

P =

[
1 0.5
0.5 1

]
. (32)
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Fig. 1: Evolution of state estimate for range measurement
example. The final 2σ-covariance ellipse is show in black.
The measurement likelihood distribution is a ring centered
at the origin. This produces a crescent-shaped a posteriori
distribution.

Beginning at the left of Fig. 1, the state estimate moves
smoothly from the prior distribution to the posterior distribu-
tion. The final covariance matrix matches the posterior distri-
bution along the direction of the range vector. The estimate is
underconfident in the cross-range direction. We have shown in
previous work that these state and covariance values closely
match the result of the IEKF update for this example [14].
The IEKF cannot solve this problem without line search [14],
[19].

The following sections present two alternative particle flow
formulations based on (25)-(26). The first is a deterministic
flow that takes advantage of a diffusion technique from en-
semble filtering. The second is a stochastic flow that includes
a random diffusion term at each integration step.

A. Particle flow based on ODE solution

Naively, one may define a flow by using an ODE solver
to integrate (25)-(26) for each particle. However, this is pro-
hibitively expensive for filters with large numbers of particles,
and especially for systems with large state spaces. Instead, we
opt to solve the ODE beginning from the prior mean and the
ensemble covariance. Saving only the series of time steps from
this initial solve, we then execute a full BRUF update for each
particle.

Given the set of particles

X = {x1, . . . , xnp
}, (33)

the steps are as follows:
1) Compute the prior mean, m, and the sample covariance

P =
1

np − 1

np∑
i=1

(xi −m)(xi −m)T (34)

of the particles.
2) Solve Eqs. (25)-(26) with initial conditions m and P .

Obtain time series
{
∆τ (1) . . . ∆τ (nt)

}
, where

nτ∑
k=1

∆τ (k) = 1. (35)

3) Generate a set of perturbed measurements

ỹi = y + η (36)

where η ∼ N (0, R).
4) Complete a full BRUF update for each particle using the

time series from Step 2:

x
(k+1)
i = x

(k)
i +K

(k)
i

(
ỹi − h

(
x
(k)
i

))
(37)

P
(k+1)
i =

(
I −K

(k)
i H̃

(k)
i

)
P (k) (38)

where

K
(k)
i = P

(k)
i H̃

(k)T
i

(
H̃

(k)
i P

(k)
i H̃

(k)T
i + R̃(k)

)−1

(39)

R̃(k) =
1

∆τ (k)
R (40)

Fig. 2 shows the result of this process for a set of 100
particles drawn from the prior distribution in Fig. 1. The
initial set of particles is shown in black. The dashed lines
trace their trajectories over the course of the update. The
updated particles are shown in light green, nicely settled on
the posterior distribution.

-7 -6 -5 -4 -3 -2 -1 0 1 2

-2

-1

0

1

2

Fig. 2: Particle flow induced by ODE solution

Step 3 is borrowed from ensemble filtering [13], [20], [21].
Fig. 3 shows the result of the algorithm above for ỹi = y.
The initial particle locations are the same as in Fig. 2. If the
same measurement value y = 1 is used for each particle, then
the particles settle on the circle ∥x∥ = 1. This maximizes
the measurement likelihood for each individual particle, but
it does not lead to a healthy distribution of particles over the
posterior distribution.
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Fig. 3: Particle flow induced by ODE solution without mea-
surement perturbation

B. Stochastic particle flow

As an alternative approach, we can write down the following
Itô stochastic differential equation (SDE):

dx = f(x, τ) dτ +B(x, τ) dw (41)

where
f(x, τ) = PH̃TR−1(y − h(x)) (42)

is the drift term and

B(x, τ) = PH̃TR−1/2 (43)

is the diffusion term. B is defined such that Q = BBT , where

Q = PH̃TR−1H̃P (44)

Using the Euler-Maruyama method, we define the following
particle flow:

1) Compute the prior mean, m, and the sample covariance,
P , of the particles using (34).

2) Solve Eqs. (25)-(26) with initial conditions m and P .
Obtain time series

{
∆τ (1) . . . ∆τ (nt)

}
.

