
(Preprint) AAS 24-391

ADAPTIVE MARS ENTRY GUIDANCE WITH ATMOSPHERIC
DENSITY ESTIMATION

Felipe Giraldo-Grueso*, Andrey A. Popov† and Renato Zanetti‡

Mars entry requires precise guidance algorithms to steer the entry vehicle to a
specific target location. Uncertainty in atmospheric density can degrade the pre-
diction step in numerical predictor-corrector guidance methods, which aim to find
the optimal bank angle for the vehicle, thus decreasing targeting accuracy. This
work addresses this challenge by introducing a new adaptive guidance algorithm
based on a recently proposed navigation solution. The navigation solution, orig-
inally designed in an open-loop fashion, estimates atmospheric density using an
online-adapting neural network to correct for discrepancies between the onboard
nominal and true atmospheric densities. The guidance algorithm uses this neural
network, coupled with a simple exponential model, to propagate the current state
to a final target location in the prediction step of the Fully Numerical Predictor-
Corrector Entry Guidance (FNPEG) framework. By incorporating this adaptive
model, the accuracy of the prediction step is enhanced, allowing for more precise
guidance of the vehicle toward its target. The proposed method, when compared
to using only an exponential model for prediction, shows improved targeting ac-
curacy. Furthermore, the navigation scheme is shown to maintain consistency in
the presence of control inputs.

INTRODUCTION
The primary source of uncertainty during Mars entry is the limited knowledge of the true at-

mospheric density.1 Discrepancies between the onboard models and the true density can result in
inaccurate navigation estimates, increasing the difficulty of targeting a final state through guidance
algorithms. Since future robotic and human Mars exploration missions require substantial improve-
ments in landing accuracy due to increased landed mass needs,2 the development of precise entry
navigation and guidance is crucial for their success. Therefore, addressing the uncertainty in atmo-
spheric density can bring substantial improvements to future missions.

Numerical predictor-corrector (NPC) methods are commonly used to address onboard guidance
problems. In these types of algorithms, the current state is numerically integrated to a final state
(prediction step), and a control input is determined to minimize the error between the final state and
a target state (correction step). Different approaches have been applied to entry applications, such
as PredGuid3, 4 and the Fully Numerical Predictor-Corrector Entry Guidance (FNPEG).5, 6 FNPEG
is a bank control guidance algorithm that decouples the longitudinal and lateral channels to target a
desired location by adjusting the bank angle of entry vehicles ranging from low to high lift. Since
vertical lift is a function of the bank angle, adjusting it enables the vehicle to modify its range by
flying through denser or less dense atmospheric conditions.7
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While NPCs have been shown to be suitable for entry applications,5, 6 this type of framework
has limitations. A significant limitation is that the prediction step assumes the parameters in the
dynamic models are known. This assumption can make the prediction step inaccurate in uncertain
environments, thus resulting in high targeting errors. Therefore, the application of NPCs for Mars
entry requires careful consideration of potential modeling errors. A way to address uncertain envi-
ronments is to use adaptive estimation. For example, if the navigation scheme incorporates adaptive
estimation techniques, the prediction step in the NPCs can leverage the adapted models instead of
relying solely on nominal profiles. In previous works, Kalman filters8 and recursive neural net-
works9 have been used for the estimation of atmospheric density, demonstrating that incorporating
corrected nominal models in the prediction step can increase overall targeting accuracy.

A new method for adaptive filtering for Mars entry was recently developed, using a neural net-
work to estimate atmospheric density and a “consider” analysis to account for its uncertainty.10 In
this approach, a neural network is trained offline on an exponential atmospheric density model, and
its weights and biases are adapted online to account for discrepancies between the true atmosphere
and the onboard model. The adaptation step is posed as a maximum likelihood problem, aiming to
minimize measurement innovations by solving for optimal network parameters at each time step.
Although this approach was shown to successfully quantify uncertainty in both state estimates and
atmospheric density, its derivation was conducted in an open-loop manner, disregarding control in-
puts. This work builds upon this new estimation technique by developing guidance commands using
the adapted atmospheric estimate and testing the consistency of the filter to control inputs.

