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ATTITUDE ESTIMATION OF PLANAR ROTATIONS USING
REDUNDANT GYROSCOPES

Andrea Rigato*, Renato Zanetti†

Accurate heading angle estimation is essential for autonomous robotic navigation,
particularly in scenarios where external reference signals such as GPS are unavail-
able. Traditional approaches rely on a single gyroscope for propagating the head-
ing angle, while redundant gyros are used solely for fault detection and isolation.
Although effective for fault tolerance, this approach underutilizes available sensor
data, potentially limiting estimation precision. This paper proposes two methods
for fully exploiting redundant gyroscope measurements to enhance heading angle
estimation in planar environments. The first method uses a single gyroscope for
state propagation while incorporating additional gyros in the update step. The sec-
ond method computes an average angular velocity across all gyroscopes and uses
it for propagation. To preserve the observability of individual gyro biases, critical
for fault detection, a state transformation is introduced, ensuring that only one bias
influences the propagated state while the others appear in the measurement resid-
uals. It is shown that the two methods are mathematically equivalent. Numerical
simulations and Monte Carlo analyses confirm that the proposed estimators im-
prove heading accuracy while retaining fault detection capabilities.

INTRODUCTION

Accurate heading angle estimation is a fundamental problem in robotics, with a wide range of
applications including mobile robot localization, simultaneous localization and mapping (SLAM),
visual odometry, and object pose estimation.1–3 This problem is especially critical in odometry-
based systems, where even a small, temporary orientation error can lead to a continually growing
position error. In planar environments, the robot’s orientation is typically represented by a single
angle θ ∈ [−π, π), corresponding to the rotation around a reference axis.

Rotation estimation in robotics often relies on sensor fusion techniques that combine data from
multiple sources. A common approach is odometry-based estimation, where wheel encoders pro-
vide coarse orientation updates that are subsequently refined using inertial measurements from gy-
roscopes.4 However, these methods are prone to cumulative errors and drift over time, highlighting
the need for external references such as visual landmarks or GPS measurements. In the space do-
main, the standard method for this correction is the use of star tracker measurements. While star
trackers are typically used to estimate full 3D orientation, for estimating a planar rotation, like for
example in the case of a lunar rover, their measurements can be mapped to directly observe the
heading angle.5
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In the context of attitude estimation for aerospace applications, sensor redundancy is critical for
ensuring reliable fault detection and isolation. The typical approach relies on a single gyroscope
measurement for state propagation, using the so-called dynamic model replacement method,6 while
the remaining gyroscopes are reserved exclusively for fault detection and isolation. In particular,
when three IMUs are available, it is possible to implement a center-select algorithm.7, 8 This al-
gorithm selects a reference value, typically the median, from the set of redundant sensors. Any
measurement that deviates beyond a predefined threshold is classified as faulty and subsequently
discarded. While effective, this approach underutilizes the available sensor data, potentially limit-
ing the precision of the estimation. Recent research has demonstrated that averaging measurements
from multiple IMUs can yield a more precise estimate.9, 10 In particular, it has been shown that by
combining data from six low-grade gyroscopes, it is possible to achieve a level of accuracy compa-
rable to that of a tactical-grade gyro.9 While this approach enhances measurement precision, it often
overlooks the observability of individual gyro biases. Proper estimation of these biases is essential
for detecting and isolating faults, as unobservable biases can degrade system performance and allow
sensor failures to go undetected.

The goal of this paper is to propose an algorithm for estimating planar rotations by leveraging
all available gyroscope measurements. The first contribution is to demonstrate that heading angle
propagation can be effectively achieved using an averaged angular velocity measurement. Under
certain conditions, this approach is shown to be equivalent to a scheme where one gyroscope is used
for state propagation and the others for state updates. The second contribution is an estimation filter
that utilizes the average of all gyroscope measurements for state propagation while retains the ob-
servability of individual gyro biases. The novelty of the proposed algorithm lies in its measurement
update step: to retain bias observability for all gyroscopes, the state is updated using the differences
between individual angular velocity measurements. A full analysis of the correlation between the
average measurement used for propagation and the differential measurements used for the update is
presented, and it is proven that the two methods are mathematically equivalent.