3) For each time step, perform the following update for
each particle:

x
(k+1)
i = x

(k)
i + P (k)H̃

(k)
i R−1

(
y − h

(
x
(k)
i

))
dτ

+ P (k)H̃
(k)
i R−1/2dw (45)

where
dτ = ∆τ (k) (46)

dw ∼ N (0,∆τ (k)I) (47)

4) After all particles have undergone one update step,
recompute the sample covariance.

P (k+1) =
1

np − 1

np∑
i=1

(
x
(k+1)
i −m

)(
x
(k+1)
i −m

)T

(48)
5) Repeat steps 3-4 until all time steps are exhausted.
Euler-Maruyama is a popular stochastic integration method

because it is easy to implement. For insight into other practical
stochastic integration techniques for particle flow, see Ref.
[22]. Ref. [23] is a wonderful introduction to SDEs for readers
familiar with state estimation.

Fig. 4a shows the result of this method for the range mea-
surement example, this time for 200 particles. Lines showing

the particles’ individual trajectories are not included, since
stochastic flows are not smooth. While the Euler-Maruyama
results take advantage of the adaptive time steps for the
ODE solution, this is not strictly correct, as time-steps have
to be adaptively choosen for the SDE. Fig. 4b shows the
particle flow results using a strong order 1.5 adaptive SDE
solver, Random Sampling with Memory (RSwM1) [18]. Euler-
Maruyama has strong order 0.5 [23].
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(b) RSwM1

Fig. 4: Particle flow induced by SDE solution

All the particles move through the stochastic flow together,
as the sample covariance is used in (42)-(43). Alternatively,
the theoretical covariance (38) may be used in (45). This
has the advantage of making the flow parallelizable, like the
ODE flow. However, the sample covariance—likely the best
available representation of the uncertainty after each update
step—goes unused after the first step.

C. Note on multimodal posterior distributions

Consider again the range measurement y = 1. This time, the
prior state estimate is x =

[
0 0

]T
, and the prior covariance

matrix is P = [ 1 0
0 0.05 ]. Placing the prior mean at the origin

yields a bimodal posterior distribution. Fig. 5 shows the result
of the ODE flow for a set of 500 particles (see Sec. III-A).
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Prior Measurement Posterior

Fig. 5: Result of ODE flow for bimodal posterior example

Since the measurement Jacobian (29) is undefined for x =[
0 0

]T
, a small perturbation was added to the prior state

estimate in order to generate the time steps ∆τ (k). Clearly,
the ODE flow is able to move particles to both areas of high
probability in the posterior distribution.

The flow is computed by applying a BRUF update to each
particle. For each particle, the initial BRUF state estimate is
the location of the particle itself ; not the sample mean. By
contrast, every BRUF is initialized with the sample covari-
ance. This means that the posterior distribution looks slightly
different for each particle. In other words, while Fig. 5 shows
a posterior distribution with two identical “lobes” for prior



state estimate x =
[
0 0

]T
, these lobes will be lopsided for

particles initially located away from the origin. The particles
travel to the lobe closest to where they started.

IV. LORENZ ’63 WITH RANGE AND ANGLES

We demonstrate the performance of the proposed parti-
cle flow filters on a well-known chaotic dynamical system
with high-precision nonlinear position measurements. The
Lorenz ’63 dynamics are [24]:

ẋ1 = σ(x2 − x1)

ẋ2 = x1(ρ− x3)− x2

ẋ3 = x1x2 − βx3

(49)

where σ = 10, ρ = 28, and β = 8
3 yield the familiar butterfly

trajectory. Fig. 6 shows the evolution of the trajectory for the
first 40 time units.

20

x2

0
0-20

25

x1

x
3

0 -20

50

20

Fig. 6: Lorenz ’63 dynamics

An instrument placed at the equilibrium point[
6
√
2 6

√
2 27

]T
measures range, azimuth, and elevation

to the target. These quantities can be defined in terms of the
line-of-sight vector

r⃗ = x−
[
6
√
2 6

√
2 27

]T
(50)

where the notation (⃗·) is used to differentiate the vector-valued
line-of-sight from the range value

r = ∥r⃗∥. (51)

The angles are
α = tan−1(r⃗2/r⃗1)

ϵ = sin−1(r⃗3/r)
(52)