The purpose of this work is two-fold. Firstly, we leverage the success of the navigation solution
presented in previous work,10 by incorporating the adaptive model into the prediction step of FN-
PEG. This integration enables FNPEG to improve targeting accuracy by using the adaptive model
rather than relying on a nominal profile. Secondly, since the navigation solution was developed in
an open-loop fashion, this work validates the consistency of the estimation technique with control
inputs. By closing the loop and incorporating bank angle control into the simulation, we demon-
strate that the filter maintains consistency and the guidance algorithm achieves increased targeting
accuracy.

MARS ENTRY

The entry phase constitutes the longest segment of the entry, descent, and landing (EDL) se-
quence, thus playing a crucial role in determining landing precision. In Mars EDL, the entry phase
begins approximately 125 km above the Martian surface, when the vehicle first enters the atmo-
sphere, and concludes with parachute deployment at roughly 10 km above the surface.11 This
section summarizes the equations of motion governing hypersonic flight and presents the available
sensors used during the entry phase in the recently developed navigation solution.10

Dynamics

During the entry phase, the behavior of entry vehicles is commonly described using a three
degrees-of-freedom (3-DOF) model.12–14 Therefore, this work adopts a point mass approxima-
tion, disregarding attitude dynamics. The position is described using the planet-centric radius (r),
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latitude (ϕ), and longitude (θ),6, 11, 15

ṙ = v sin(γ), (1)

ϕ̇ =
cos(γ) cos(ψ)

r
v, (2)

θ̇ =
cos(γ) sin(ψ)

r cos(ϕ)
v. (3)

The magnitude of the velocity vector (v), flight path angle (γ), and heading azimuth (ψ) are
defined relative to the planet surface, based on the vehicle-carried local horizontal frame. The flight
path angle is negative-down, and the heading azimuth is defined in the horizontal plane with 0◦

pointing north and 90◦ pointing east. In the case of short-duration flights such as the entry phase in
EDL, planetary rotation effects may be considered negligible.11 Therefore, by omitting planetary
rotation terms and assuming a first-order gravity model, the velocity equations simplify to:15

v̇ = −1

2
ρ (·) v2CdS

m
− µ

r2
sin(γ), (4)

γ̇ =
1

v

[
1

2
ρ (·) v2ClS

m
cos(σ)− µ

r2
cos(γ) +

v2

r
cos(γ)

]
, (5)

ψ̇ =
1

v

[
1

2
ρ (·) v2ClS

m

sin(σ)

cos(γ)
+
v2

r
cos(γ) sin(ψ) tan(ϕ)

]
, (6)

where σ represents the bank angle. The lift (L) and drag (D) accelerations are defined as:15

D =
1

2
ρ (·) v2∞

CdS

m
, (7)

L =
1

2
ρ (·) v2∞

ClS

m
. (8)

Here, v∞ = v − W , with W denoting wind velocity, Cd is the drag coefficient, Cl is the lift
of the vehicle, S represents the area of the vehicle in direct contact with the atmosphere and m is
the mass of the vehicle. The term ρ(·) represents atmospheric density, indicating its dependence on
different variables such as altitude. Considering the high speeds involved in the entry phase, wind
velocities (v/W ≪ 1) are significantly lower than the velocity of the vehicle making v∞ ≈ v a
valid assumption.16

Onboard Sensors
For this work, only sensors onboard the spacecraft are used, including an inertial measurement

unit (IMU), a cluster of pressure sensors, and a suite of thermocouples. These sensor selections are
based on configurations used in previous Mars EDL missions.11, 17–19

The IMU captures non-gravitational accelerations experienced by the entry vehicle, measured
relative to the body frame:

ãb = T b
va

v + ηa, (9)

where ηa ∈ R3 denotes measurement noise, T b
v represents the transformation matrix from the

velocity frame to the body frame, and av ∈ R3 comprises non-gravitational accelerations in the
velocity frame, defined as:11

av =
[
−D L sin (σ) L cos (σ)

