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Abstract—In the high-dimensional setting, Gaussian mixture
kernel density estimates become increasingly suboptimal. In
this work we aim to show that it is practical to instead use
the optimal multivariate Epanechnikov kernel. We make use
of this optimal Epanechnikov mixture kernel density estimate
for the sequential filtering scenario through what we term the
ensemble Epanechnikov mixture filter (EnEMF). We provide a
practical implementation of the EnEMF that is as cost efficient
as the comparable ensemble Gaussian mixture filter. We then
showcase that the EnEMF has a significant reduction in error
per particle on the 40-variable Lorenz ’96 system. We answer the
titular question, “are non-Gaussian kernels suitable for ensemble
mixture model filtering?” in the affirmative.

Index Terms—Non-linear Estimation, High-dimensional filter-
ing, Kernel Density Estimation, Epanechnikov Kernel

I. INTRODUCTION

State estimation [1] and data assimilation [2], [3] methods
restricted to propagating a single mean and a single covari-
ance are limited to dealing with near-linear near-Gaussian
scenarios. When dealing with highly non-linear dynamics and
measurements, these methods do not have robust convergence
guarantees and, in the worst case, actively fight against the
goal of estimating the uncertainty of the dynamics of interest.

The Gaussian sum filter (GSF) [4], [5] is capable of fully
representing almost all useful probability density functions
through the use of Gaussian mixture models (GMM) and the
Gaussian sum update. Fundamentally, it suffers from requiring
a near-Gaussian update of the covariances and requires sophis-
ticated splitting and merging techniques [6] in order to avoid
weight collapse in the components. This means that the GSF
has the potential to not behave well in the highly non-linear
setting.

On the other hand, particle filters [7] are capable of repre-
senting any probability density through a collection of sam-
ples. A sample-based representation of a probability density
is simpler than a GMM, though requires significantly more
particles to represent many probability densities, particularly
in the high-dimensional setting. The dominant roadblock to
the use of particle filters is that they require significant effort
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to avoid weight collapse or filter collapse by employing either
sophisticated resampling or particle flow techniques [8], [9].

A filter that bridges the gap between the two methodologies
is the ensemble Gaussian mixture filter (EnGMF) [10], [11],
[12], [13]. The EnGMF relies on a kernel density estimate
(KDE) to build a GMM representation of our prior uncertainty
from a particle-based propagation step, incorporates measure-
ment information into the posterior through the use of the
Gaussian sum update. GMMs are attractive for building KDEs
state estimation because of well-known “nice” properties of
the Gaussian distribution [14].

In the high-dimensional setting, however, GMMs for
KDE become progressively less ‘efficient’ as the dimension
grows. Kernel density estimates based on the Epanechnikov
([j@p5nj’e

>
tCnjIk5f]) kernel minimize the error with respect to

the underlying distribution of the particles. This work presents
an ensemble Epanechnikov mixture filter (EnEMF) that takes
advantage of the efficiency of the Epanechnikov kernel in order
to perform high-dimensional particle filtering.

This paper is organized as follows: section II provides
background on ensemble mixture model filtering, kernel den-
sity estimation, and motivation as to the superiority of the
Epanechnikov kernel. The EnEMF is described in section III,
with a practical implementation that makes use of the Gaus-
sian sum update. A numerical experiment on the 40-variable
Lorenz ’96 system is provided in section IV. Finally section V
provides closing remarks about why we believe the Epanech-
nikov kernel is suitable for ensemble mixture model filtering.

II. BACKGROUND AND MOTIVATION

Ensemble mixture modeling filtering, visually described
in fig. 1, combines four techniques for state estimation:
particle propagation, kernel density estimation, the mixture
model update, and resampling. Each one providing an essential
component that allows for accurate representations of the
“true” [15] posterior with a finite number of samples.