The measurement model is
y = h(x) + ν

ν ∼ N (0, R)
(53)

where
h(x) =

[
r α ϵ

]T
(54)

and

R =

0.12 0 0
0 0.012 0
0 0 0.012

 . (55)

All angular values are given in radians.
The measurement Jacobian is

H̃ =


r⃗1/r

−r⃗2
r⃗21 [1+(r⃗2/r⃗1)2]

−r⃗1r⃗3

r3
√

1−(r⃗3/r)2

r⃗2/r
1

r⃗1[1+(r⃗2/r⃗1)2]
−r⃗2r⃗3

r3
√

1−(r⃗3/r)2

r⃗3/r 0 1√
1−(r⃗3/r)2

[
1
r − r⃗23

r3

]

T

(56)

Each filter in this study was initialized with a set of particles
X(0) = {x1(0) . . . xnp(0)} drawn from

X(0) ∼ N (x(0), P (0)) (57)

where x(0) is the true initial state

x(0) =
[
0 1 0

]T
(58)

and
P (0) = I3×3. (59)

The filter dynamics (49) were integrated using a fourth-order
Runge Kutta scheme. A measurement was received every 0.12
time units. The state estimate at time t is simply the mean of
the particles:

x̂(t) =
1

np

np∑
i=1

xi(t). (60)

Five filters were tested on this system: the ODE flow (Sec-
tion III-A), the stochastic flow induced by Euler-Maruyama
(Section III-B), the stochastic flow induced by RSwM1 (Sec-
tion III-B), Gromov flow, and Daum-Huang exact flow. The
Gromov flow was induced by Euler-Maruyama, like the SDE
flow [22]. Daum-Huang exact flow is a diffusion-free flow
(i.e., B(x, t) = 0 in (41)). A skeleton of the algorithm used to
implement the exact flow is given in Ref. [25], Alg. 2. In place
of the usual exact flow equations, we used the version in [26]
(see Supplementary Material), which includes a correction for
the linearization error. In the SDE flow and the RSwM1 solver,
the theoretical covariance (38) was used in place of the sample
covariance after the first update step.

Gromov flow and Daum-Huang exact flow are sometimes
run with a companion EKF or UKF, which provide the prop-
agated covariance matrix required by the flow equations [3].
We did not include any companion filters in this work. Instead,
each measurement update begins with the sample covariance
(34) of the propagated particles. This can be problematic given
the deterministic dynamics (49); the particles tend to spread
out in a straight line, resulting in near-zero eigenvalues in the
sample covariance matrices. As a regularization, the matrix
0.01 · I3×3 is added to the sample covariance in all the filters
at the beginning of each measurement update. We do not
resample.

Gromov flow and Daum-Huang flow were executed with
50 update steps of uniform size ∆τ (k) ≜ 1/50. For the
proposed ODE particle flow and the Euler-Mauryama SDE
solution, the ODE solver averaged about 45 steps per update.
The adaptive SDE solver, RSwM1, averaged about 15 steps
per measurement update, though a large number of random
samples may be generated per step.



Fig. 7 shows the root-sum-of-squares (RSS) positioning
error for 50 Monte Carlo runs with 1000 measurement updates
each. All filters were executed with 25 particles. The RSS error
is defined as

RSS(t) =

√√√√ nm∑
n=1

∥εn(t)∥2 (61)

where nm is the number of Monte Carlo runs, and ε(t) is the
total position error at time t:

ε(t) = x̂(t)− x(t). (62)

Clearly, certain time steps are prone to large positioning error.
The proposed filters are better able to handle these difficult
measurements than Gromov flow and Daum-Huang exact flow.
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Fig. 7: RSS error for filters with 25 particles

Table I shows the mean spatio-temporal RMSE results for
filters with 10, 15, and 25 particles. The mean spatio-temporal
RMSE is:

RMSE =
1

nm

nm∑
n=1

√√√√1

3

1

nt

nt∑
j=1

∥εn(t)∥2. (63)

The ODE flow has the best performance in all three cases.
The RSwM1 solution and the Euler-Maruyama SDE solution
are close behind, followed by Gromov flow and finally Daum-
Huang. The outstanding performance of the ODE flow likely
reflects the stability of the ODE solution; a deterministic
solution with perturbed measurements is able to match the
posterior distribution without relying on randomly-generated
diffusion terms in each update step.