]T
. (10)
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The dynamic pressure measurement, considering an aggregate measurement from all pressure
sensors, is expressed as follows:11

q̃ =
1

2
ρ (·) v2 + ηq, (11)

where ηq ∈ R is measurement noise.
The thermocouples are expected to measure real-time heating rates. The measured convective

heating rate follows the Sutton-Graves relation:20, 21

˜̇Qs = k

(
ρ (·)
Rn

) 1
2

v3 + ηQ̇s
, (12)

where k = 1.9027× 10−4 kg1/2m−1, Rn denotes the vehicle nose radius, and ηQ̇s
∈ R represents

measurement noise. While the precision and availability of the measurements may vary with flight
regime, this work assumes available measurements throughout the entire entry phase.

NAVIGATION
This section provides a summary of the previous navigation work,10 where a filter that uses a

neural network within a maximum likelihood framework to adapt to fluctuations in atmospheric
density was developed. This summary is included for this work to be self-contained, but readers
are encouraged to refer to the original paper for a more detailed explanation. This adaptive filtering
technique consists of two stages: offline training and online adaptation.

Offline Training
In the offline training portion, a neural network is trained to predict atmospheric density as a

function of the planet-centric radius, such that,

ρ̂ = NN (r, ξ), (13)

where the parameters of the network are given by ξ. To train the network, synthetic data is gener-
ated by simulating Mars entry dynamics using a least-squares exponential fit (ρexp) obtained from
different Mars-GRAM profiles. Using this density model, various entry trajectories are simulated,
and planet-centric radius and atmospheric density are recorded at a predefined sampling rate. Since
the least-squares exponential fit does not accurately represent the true atmospheric density (which,
in this work, is represented by the Mars-GRAM profiles), the neural network is adapted online to
better approximate the true density.

Online Adaptation
Once the neural network has been trained, an online adaptation scheme is used for the onboard

estimation. For this work, the state to be estimated is defined as:

x = [r ϕ θ v γ ψ B L/D]T , (14)

where the inverse of the ballistic coefficient (B) and the lift-to-drag ratio (L/D) are modeled as a
random walk.11 The available measurement vector is,

y =
[
ãb q̃ ˜̇Qs

]T
. (15)

In this filtering scenario, the chosen estimator is the Unscented Schmidt-Kalman filter (USKF).22, 23

This selection removes the requirement for partial derivatives in both time propagation and measure-
ment update. Furthermore, this filter uses a consider analysis to account for the uncertainty in the
atmospheric density estimate, which is not part of the filter’s state space.
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Time Propagation The iterative process begins with the previous time posterior estimate of the
state x̂+

a,k−1 and covariance P+
a,k−1, both of which have been augmented to incorporate the consider

parameter. The augmented state and covariance are represented as:

x̂+
a,k−1 =

[
x̂+T
k−1 ĉ+k−1

]T
, (16)

P+
a,k−1 =

[
P+
k−1 C+

k−1(
C+
k−1

)T
P+
c,k−1

]
, (17)

where P+
c,0 is user-defined, with initial values of ĉ+0 = 1 and C+

0 = 0nx×1. Sigma points are then
computed based on these augmented estimates. These sigma points are propagated to the next time
step by integrating the dynamics and using the neural network to estimate the density. With Fa(x, ρ)
representing the flow of the differential equations presented in the Dynamics section and the flow of
the consider parameter modeled as an exponentially correlated random variable (ECRV)24 centered
at one,

X̂−(i)
k = Fa

(
X̂+(i)

k−1 ,P
(i)
k−1

)
, (18)