The remainder of this paper is organized as follows. First, the implementation of the two pro-
posed methods is introduced in a scenario with bias-free gyros. The analysis is then extended to
incorporate biased angular measurements. Numerical simulations and Monte Carlo analyses are
conducted to evaluate the proposed methods. Finally, conclusions are drawn.

PLANAR ROTATION WITH BIAS-FREE GYRO MEASUREMENTS

This section compares different methodologies for estimating a planar rotation using measure-
ments from two bias-free gyros. Specifically, we want to estimate the heading angle θ(t) whose
continuous-time dynamics are

θ̇(t) = ω(t). (1)

Assuming a slowly varying angular velocity and a sufficiently high sampling rate, the discrete-time
dynamics can be approximated using a backward Euler step:11

θk = θk−1 + ωk∆t, (2)

where ∆t = tk − tk−1. At time k, measurements from two gyros are available. Throughout this
paper, the superscript (i) denotes a quantity associated with the i-th gyro and a tilde (̃.) is used to
denote that (.) is a measured quantity. The measurement model is

ω̃
(i)
k =

1

∆t
(θk − θk−1) + ν

(i)
k , i = 1, 2. (3)
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where ν
(i)
k ∼ N (0, σ2

(i)) is an i.i.d. gaussian sequence. Furthermore, the two gyros are assumed to
be uncorrelated, hence

E[ν(i)k ν
(j)
k ] = σ2

(i)δij , (4)

where the noise standard deviation is associated with the Angular Random Walk (ARW) and the
sampling rate through the relation

σ(i) =
ARW(i)

√
∆t

. (5)

The goal is estimating the angle θk at time k, given a prior θk−1 ∼ N (θ̂k−1, Pk−1) at time k − 1

and measurements ω̃(1)
k , ω̃(2)

k at time k. Examining Equations (2), (3), it is possible to infer that the
angular velocity provided by the gyros can either be used as an input to propagate the state estimate
from time k − 1 to k or as a measurement to update the estimate at time k. This section analyzes
this duality and explores the differences, if any, between using the gyro data as an input versus as a
measurement.

The dynamics reported in Equation (2) and the measurement function in Equation (3) are linear
with respect to the state, and the prior estimate is assumed to follow a Gaussian distribution. For
linear Gaussian systems, the Kalman Filter12 has been proven to be the optimal estimator in both
the Maximum a Posteriori (MAP) sense and the Minimum Mean Square Error (MMSE) sense.13

Therefore, we use the Kalman Filter framework to compare the proposed methodologies.

Time and Measurement Updates Using Distinct Gyroscopes

At time k, we have two angular velocity measurements. Since angular velocity can be used either
as an input to the dynamics or as a measurement, a natural approach is to use one angular velocity
measurement to propagate the estimate of the angular state and the other to update this estimate.
Specifically, we use the measurement ω̃(1)

k from gyro 1 as an input and the measurement ω̃(2)
k from

gyro 2 as an observation. The final estimate remains unchanged if the roles of the two gyros are
reversed.

A generic linear system, subjected to uncertain input and no process noise, can be described as:

xk = Φxk−1 +Buk−1. (6)

Given an initial gaussian estimate xk−1 ∼ N (x̂k−1, Pk−1), and a gaussian input uk−1 ∼ N (ûk−1, U)
the estimate remains gaussian throughout the process, i.e. xk ∼ N (x̄k, P̄k), where:

x̄k = Φx̂k−1 +Bûk−1, (7)

P̄k = ΦPk−1Φ
T +BUBT . (8)

For planar rotation, when the input is the angular velocity measured by gyro 1, we get

ûk−1 = ω̃
(1)
k , (9)

Φ = 1, (10)

B = ∆t, (11)

U = σ2
(1), (12)
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and, consequently, the propagated estimate at time k is θk ∼ N (θ̄k, P̄k) where:

θ̄k = θ̂k−1 + ω̃
(1)
k ∆t, (13)

P̄k = Pk−1 +∆t2σ2
(1). (14)

To incorporate the information from gyro 2, it is necessary to modify the Kalman update12 to ac-
count for the fact that the measurement zk is a linear function of the state at both time k and k − 1:

zk = Hxk + Jxk−1 + vk, (15)

where vk ∼ N (0, R). The dependence of the measurement on the state at time k − 1 introduces a
correlation between the error state and the measurement error, which must be addressed by refor-
mulating the Kalman update. The method proposed by Brown and Hwang,14 which is followed in
this paper, derives a new Kalman gain as:

Kk =
(
P̄kH

T +ΦPk−1J
T
) (

HP̄kH
T +R+ JPk−1Φ

THT +HΦPk−1J
T + JPk−1J

T
)−1

.
(16)

The update step becomes

x̂k = x̄k +Kk (zk −Hx̄k − Jx̄k−1) , (17)

Pk = P̄k −KkLkK
T
k , (18)

where:
Lk = HP̄kH

T +R+ JPk−1Φ
THT +HΦPk−1J

T + JPk−1J
T . (19)

In the case considered, we use the angular velocity of gyro 2 as a measurement, and therefore

zk = ω̃
(2)
k , (20)

H =
1

∆t
, (21)

J = − 1

∆t
, (22)

R = σ2
(2). (23)

It follows that

Kk = ∆t
σ2
(1)

σ2
(1) + σ2

(2)

, (24)

Lk = σ2
(1) + σ2

(2), (25)

and the update step is given by

θ̂k = θ̄k +∆t
σ2
(1)

σ2
(1) + σ2

(2)

(
ω̃
(2)
k − ω̃

(1)
k

)
, (26)

Pk = P̄k −∆t2
σ4
(1)

σ2
(1) + σ2

(2)

. (27)
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Substituting Eq. (13), and Eq. (14) into Eq. (26), and Eq. (27), the optimal estimate θk ∼ N (θ̂k, Pk)

given an initial estimate θk−1 ∼ N (θ̂k−1, Pk−1) and measurements ω(1)
k , ω(2)

k , is

θ̂k = θ̂k−1 +∆t
σ2
(2)ω̃

(1)
k + σ2

1ω̃
(2)
k

σ2
(1) + σ2

(2)

, (28)

P̂k = P̂k−1 +∆t2
σ2
(1)σ

2
(2)

σ2
(1) + σ2

(2)

. (29)

Time Update via Gyroscope Measurement Averaging

The previous section proposed an optimal method to propagate an angular location estimate using
two uncorrelated gyro measurements. This section demonstrates that averaging the gyro measure-
ments leads to the same outcome.

Consider the weighted average angular rate:

ω̃
(∗)
k =

∑
i

1

σ2
(i)

ω̃
(i)
k∑

i

1

σ2
(i)

(30)

=
σ2
(2)ω̃

(1)
k + σ2

(1)ω̃
(2)
k

σ2
(1) + σ2

(2)

. (31)

It can be proven that

ω̃
(∗)
k ∼ N

(
ωk,

σ2
(1)σ

2
(2)

σ2
(1) + σ2

(2)

)
. (32)

The angular location can be propagated from time k − 1 to time k using the weighted angular
velocity ω̃

(∗)
k as input in Equations (7),(8). The state estimate at time k is θk ∼ N (θ̂k, Pk) where:

θ̂k = θ̂k−1 +∆t
σ2
(2)ω̃

(1)
k + σ2

1ω̃
(2)
k

σ2
(1) + σ2

(2)

, (33)

P̂k = P̂k−1 +∆t2
σ2
(1)σ

2
(2)

σ2
(1) + σ2

(2)

. (34)

This demonstrates that propagating the angular location using the weighted angular rate yields the
same optimal estimate as propagating with one gyro measurement and updating with the other.

Angular Velocity Model Integration and Dual Updates

In many aerospace applications, angular velocity can be predicted by integrating a dynamical
model. For spacecraft, this model is governed by the Euler equations.6 For rovers, angular veloc-
ity can be determined from odometry measurements. Assume we have a model that provides an
unbiased estimate ω̂k of the angular rate:

ω̂k = ωk + νm, (35)

νm ∼ N
(
0, σ2

m

)
. (36)
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We want to use the angular rate coming from the model ω̂k to propagate the state and the angular
rates from the gyros ω̃

(1)
k , ω̃(2)

k to update the state. This method creates a framework in which
dealing with correlated gyro is straightforward.