Particle propagation [3] allows for long-term propagation of
our knowledge about the state of a particular system through
highly non-linear dynamics with arbitrary precision. Formally,
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Fig. 1. Ensemble mixture model filtering diagram. Clock wise from the
left-most rectangle: given a collection of particles from the previous time,
(i) propagate to the current time, (ii) build a mixture model representing
the prior from the particles through kernel density estimation, (iii) update
the mixture model by making use of the measurements to create a mixture
model representing the posterior, and (iv) resample to create a new collection
of particles. This process is repeated until a desired time is reached or ad
infinitum.

assume that we are given a collection of N independently and
identically distributed samples,

Xk−1 = [x1, x2, . . . xN ] , Xk−1 ∈ Rn×N , (1)

from the n-dimensional probability distribution of interest at
time index k − 1. With abuse of notation, we can write their
propagation through some (discrete or continuous, stochastic
or deterministic) dynamics,

Xk = F (Xk−1), (2)

resulting in a collection of N particles at time index k.
Generally the dynamics F can incorporate some measure of
uncertainty through some type of process noise or measure of
model error, though for simplicity and without any real loss
of generality we ignore any such notions for the remainder of
this work.

The resulting particles can be used to represent our knowl-
edge about the state of a system through the use of sample
statistic, and, for the purposes of this work, can be used to
construct a representation of the distribution of interest at
time index k through the use of kernel density estimation
techniques [16]. If the distribution of interest is denoted by
f , the kernel density estimate of the distribution of interest
described by the ensemble eq. (1) is the mixture model,

f̃XN
(x) =

1

N

N∑
i=1

K(x ; xi,Ci), (3)

where K is a probability distribution known as a kernel
that is parameterized by the sample xi and by some matrix

factor Ci that represents a measure of local covariance that is
defined later. We assume the kernel K satisfies the following
properties,

K(x) ≥ 0 ∀x ∈ Rn∫
Rn

K(x)dx = 1,∫
Rn

xK(x)dx = 0,∫
Rn

xxTK(x)dx < ∞,

K(x;µ,H) :=
1√
|H|

K
(
H1/2(x− µ)

)
, ∀H > 0

∥x∥ = ∥y∥ =⇒ K(x) = K(y), ∀x, y ∈ Rn,

(4)

where the first and second properties properties ensure that
the Kernel is a probability density, the third property ensures
that the kernel is zero mean, the fourth property ensures
that the kernel has a finite (co-)variance, the fifth property
defines arbitrary shifting by mean and re-scaling by symmetric
positive definite matrices, and the sixth property ensures that
the kernel is radially symmetric.

Assume that we are given a nonlinear measurement of the
state,

y = h(x) + η, (5)

through some non-linear function h, and with unbiased, E[η] =
0, additive error that has covariance Cov[η] = R. For the
remainder of this work we make the common, but not required
assumption that the measurement likelihood is Gaussian,

p(y|x) = N (y ; h(x),R), (6)

though this assumption can be relaxed and generalized in
various different ways that are outside the scope of this work.

We want to leverage this general framework to perform
Bayesian inference, thus our goal is to find a representation
of the posterior distribution,

p(x|y) ∝ p(y|x)p(x), (7)

which in the case of the prior mixture model eq. (3) and
measurement likelihood eq. (6) is exactly described by the
mixture model,

p(x|y) =
N∑
i=1

wi K̃(x ; xi,Ci, y,R), (8)

where the new mixture components are given by

K̃(x ; xi,Ci, y,R) =

K(x ; xi,Ci)N (y ; h(x),R)∫
Rn K(x ; xi,Ci)N (y ; h(x),R) dx

,
(9)

with the weights,

wi ∝
∫
Rn

K(x ; xi,Ci)N (y ; h(x),R) dx, (10)

which are derived by simple convolution of distributions.



If our probability of interest f has known finite covariance,

Cov(f) = Σf < ∞, (11)

then the standard scalar parameterization [16] of the covari-
ances, Ci, in eq. (3), is given by,

Ci = h2Σf , i = 1, . . . , N, (12)

where h is known as the bandwidth parameter. In this work
we make use of the scalar parameterization to restrict the
parameters of our kernel density estimate to two choices: the
kernel K and the bandwidth h.