P(i)
k−1 = X̂ (i)+

k−1(nx + 1) · NN
(
X̂+(i)

k−1(1), ξk−1

)
, (19)

where X̂+(i)
k−1 represents the i-th previous posterior sigma point, X̂+(i)

k−1(nx + 1) is the consider

parameter at each sigma point, X̂+(i)
k−1(1) is the estimated planet-centric radius at each sigma points

and ξk−1 are the current weights and biases of the neural network. After propagating, a prior
estimate and covariance are calculated by a weighted sum of the propagated sigma points.25

Maximum Likelihood Optimization Once a measurement (yk) is obtained, a loss function is con-
structed using the measurement log likelihood,

L (ξk−1) =
[
yk − h

(
x̂−
k , ρ̂k−1

)]T
R−1

[
yk − h

(
x̂−
k , ρ̂k−1

)]
, (20)

ρ̂k−1 = NN
(
x̂−
k (1), ξk−1

)
, (21)

where h represents the equations presented in the Onboard Sensors section. Therefore, to find the
optimal network parameters, a minimization problem can be constructed as,

ξk = argmin
ξk−1

L (ξk−1) . (22)

Since this problem deals with the optimization of the parameters of a neural network, back-
propagation is used to compute the corresponding gradient. Furthermore, the Adam optimizer26 is
used to minimize the loss function.

Measurement Update Once the adapted parameters of the neural network have been obtained,
sigma points are calculated around the prior estimate using the augmented and propagated state and
covariance. These prior sigma points are then used to compute a set of expected measurements
through the measurement model, incorporating the adapted parameters of the network. These pre-
dicted measurements are perturbed slightly by the sigma points of the consider parameter to address
uncertainties in the atmospheric density,

Ŷ(i)
k = h

(
X̂−(i)

k ,P(i)
k

)
, (23)

P(i)
k = X̂−(i)

k (nx + 1) · NN
(
X̂−(i)

k (1), ξk

)
. (24)
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Afterward, the predicted measurement mean, covariance, and cross-covariance with the state
are computed to perform a Schmidt-Kalman update, where only the state is updated, while the
propagated consider parameter remains unchanged.22–24 As presented, the filter is independent of
bank control inputs, eliminating the need for retraining in scenarios such as closed-loop simulations
or when adopting different bank angle profiles.

GUIDANCE

Achieving high targeting accuracy during entry is fundamental for the subsequent descent and
landing phases. Bank control has been used as a guidance strategy for maneuvering the vehicle
during entry. While various guidance algorithms have been proposed, one of the most adopted
methods is the Fully Numerical Predictor-Corrector Entry Guidance (FNPEG), proposed by Lu.6

This section presents a summary of FNPEG.

Fully Numerical Predictor-Corrector Entry Guidance

FNPEG is an entry guidance algorithm that determines the optimal bank angle of an entry vehicle
given a final target state.6 As previously mentioned, vertical lift is determined by the bank angle.
Therefore, adjusting the bank angle allows the vehicle to modify the range covered, either by in-
creasing or decreasing it to fly through denser or less dense atmospheric conditions.7 FNPEG uses
an NPC framework to calculate the magnitude of the bank angle, aiming to minimize the range-
to-go along the great circle connecting the final location of the vehicle and the target location, at
a set final energy. In FNPEG, the longitudinal and lateral channels are decoupled, meaning that
the magnitude of the bank angle is calculated based only on the longitudinal equations. Once the
magnitude of the bank angle is determined, the lateral channel determines the correct sign to bound
the lateral error within a user-specified threshold.6

Longitudinal Channel Under the assumption that the lateral error is small, the magnitude of the
bank angle is determined by minimizing the final range-to-go from a specified target latitude and
longitude ϕ∗, θ∗. The final range-to-go is obtained by integrating the current state up to the final
normalized energy e∗ (prediction step), predetermined by a reference trajectory,

e∗ =
1

r∗n
− v∗n

2
, (25)

where r∗n and v∗n are the normalized target planet-centric radius and velocity, respectively. In this
work, to calculate the final range-to-go, the reduced and normalized longitudinal equations are
integrated with energy as the independent variable, such that:5

drn
de

=
sin (γ)