Similarly to what did before, it is possible to propagate the attitude from time k − 1 to time k
using the angular velocity model ω̂k. The result of the propagation is θk ∼ N (θ̄k, P̄k) where:

θ̄k = θ̂k−1 + ω̂k∆t, (37)

P̄k = Pk−1 +∆t2σ2
m. (38)

This estimate can be updated using data from gyro 1 and gyro 2, along with the delayed-state
Kalman update applied earlier. In this case

H =

 1

∆t
1

∆t

 , (39)

J =

− 1

∆t

− 1

∆t

 , (40)

R =

[
σ2
(1) 0

0 σ2
(2)

]
. (41)

It follows that

Kk = ∆t

[
σ2
(2)σ

2
m

σ2
(1)σ

2
(2) + σ2

(1)σ
2
m + σ2

(2)σ
2
m

σ2
(1)σ

2
m

σ2
(1)σ

2
(2) + σ2

(1)σ
2
m + σ2

(2)σ
2
m

]
, (42)

Lk =

[
σ2
(1) + σ2

m σ2
m

σ2
m σ2

(2) + σ2
m

]
. (43)

After the update step, the optimal estimate at time k, given a model for the angular velocity ω̂k, and
uncorrelated measurements form distinct Gyros ω̃(1)

k , ω̃(2)
k , is

θ̂k = θ̂k−1 +∆t
σ2
(1)σ

2
(2)ω̂k + σ2

(2)σ
2
mω̃

(1)
k + σ2

(1)σ
2
mω̃

(2)
k

σ2
(1)σ

2
(2) + σ2

(1)σ
2
m + σ2

(2)σ
2
m

, (44)

Pk = Pk−1 +∆t2
σ2
(1)σ

2
(2)σ

2
m

σ2
(1)σ

2
(2) + σ2

(1)σ
2
m + σ2

(2)σ
2
m

. (45)

If the angular velocity model is unknown, i.e. σ2
m → ∞, the estimated angular location is the same

as the one obtained only by propagating with an average angular rate.

lim
σ2
m→∞

θ̂k = θ̂k−1 +∆t
σ2
(2)ω̃

(1)
k + σ2

(1)ω̃
(2)
k

σ2
(1) + σ2

(2)

, (46)

lim
σ2
m→∞

P̂k = P̂k−1 +∆t2
σ2
(1)σ

2
(2)

σ2
(1) + σ2

(2)

. (47)
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This approach provides a procedure to obtain optimal estimates when the gyro measurements are
correlated. The modeled angular velocity can be used to propagate the attitude, while the measure-
ments ω̃(1)

k , ω̃(2)
k to update the estimate. In this case, the covariance matrix is

R =

[
σ2
(1) σ2

(1,2)

σ2
(1,2) σ2

(2)

]
. (48)

If the modeled angular velocity is unknown, i.e. σ2
m → ∞, it is still possible to obtain the optimal

estimate in the case in which the gyros are correlated and no other information is available. After
some algebraic manipulation, it is possible to obtain

θ̂k = θ̂k−1 +∆t

(
σ2
(2) − σ2

(1,2)

)
ω̃
(1)
k +

(
σ2
(1) − σ2

(1,2)

)
ω̃
(2)
k

σ2
(1) + σ2

(2) − 2σ2
(1,2)

, (49)

Pk = Pk−1 +∆t2
σ2
(1)σ

2
(2) − σ4

(1,2)

σ2
(1) + σ2

(2) − 2σ2
(1,2)

. (50)

Optimal Averaging of Correlated Gyros

This section provides a formal proof of the optimality of the estimates given by Equations (49),
(50). Optimality, in this context, implies that the estimate is unbiased and that its covariance is
minimized.

Consider propagating the attitude using a linear combination of angular velocity measurements,
which may be correlated, namely E[ν(1)k ν

(2)
k ] = σ2

(1,2)

θ̂k = θ̂k−1 +∆t
(
α ω̃

(1)
k + β ω̃

(2)
k

)
. (51)

The first condition for optimality is that the estimator is unbiased:

θk−1 +∆t ωk = E
[
θ̂k

]
(52)

= E
[
θ̂k−1 +∆t

(
α ω̃

(1)
k + β ω̃

(2)
k

)]
(53)

= θk−1 +∆t (α+ β) ωk, (54)

therefore
α+ β = 1, (55)