TABLE I: RMSE Results for Lorenz ’63

ODE SDE RSwM1 Gromov DH
np = 10 0.085 0.097 0.092 0.184 0.420
np = 15 0.083 0.092 0.090 0.178 0.418
np = 25 0.082 0.091 0.088 0.179 0.418
np = 100 0.080 0.090 0.086 0.174 0.418

V. CONCLUSION

This work presents an ODE formulation of the nonlinear
measurement update. We show that the discrete-time measure-
ment can be expressed in differential form by choosing an
inflated measurement noise covariance as the power spectral
density of a continuous-time measurement. We recover the
measurement update terms in the Kalman-Bucy filter. We then
use this ODE formulation to induce a particle flow. We show
the results of this particle flow for a single range measurement
with a Gaussian prior distribution.

We then present two filtering algorithms; a deterministic
flow with perturbed measurements and a stochastic flow. Each
filter only requires one ODE solve per measurement update.
After the ODE is solved at the particle mean, the pseudotime
time series is used to flow the rest of the particles. In the
ODE formulation, each particle undergoes a BRUF update in
parallel. The computational complexity of the update (post-
ODE solve) essentially matches that of comparable particle
flow filters; an EKF update is performed for each particle at
each update step.

The SDE formulation is more open-ended; like ODEs,
many solvers exist. We present an algorithm that uses Euler-
Maruyama with the pseudotime series from an ODE solver. We
also test the approach with a recently-introduced SDE solver,
Rejection Sampling with Memory (RSwM1). One potential
avenue for future work is the use of statistical linearization
instead of local linearization about each particle. If all the
particles move through the flow together, then statistical tech-
niques may be employed to compute the Kalman gain at each
step.

Our filtering results show that the ODE flow filter produces
the best estimation results for a difficult problem with chaotic
dynamics and a highly accurate nonlinear measurement. The
three filters introduced in this work outperform two existing
particle flow filters given the same average number of pseu-
dotime steps per update.

Section III shows that diffusion is not required to move
particles onto the the Bayesian posterior. Instead, by generat-
ing a set of perturbed measurements, the diffusion-free ODE
flow can produce a healthy distribution of particles over the
posterior distribution.

While efforts were made reduce the computational complex-
ity of the particle flow filters in this work (i.e., only performing
a single ODE solve at measurement time), in the future, we
would like to improve the efficiency of the ODE solution itself.
The covariance matrix must be integrated in pseudotime with
the state vector. This means that an entire covariance matrix



enters the ODE solver with the state vector, for a total of n+n2

terms.
A first obvious solution is only including the terms in

the lower or upper triangle of the covariance matrix, though
rebuilding the covariance matrix from these terms for each
solution step proved to be computationally burdensome. Surely
much more efficient solution methods exist. By reducing the
computational complexity of the ODE solution, we could
extend the particle flow filters proposed in this work to systems
with higher-dimensional state spaces.
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APPENDIX

In previous work, we used the information-form measure-
ment update to prove that the BRUF update matches the
Kalman update in the linear case [13], [14]. The information
state is

z = P−1x (64)

where P−1 is the information matrix; the inverse of the
covariance matrix. For linear systems, the information update
is

ẑ = z +HTR−1y

P̂−1 = P−1 +HTR−1H.
(65)

Applying the BRUF step αi to the nonlinear information
update, we can define the recursion

ẑ(i+1) = ẑ(i) + αiH̃
TR−1y

P−1
i+1 = P−1

i + αiH̃
TR−1H̃.

(66)

Using the same logic as (23)-(24), we can now write down
the differential equations:

ż = H̃TR−1y

Ṗ−1 = H̃TR−1H̃.
(67)

We return to the state space beginning with the information
matrix. If PP−1 = I , then

˙(PP−1) = ṖP−1 + P ( ˙P−1) = İ = 0. (68)

Then,
Ṗ = −P ( ˙P−1)P

= −PH̃TR−1H̃P.
(69)

For the state vector, x = Pz. Therefore,

ẋ = Ṗ z + P ż

= −PH̃TR−1H̃PP−1x+ PH̃TR−1y

= PH̃TR−1(y − H̃x)

(70)

Taking H̃x ≈ h(x), we recover (25)-(26).