The most common type of kernel that is used is the (zero-
mean, unit-covariance-scaled) Gaussian kernel,

N (x) =
1

(2π)n/2
e−

1
2x

Tx, (13)

which has many nice properties that make it simple to use and
reason about. These very same properties make it extremely
attractive to the practitioner, and make its choice a thought-
terminating cliché—the mere invocation of the Gaussian ker-
nel assumption terminates reasoning without significant push-
back. We now show why the Gaussian kernel assumption
needs to be questioned—especially in the high-dimensional
setting.

A. Minimizing KDE Error

Let’s now put our focus on the goodness-of-fit of the
kernel density estimate eq. (3). The most common metric that
describes how well the KDE estimate approximates the target
distribution is the mean integral squared error (MISE),

MISE(f, f̃) = EXN

[∫
Rn

(
f(x)− f̃(x)

)2

dx

]
(14)

which describes the squared error over all the support of the
target distribution f averaged over all possible realizations of
N samples XN . Dealing with the MISE directly is intractable
for most kernels and distributions of interest, thus the approx-
imated MISE (AMISE),

AMISE(f, f̃) =
1

4
h4α2γ +N−1h−nβ, (15)

is frequently used instead. The new parameters of eq. (15) are
given by,

α =
1

n
tr

(∫
Rn

xTxK(x)dx

)
β =

∫
Rn

K(x)2dx,

γ =

∫
Rn

tr2
[
∇2

xf̂(x)
]
dx,

(16)

where f̂ is the scaling of f by Σf that is ameanable to
representation by the unscaled kernel K. The derivation of
the above can be found in [16]. If the target distribution
f̂ in eq. (16) is the unit-Covariance Gaussian, then the last
parameter simplifies to,

γ =
1

2n
√
π
n

(
1

2
n+

1

4
n2

)
, (17)

which—while not required to be defined for any of the
subsequent derivations—is the value that is used for the rest
of this work, as exploring alternatives is outside the current
scope.

Given an arbitrary kernel K we want create a kernel
density estimate that minimizes the AMISE eq. (15). In effect,
this means that we want choose the bandwidth parameter
in eq. (12) that is optimal in terms of the error. The following
result about the optimal bandwidth is from [16]:

Theorem II.1. The optimal bandwidth in eq. (12) that mini-
mizes the AMISE in eq. (16), is given by,

h =

[
βn

α2γN

] 1
n+4

, (18)

where n is the dimension of the system, N is the number of
samples and the rest of the parameters are defined by eq. (16).

We now go the other direction. Fixing the optimal band-
width to be eq. (18), we want to find the kernel that minimizes
the AMISE. Substituting the optimal bandwidth eq. (18) into
the AMISE error metric eq. (15) we get,

AMISE(f, f̃) =
(n+ 4)

4
γ

n
n+4︸ ︷︷ ︸

reference dist.

β

(
nβ

α2

)− n
n+4

︸ ︷︷ ︸
C(K)

N− 4
n+4︸ ︷︷ ︸

conv. rate

, (19)

where the first term is purely a function of the target distri-
bution (if known), or is a function of the mismatch between
the true distribution and a reference used to compute the term
γ. The third term in eq. (19) is the rate of converengece in
the number of samples N , which becomes slower and slower
as the dimension n increases. The term that we are interested
in is the second term, C(K), which is purely dependent on
the choice of kernel K. As the rate of convergence is sub-
linear, the scaling term C(K) plays a significant role in the
convergence of the kernel density estimation method. This
means that the choice of kernel is the sole choice that fully
determines the error of the KDE.

The kernel that minimizes C(K), is given by [17], [18] and
is the unit-covariance-scaled Epanechnikov distribution,

E(x) = n+ 2

2cn(n+ 4)
n+2
2

(n+4− xTx), xTx < n+4, (20)

where,

cn =
π

n
2

Γ
(
n
2 + 1

) , (21)

is the volume of a unit sphere in n dimensions. A visualization
of the Epanechnikov distribution eq. (20) compared to the
Gaussian distribution eq. (13) is presented in fig. 2.