Dn
, (26)

dγ

de
=

1

Dnv2n

[
Ln cos (σ) +

(
v2n − 1

rn

)(
cos (γ)

rn

)]
, (27)

ds

de
= −cos (γ)

rnDn
, (28)
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where vn =
√
2 (1/rn − e) and s is the range-to-go. The normalized variables are defined as:

rn =
r

r♂
, (29)

vn =
v

√
r♂g♂

, (30)

Ln =
L

g♂
, (31)

Dn =
D

g♂
, (32)

which follows from normalizing time by
√
r♂/g♂. For these equations, r♂ refers to the mean

radius of Mars and g♂ is the gravitational acceleration at r♂. Although using the full 3-DOF dy-
namics in the longitudinal channel could improve accuracy, in short-range missions, the difference
between using the full 3-DOF equations and the longitudinal equations is small.6 With this setup,
the bank angle is found by minimizing the square of the final range-to-go sf (correction step),

σ∗ = argmin
σ

1

2
sf (e

∗, σ)2 . (33)

For this work, the parametrization of the bank angle profile in the prediction step is kept constant
(σ0 = σf , following the notation by presented Lu5, 6) to reduce the number of tuning parameters in
the algorithm. The original FNPEG work minimizes (33) using the Gauss-Newton algorithm, where
the first derivative is computed via numerical differentiation, with subsequent iterations using the
secant method.5, 6 In this work, a more robust alternative, pattern search,27 is used to minimize this
function, as the focus of this work is on adaptivity rather than optimization techniques.

Lateral Channel The longitudinal channel determines the magnitude of the bank angle since the
longitudinal equations are only a function of the cosine of this angle. To determine the correct sign
of the bank angle, the lateral logic described by Smith28 is adopted. Once the magnitude of the bank
angle is determined, the current state is integrated over time using the full 3-DOF equations until
reaching the final target energy, considering both positive and negative solutions for the bank angle.
Once the final state is obtained for both solutions, the final crossrange error is calculated for each.
Let χ+

f represent the final crossrange error for the solution integrated with the positive bank angle
and χ−

f represent the final crossrange error for the solution integrated with the negative bank angle.
Then, if the ratio of the crossrange errors is greater than a threshold K, such that,∣∣∣∣∣χ

+
f

χ−
f

∣∣∣∣∣ > K, (34)

a bank reversal is commanded. The threshold is designed to be,

K =

∣∣∣∣∣ χ
+
f

χtol

∣∣∣∣∣
1/ni

, (35)

where χtol is the final crossrange tolerance and ni is the total number of bank reversals left for the
trajectory.

Once the magnitude and sign of the bank angle have been determined, the vehicle flies that
bank angle until the next guidance call, where the same process is repeated. This continues until the
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vehicle reaches the final energy. Figure 1 illustrates the longitudinal and lateral channels in FNPEG,
where the algorithm aims to minimize the final range-to-go while maintaining the final crossrange
error within a specified tolerance.

Figure 1. Longitudinal and lateral channels in FNPEG.

Propagating the Trajectory The guidance solution described involves propagating the current
state estimate to a final state defined by the target energy. Therefore, it is important to explain how
this process is conducted in this work. The neural network used in the navigation filter is consis-
tently being adapted to appropriately fit the atmospheric density within a local region of the filter’s
current state. In contrast, the exponential fit, used to train the initial neural network, is relatively
precise at lower altitudes, as the exponential fit inherently aims to minimize errors in this region.
Therefore, the novelty of this work relies on the atmospheric density used for propagating the guid-
ance trajectories. The prediction step (and lateral channel propagation) uses a linear combination of
the neural network output and the exponential model, formulated as follows,

ρ (r, e) = α (e)NN (r, ξ) + [1− α (e)] ρexp (r) , (36)

where α is an exponentially decaying factor with respect to energy defined as,

dα

de
= −κ α

vn
, (37)

with κ controlling the exponential decay rate. For every propagation α(ek) = 1, indicating that
α always starts equal to one at the current energy. This implies that a high value of κ will result
in a very rapid exponential decay of α, indicating that the guidance algorithm will rely more on
the exponential atmospheric model than on the neural network. Conversely, lower values of κ will
make the guidance algorithm to trust the neural network for a longer duration along the propagation
of the trajectory.