As eq. (20) is the optimal kernel that minimizes the
AMISE eq. (19) given the optimal bandwidth, it is reasonable
to ask, just how much accuracy are we sacrificing when
we choose a suboptimal kernel? We can quantify the how
effective a given kernel is relative to the Epanechnikov kernel
by calculating the the efficiency [16] of an arbitrary kernel K,

eff(K) =

(
C(E)
C(K)

)n+4
4

, (22)
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Fig. 2. (a) Gaussian and (b) Epanechnikov distribution for n = 2 spatial
dimensions, mean of zero and identity covariance.

which describes a scaling of the effective ensemble size of the
kernel K with respect to the optimal Epanechnikov distribution
E . The power (n + 4)/4 represents the inverse of the rate
of convergence in eq. (19). In other words, this means that
the error using N samples and the kernel K is equivalent to
using N eff(K) samples and the kernel E . Conversely this also
means that the error of using the Epanechnikov kernel E with
N samples is equivalent to using the kernel K with N/ eff(K)
samples. Note that the efficiency eq. (22) is highly dependent
on the dimension n, thus in the worst-case the efficiency could
effectively be zero for a large enough n.

Before we give a closed form expression for the efficiency
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Fig. 3. Efficiency of the Gaussian kernel relative to the dimension n. Values
of the efficiency for non-integer dimensions are plotted for completeness.

of the Gaussian kernel, we have to derive a few constants for
the Gaussian eq. (13) and Epanechnikov eq. (20) kernels.

Lemma II.2. By trivial applications on basic calculus, for the
Gaussian kernel,

αN = 1, βN =
1

(2
√
π)n

, (23)

are the constants defined by eq. (16).

Lemma II.3. Again, by trivial applications on basic calculus,
for the Epanechnikov kernel,

αE = 1, βE =
2

cn
(n+ 2)(n+ 4)−

n
2 −1, (24)

are the constants defined by eq. (16).

We now have the tools necessary to derive the efficiency of
the Gaussian kernel eq. (13) for n-dimensional KDE.

Theorem II.4. The efficiency eq. (22) of the Gaussian kernel
is,

eff(N ) =
2n+2

(n+ 4)
n
2 +1

Γ
(n
2
+ 2

)
, (25)

Proof. This is a direct application of the constants in
lemma II.2 and lemma II.3 to eq. (22).

Corollary II.4.1. By simple application of elementary calcu-
lus rules, the efficiency of the Gaussian kernel in theorem II.4
tends towards zero as the dimension of the system n tends
towards infinity,

lim
n→∞

eff(N ) = 0. (26)

The efficiency of the Gaussian kernel is plotted in fig. 3.
Notice that the rate of decay of the efficiency is exponential,
and that for n = 40 the efficiency is well below 1%. This
means that the Gaussian kernel is highly inefficient in higher



dimensions, and that attempting to use the Epanechnikov
kernel might be cost-effective.

B. Sampling from a Epanechnikov distribution

Being able to sample from the Epanechnikov distribution is
important step for sampling from the approximated posterior.
Similar to eq. (4), we can write the Epanechnikov distribution
with mean µ and covariance Σ as

E(x;µ,Σ) =
1√
|Σ|

E
(
Σ− 1

2 (x− µ)
)
. (27)

It is known from [19] that the random variable,

ε = µ+Σ
1
2

√
(n+ 4)ηT,

T ∼ U(Sn−1), η ∼ β
(n
2
, 2
)
,

(28)

is a sample from the Epanechnikov distribution eq. (27) with
mean µ and covariance Σ. We slightly modify eq. (28) in
order to accomodate further modification later on. A sample
from the Epanechnikov distribution can be created using the
following procedure:

1) Sample a random s from the unit Gaussian distribution
N (0n, In×n),

2) project s onto the shell with radius
√
n+ 4, to get ŝ =√

n+4
∥s∥ s,

3) sample the beta-distributed, κ ∼ β(n/2, 2),
4) combine to get a sample ε = µ+Σ

1
2κŝ.

C. Ensemble Gaussian Mixture Filter

We now present the Ensemble Gaussian mixture filter,
which we subsequently generalize to make use of the optimal
Epanechnikov mixture.

Given an ensemble of N samples from some unknown prior
distribution,

X− =
[
x−
1 , x

−
2 , . . . , x

−
N

]
, (29)

first approximate the covariance of the distribution,

Σ̃
−
=

1

N − 1
X−

(
IN×N − 1

N
1N1T

N

)
X−,T , (30)

as a proxy to the known covariance in eq. (11).
Second, build KDE estimate of the distribution as in eq. (3),

f̃X−(x) =
1

N

N∑
i=1

N (x;x−
i , h

2
N Σ̃

−
), (31)

by making use of the covariance approximation in eq. (30) and
the optimal bandwidth hN defined by eq. (18) with constants
defined for the normal distribution in lemma II.2.

We can take advantage of the Gaussian mixture structure,
to perform an Gaussian sum update on each one of the
components to get an approximation of the posterior. In this
work we make use of the extended Kalman filter to perform

said update from the prior Gaussian mixture eq. (31) to an
approximation of the posterior,

x∼
i = x−

i −Gi

(
h(x−

i )− y
)
,

h2
N Σ̃

∼
i =

(
I−GiH

T
i

)
h2
N Σ̃

−
i ,

Gi = h2
N Σ̃−

i H
T
i

(
Hih

2
N Σ̃−

i H
T
i +Ri

)−1

,

wi ∝ N
(
y ; h(x−

i ), Hih
2
N Σ̃

−
i H

T
i +R

)
,

Hi =
dh

dx

∣∣∣∣
x=x−

i

,

(32)

with x̃i representing the mean of the ith posterior component,
h2
N Σ̃

∼
i representing its covariance, and wi its weight. Thus,

the Gaussian mixture,

f̃X+(x) =

N∑
i=1

wi N (x;x∼
i , h

2
N Σ̃

∼
i ), (33)

is an approximation to the posterior. Note that as the GMM
update eq. (32) is exact when the measurement h in eq. (5)
is linear, the measurement error η is Gaussian, and when the
prior mixture model is a Gaussian mixture.

The final step of the EnGMF is to resample from the
posterior approximation eq. (33) through the use of standard
techniques such as:

1) First sample from the probability mass function defined
by the weights {wi}Ni=1, to get a mode j,

2) then sample from the normal distribution defined by the
mode, N (x∼

j , h
2
N Σ̃

∼
i ),

3) repeat as many times as samples are required.
We make use of all of the machinery of the EnGMF to

generalize to a Epanechnikov kernel mixture.

III. ENSEMBLE EPANECHNIKOV MIXTURE FILTER

We now present the ensemble Epanechnikov mixture filter
as a generalization of the ensemble Gaussian mixture filter to
the more efficient Epanechnikov mixture model.

Just like the EnGMF, the first step of the EnEMF is to
find the statistical covariance eq. (30). The second step is to
perform kernel density estimation,

f̃X−(x) =

N∑
i=1

1

N
E(x;x−

i , h
2
EΣ̃

−
i ) (34)

but this time using the Epanechnikov distribution eq. (27) and
the Epanechnikov bandwidth from lemma II.3.

Given the eq. (34) the exact posterior distribution is given
by

f̃X+(x) =

N∑
i=1

wi Ẽ
(
x;x−

i , h
2
EΣ̃

−
i , y,R

)
, (35)

where the distribution above is of the form eq. (9),

Ẽ
(
x;x−

i , h
2
EΣ̃

−
i , y,R

)
∝ E(x;x−

i , h
2
EΣ̃

−
i )

· N (y ; h(x−
i ),R)

, (36)
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Fig. 4. A visual description of the approximated posterior Epanechnikov sampling procedure for one Epanechnikov mode. First, in the top left panel the
Gaussian component update from the prior to the candidate posterior is performed using the measurement likelihood with samples taken therefrom in the top
right panel. Next, in the bottom left panel the samples are projected onto the shell of the prior Epanechnikov component, and finally the projected samples
are randomly scaled in the bottom left panel.

which does not have a simple closed form representation. We
show later that it is possible to sample from eq. (36) by making
use of the Gaussian sum update,

x∼
i = x−

i −Gi

(
h(x−

i )− y
)
,

h2
EΣ̃

∼
i =

(
I−GiH

T
i

)
h2
EΣ̃

−
i ,

Gi = h2
E Σ̃

−
i H

T
i

(
Hih

2
E Σ̃

−
i H

T
i +Ri

)−1

,

Hi =
dh

dx

∣∣∣∣
x=x−

i

,

(37)

where the terms are almost identical to the EnGMF up-
date eq. (32) except for the bandwidth factor hE , and the
weights, which require special attention.