RESULTS AND DISCUSSION
To evaluate this new adaptive guidance scheme, a comprehensive Monte Carlo testing approach

is used. This involves simulating 1000 different trajectories where the state is estimated via the pre-
sented navigation scheme, and guidance commands are calculated using FNPEG and the adaptive

8



density model. Each true trajectory is simulated using an independent and distinct Mars-GRAM
density profile. Since Mars-GRAM trajectories provide density at discrete altitudes, trajectory
points are interpolated using a cubic spline to determine density values at the queried altitude.

It is important to note that, the least squares exponential model used to train the neural network
offline and used to propagate the guidance trajectories, is a fit to different Mars-GRAM profiles
that are not used in the Monte Carlo testing. In both cases, however, the Mars-GRAM profiles are
generated by setting the density and wind random perturbations to 1, which represent a standard
deviation ranging from 2% to 45% of the unperturbed mean.

Monte Carlo Settings

This work uses the same Monte Carlo settings as detailed in the previous work,10 with the only
difference being that the vehicle is given slightly more lift to improve controllability. The initial con-
ditions, as outlined in Table 1, correspond to the entry conditions for the Mars Science Laboratory
(MSL).

Table 1. Entry conditions for the true trajectories

Parameter Value Standard Deviation (3σ)
r0 (m)29 3.5222× 106 3.2066× 101

ϕ0 (deg)29 −0.3919× 101 7.8100× 10−4

θ0 (deg)29 1.2672× 102 3.6700× 10−4

v0 (m/s)29 6.0833× 103 2.6059× 10−2

γ0 (deg)29 −1.5489× 101 4.0000× 10−4

ψ0 (deg)29 9.3206× 101 2.6800× 10−4

B0 (m2/kg)11, 30 7.1000× 10−3 4.8000× 10−3

L0/D0 (n.d.) 2.7000× 10−1 1.5178× 10−1

The statistical properties of process and measurement noise are presented in Tables 2 and 3 re-
spectively. The consider parameter is modeled as an ECRV centered at one with τ = 5, Pss =
1×10−3, and an initial covariance of Pc,0 = 1×10−10. Additionally, for each simulated trajectory,
the angle of attack remains constant at α = −17◦.

Table 2. Process noise statistics
Parameter Standard Deviation (3σ)
r (m) -
ϕ (deg) -
θ (deg) -
v (m/s) 3× 10−1

γ (deg) 4× 10−6

ψ (deg) 4× 10−7

B (m2/kg) 1× 10−5

L/D (n.d.) 3× 10−5
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Table 3. Measurement noise statistics
Parameter Standard Deviation (3σ)
ãb (µg)14 1× 102

q̃ (% of reading)17 1
˜̇Qs (% of reading) 1

The target final state is obtained by propagating a nominal trajectory using the full 3-DOF equa-
tions with a randomly selected Mars-GRAM profile. The nominal trajectory is integrated using a
constant bank angle of σ = 50◦ (reversing the sign when 2500 m/s ≤ v(t) ≤ 5500 m/s), until a final
velocity of vf = 1100 m/s is reached. This velocity marks the transition from range control to head-
ing alignment.31 Additionally, this targeting state is selected so that it is reachable by the guidance
algorithm if no navigation errors are considered, and the true atmospheric density is known.

Table 4. Target final state

Parameter Value
r∗f (m) 3.4167× 106

ϕ∗f (deg) −0.4385× 101

θ∗f (deg) 1.3726× 102

v∗f (m/s) 1.1000× 103

Guidance Algorithms
To assess the effectiveness of the adaptive guidance algorithm, three different algorithms are

tested and compared.

• The first algorithm, referred to as TG (True Guidance), has access to the true vehicle state
and the true atmospheric density. This means that no navigation errors are considered. This
algorithm serves as a baseline for the best achievable performance.

• The second algorithm, referred to as GEXP (Guidance with Exponential Model), uses the
state estimates from the navigation filter but employs only the exponential density model in
the prediction step of FNPEG and the crossrange calculations (i.e. α = 0∀ e in (36)).

• The third algorithm, referred to as GADA (Guidance with Adaptive Model), uses the state
estimates from the filter and the adaptive density model for the prediction and crossrange
calculations as in (36).

In each guidance algorithm, for a more realistic scenario, the maximum rate of change of the
bank angle is set to 15◦/s. In addition, FNPEG is called at a frequency of 1 Hz once the sensed
acceleration is greater than 0.2 times Earth’s gravity, or roughly 0.53 times Mars gravity (||ãb|| >
1.96 m/s2).31, 32 Before range control starts, the vehicle flies at a constant bank angle of 50◦. For
crossrange calculations, the final crossrange tolerance is set to χtol = 0.0075◦, and the maximum
desired number of bank reversals is n = 3.

Monte Carlo Results
To compare the three solutions, the final crossrange error (χf ), downrange error (drf ) and abso-

lute range-to-go (|sf |) are used. The final crossrange error is calculated as:

sin (χf ) = − sin (ψf ) [sin (ϕ
∗) cos (ϕf ) cos (∆θ)− cosϕ∗ sin (ϕf )]

− cos (ψf ) cos (ϕf ) sin (∆θ) ,
(38)
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where ∆θ = θ∗ − θf . To calculate the final downrange error, the following equations are used:

sin (µ) = cos(ψf ) [sin(ϕ
∗) cos(ϕf ) cos(∆θ) + cos(ϕ∗) sin(ϕf )]

+ sin(ψf ) cos(ϕf ) sin(∆θ),

cos (µ) = cos(ϕ∗) cos(ϕf ) cos(∆θ) + sin(ϕ∗) sin(ϕf ),

drf = arctan 2 (sin (µ) , cos (µ)) .

(39)

And the final absolute range-to-go is calculated as:

|sf | = arccos(sin(ϕ∗) sin(ϕf ) + cos(ϕ∗) cos(ϕf ) cos(∆θ)). (40)

It is important to note that the final absolute range-to-go, as calculated, will only yield positive
values. Therefore, to gauge trajectory overshooting, the downrange error serves as a more informa-
tive metric. Furthermore, since all these angles are expressed in radians, to quantify the distance
dispersion, these quantities can be multiplied by the mean radius of Mars.

Figure 2 illustrates the final targeting plots (at the final target energy) for the three previously
mentioned guidance algorithms. The crosses show the mean values, and the ellipses show the
3-σ error bounds. For this specific figure, κ = 0.5 for GADA. As expected, the true guidance
solution achieves the best targeting results, concluding the trajectory with minimal crossrange and
downrange errors. The results obtained with the adaptive guidance exhibit higher errors but remain
lower than those obtained with the guidance algorithm using only the exponential density model.
This is further evident as the targeting ellipse for GADA lies entirely within a 2.5 km radius of the
target position, whereas the targeting ellipse for GEXP expands up to a 5 km radius. Table 5 shows
the final mean downrange and crossrange errors along with their standard deviation.

-6 -4 -2 0 2 4 6

Downrange (km)
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-2

0

2

4

C
ro

ss
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n
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m

)
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GADA
TG

Figure 2. Crossrange error vs. downrange error for the three guidance algorithms.
The crosses represent the mean, and the ellipses show the 3-σ error bounds.
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Table 5. Final downrange and crossrange errors

Algorithm d̄rf (km) σ (drf) (km) χ̄f (km) σ (χf) (km)
GEXP 0.2126× 101 7.0784× 10−1 9.7219× 10−1 5.5486× 10−1