For the weights {wi}Ni=1 in eq. (35), we can (i) again use
the same weights defined in the Gaussian sum update eq. (32),
(ii) attempt to exactly compute the integral in eq. (10), or

(iii) approximate the integral through a closed form Gaussian
solution. In the authors’ experience, (i) does not produce
accurate results, and (ii) incurs a significant computational
cost in the high-dimensional setting, therefore (iii) is the most
reasonable option for now.

Observe that though the use of a Taylor series approximation
to the logarithm,

n+ 4− (x− µ)TΣ−1(x− µ) =

Ce−
1
2 (x−µ)T (n+4

2 Σ)
−1

(x−µ)T+h.o.t.,
(38)

where C is a constant factor that depends on n+ 4, meaning
that it will cancel, and the higher order terms we can choose
to discard.

Therefore by using the derivation in eq. (38) for the weights
it is possible to approximate the weights of the EnEMF update



as,

wi ∝ N (y ; h(x−
i ),Hi

sEh
2
E(n+ 4)

2
Σ̃−

i H
T
i +R), (39)

where sE is scaling factor to help taper the effect of under-
weighting. The hope, is that with an optimally tuned scaling
factor sE , the weight update approximation in eq. (39) should
approach the true mixture model weight update in eq. (10).
Importantly, the weight update in eq. (39) has the same compu-
tational cost as the weight update in the EnGMF eq. (32), and
leverages a very similar implementation—the only difference
involving a slightly modified covariance. As an additional
consideration the weight update in eq. (39) is compatible with
convergence of the EnEMF in the limit of particle number,
though a proof of this is ancillary to this work.

The most important step is the resampling procedure, as it is
the one that is most heavily modified from that of the EnGMF,
and relies on the Epanechnikov sampling procedure described
in section II-B. We can perform resampling from the EnEMF
posterior eq. (35) in the following way:

1) Generate a sample from the discrete distribution defined
by the weights {wi}Ni=1, which defines the mode j,

2) generate a sample from thejth mode of the Gaussian
distribution defined by the Gaussian sum update

u ∼ N (x∼
j , h

2
EΣ̃

∼
j ), (40)

3) project u onto the unit shell defined by the prior mode
E(x−

j , h
2
EΣ̃

−
j ),

s =
(
h2
EΣ̃

−
j

)− 1
2 (
u− x−

j

)
,

ŝ =

√
n+ 4

∥s∥
s,

(41)

to find the sample direction ŝ relative to the prior mode

mean x−
j , meaning that x−

j +
(
h2
EΣ̃

−
j

) 1
2

ŝ lies on the
boundary of the prior mode, then

4) sample the variable κ from the modified beta distribution
in the direction ŝ

κ ∼ 1

2
(n+ 2)zn−1(1− z2)

· N
(
y ; h

(
x−
j +

(
h2
EΣ̃

−
j

) 1
2

zŝ

)
,R

)
,

(42)

in the scalar variable 0 ≤ z < 1, through an inverse
CDF method,

5) and finally, combine with the prior mean and covariance
to get a sample

ε = xi +Σ
1
2κŝ. (43)

A visual interpretation of the resampling procedure can be
found in fig. 4.

Conjecture 1. The resampling procedure defined above is
exact when the measurement operator h is linear, and the
weights {wi}Ni=1 are not approximated.

A proof of the above is of future interest.

IV. NUMERICAL EXPERIMENT

The goal of the numerical experiment is to show that the
EnEMF has the potential to be a superior filter to that of the
EnGMF in the high-dimensional setting. We thus make use of
the 40-variable Lorenz ’96 equations,

x′
k = −xk−1(xk−2 − xk+1)− xk + F . . . , k = 1, . . . , 40,

(44)
where by the cyclic boundary conditions, x0 = x40, x−1 =
x39, and x41 = x1. The forcing is set to F = 8 to have a
chaotic system with a Kaplan-Yorke dimension of 27.1 and
13 positive Lyapunov exponents [20].

For the non-linear measurement operator we take a magni-
tude measurement of adjacent variables,

[h(x)]i =
√
x2
2i+1 + x2

2i+2, i = 1, . . . , 20, (45)

with an error covariance of R = 1
4I20.

For a 40 variable system the efficiency of the Gaussian
kernel is about 0.6%, meaning that for a density estimate with
N = 100 samples with the Epanechnikov kernel eq. (20),
a sample size of N = 14,484 would be needed with the
Gaussian kernel eq. (13), under an ideal scenario.

In order to account for the fact that the ensemble covari-
ance eq. (30) is not the true covariance eq. (11), we make
use of a standard covariance tapering technique in the data
assimilation literature, B-localization [2]. For all the filters
we take a Gaussian decorrelation function with a localization
radius of r = 4. More details about this technique can be
found in [2], [20].

As the EnEMF weight update is not exact, we test two
different choices of the scaling parameter sE in eq. (39),
namely sE = 1, which is the EnEMF with the full approximate
weight update, and sE = 1/2, which should provide a middle
ground between the EnEMF and the naive likelihood weights.

We additionally test against the ensemble Kalman filter
(EnKF) [21], [22], specifically the linearized Jacobian variant
described in [23], [24]. A heristic inflation [25] factor of
αinf = 1.01 is applied for stability of the EnKF. As the
EnKF makes use of only the first two statistical moments of
the ensemble, and provides an almost linear update, it is a
useful baseline for highly non-linear non-Gaussian sequential
filtering problems.

We run all algorithms for 192 independent Monte Carlo
simulations with ∆t = 0.2 time units between measurements,
corresponding roughly to a day in model time. The simulations
are run for 2200 measurements, discarding the first 200 to
account for spinup. The spatio-temporal root mean squared
error (RMSE) is used as the error metric for determining the
‘best’ algorithm for the given problem, given by,

RMSE(x+) =

√
1

|x|
∑
i

∥x̄+
i − xtrue

i ∥22, (46)

where the x̄+ is the collection of posterior mean estimates,
and xt is the collection of true states. The algorithms are all
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Fig. 5. Number of particles (N ) versus spatio-temporal RMSE for the Lorenz
’96 problem for the EnEMF (both with sE = 1 and sE = 1/2), EnGMF, and
the EnKF

run for a varying degree of particle number N in the range of
100 to 1000.

The results of the experiment are provided in fig. 5. As
can be seen, the linearized EnKF, which is an (almost) linear
filter is at an error plateau for all tested particle numbers.
The EnEMF reaches a significantly lower error plateau for
N = 400 particles, with the EnGMF requiring over about
N = 800. Additionally the EnEMF with sE = 1/2 reaches an
even lower error plateau than all the algorithms, at a cost of
slower convergence.

V. CONCLUSIONS

In this work we provide a theoretical derivation of the
ensemble Epanechnikov mixture filter, and shown that it
should outperform its cousin, the ensemble Gaussian mixture
filter in the high-dimensional setting. We derive a practical
implementation of the EnEMF that leverages the computa-
tional machinery of the EnGMF, such that the EnEMF can be
implemented without significant computational overhead.

We additionally show through a numerical experiment that
the EnEMF—while not attaining the theoretical error leaps
over the EnGMF—still requires half the particles for the same
level of error for a 40-variable problem. These results provide
a promising path forward for making use of the Epanechnikov
kernel in high-dimensional particle filtering applications.

Future work will focus on (i) proving that the EnEMF
converges, in distribution, to exact Bayesian inference, and
(ii) on providing more robust empirical results for filtering in
the high-dimensional setting.
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