GADA 2.2858× 10−1 4.8578× 10−1 4.2985× 10−1 6.3682× 10−1

TG −1.5576× 10−1 1.9885× 10−1 8.1747× 10−2 2.7434× 10−1

Figure 3 shows the final absolute range-to-go histograms for the three guidance solutions. As
in Figure 2, for this figure, κ = 0.5 for GADA. The true guidance exhibits the best performance,
with a final absolute range-to-go approaching zero. Similar to the crossrange and downrange plots,
the final absolute range-to-go for the adaptive guidance is closer to zero than that obtained with the
guidance algorithm using the exponential model. These results indicate that the adaptive density
model provided to the guidance algorithm by the navigation filter better quantifies the true den-
sity. Consequently, the prediction step and crossrange calculations are more accurate, enabling the
control inputs to guide the vehicle more precisely toward the target.
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Figure 3. Final absolute range-to-go for the three guidance algorithms.

As the results obtained with GADA are a function of the exponential decay parameter in (36),
it becomes important to study the impact that this parameter can have on the final errors. Fig-
ure 4 shows the final targeting plots for different values of κ, and Figure 5 shows the final absolute
range-to-go for different values of κ. As previously mentioned, a high value of κ indicates a fast
exponential decay of α, meaning that the guidance algorithm will trust the exponential atmospheric
model more than the neural network. Lower values of κ make the guidance algorithm trust the
neural network for longer in the trajectory. As it can be seen from the figure, κ = 50 yields very
similar results to those obtained using the exponential model only. In comparison, by increasing κ,
the error ellipses tend to move towards the results obtained with TG. These results show that the
information given by the neural network to the guidance algorithm is valuable and enhances the
targeting performance.
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Figure 4. Crossrange error vs. downrange error for different values of κ.
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Figure 5. Final absolute range-to-go for different values of κ.

As mentioned earlier, the navigation architecture was previously developed without considering
any control inputs to the system.10 This current work serves as a sanity check to verify the filter’s
consistency when its state estimates are used for guidance. Figure 6 illustrates the estimation error as
a function of time. While only 50 Monte Carlo runs are shown, the sample mean, filter covariance
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and sample covariance are calculated using every run. As it can be seen, the estimates are very
close to zero mean, and the filter’s predicted covariance accurately matches the sample covariance
of the Monte Carlo runs. These error plots closely resemble those presented in the previous work,10

although there is a higher estimation error with the heading azimuth, which stems from the fact that
the bank angle is constantly changing. Regardless, this demonstrates that the estimation architecture
presented in previous work remains consistent in a closed-loop simulation.

Figure 6. Estimation error as a function of time. The gray lines show 50 Monte Carlo
trajectories out of the 1000 runs.

CONCLUSIONS
In this work, a new adaptive guidance algorithm is presented. This algorithm combines the adap-

tive neural network density model from a recently developed navigation solution10 with a simple
exponential model to provide a better atmospheric density approximation for the prediction step in
FNPEG. The neural network is continually adapted to accurately represent the atmospheric density
within the local region of the filter’s current state, while the exponential model inherently has low
errors at low altitudes. Therefore, the prediction step and lateral channel propagation in FNPEG use
a weighted linear combination of the neural network output and the exponential model. In proxim-
ity to the current state, the density from the neural network is given more weight, whereas at lower
altitudes, the density from the exponential model is given a higher weight.

The proposed algorithm was tested through a Monte Carlo analysis using different atmospheric
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profiles sampled from Mars-GRAM. The new adaptive guidance algorithm was compared with
FNPEG using only the exponential model. The results showed that using the linear combination
of the neural network and the exponential model increased targeting accuracy. Specifically, every
trajectory using the linear combination ended within a 2.5 km radius of the target final location,
while trajectories using only the exponential model had errors of up to a 5.0 km radius. The new
algorithm closely approached the baseline performance given by running FNPEG with no navigation
errors and using the true atmospheric density. Additionally, the new navigation solution was tested
in a closed-loop scenario, demonstrating that it can be used with control inputs without significantly
affecting its performance.
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