θ̂k = θ̂k−1 +∆t
(
ω̃
(1)
k + β

(
ω̃
(2)
k − ω̃

(1)
k

))
. (56)

The second condition is that the covariance is minimized:

Pk = Pk−1 +∆t2
[
σ2
(1) + β2(σ2

(1) + σ2
(2))− 2βσ2

(1) + 2β(1− β)σ2
(1,2)

]
, (57)

and applying the first optimality condition

∂Pk

∂β
= 0 ⇒ β =

σ2
(1) − σ2

(1,2)

σ2
(1) + σ2

(2) − 2σ2
(1,2)

. (58)
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Therefore after some substitutions, we proved that the optimal estimate is given by

θ̂k = θ̂k−1 +∆t

(
σ2
(2) − σ2

(1,2)

)
ω̃
(1)
k +

(
σ2
(1) − σ2

(1,2)

)
ω̃
(2)
k

σ2
(1) + σ2

(2) − 2σ2
(1,2)

, (59)

Pk = Pk−1 +∆t2
σ2
(1)σ

2
(2) − σ4

(1,2)

σ2
(1) + σ2

(2) − 2σ2
(1,2)

. (60)

For a general case, in which measurements from N gyros are available, and the measurement can
be correlated, we can get the optimal estimate by averaging the angular rates

R =


σ2
(1) σ2

(1,2) . . . σ2
(1,N)

σ2
(1,2) σ2

(2) . . . σ2
(2,N)

...
...

. . .
...

σ2
(1,N) σ2

(2,N) . . . σ2
(N)

 , (61)

Γ = R−1, (62)

ω̃
(∗)
k =

∑N
i=1

∑N
j=1 γij ω̃

(i)
k∑N

i=1

∑N
j=1 γij

, (63)

σ2
(∗) =

1∑N
i=1

∑N
j=1 γij

, (64)

ω̃
(∗)
k ∼ N

(
ωk, σ

2
(∗)

)
(65)

and using this angular rate to propagate the estimate from time k − 1 to time k.

PLANAR ROTATION WITH BIASED GYRO MEASUREMENTS

The previous section showed how to use measurements coming from bias-free gyros to propagate
the angle in an optimal way. However, to apply this approach to practical applications, biases must
be incorporated into the measurement model for the gyroscopes. This section introduces a method
for averaging measurements from biased gyros under specific assumptions.

Consider measurements coming from two uncorrelated gyros

ω̃
(i)
k =

1

∆t
(θk − θk−1) + b

(i)
k + ν

(i)
k , i = 1, 2, (66)

where b
(i)
k is the bias of the i-th gyro at time k. The bias drifts over time due to the bias instability.

A mathematical model widely used to describe the evolution in time of the bias is given by6

ḃ(i)(t) = η
(i)
b (t), (67)

where η
(i)
b (t) is a zero-mean Gaussian white-noise process. Under the assumption of a fast enough

sampling rate, Equation (67) can be discretized considering η
(i)
b (t) constant in the interval k − 1 to

k. It follows
b
(i)
k = b

(i)
k−1 + ν

(i),b
k (68)
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where ν
(i),b
k is a zero-mean Gaussian random sequence, i.e. ν(i),bk ∼ N (0, σ2

(i),b).

The estimated state is given by

xk =

 θk

b
(1)
k

b
(2)
k

 (69)

The problem involves estimating the angle θk and the biases b(1)k , b(2)k , given the measurements ω̃(1)
k

and ω̃
(2)
k , as well as an estimate of the state at the previous time xk−1 ∼ N (x̂k−1, Pk−1).

In the remainder of the paper, we will adopt the simplification that the gyros are similar, meaning
that their noise characteristics are in a constant ratio; i.e., the following relationship holds

σ2
(1)

σ2
(2)

=
σ2
(1),b

σ2
(2),b

=
cov

(
b
(1)
k−1

)
cov

(
b
(2)
k−1

) = ρ. (70)

In practical applications, redundant gyros are typically produced by the same manufacturer, result-
ing in identical noise specifications, i.e. ρ = 1. The following notation is used:

σ2 = σ2
(2) =

σ2
(1)

ρ
, (71)

σ2
b = σ2

(2),b =
σ2
(1),b

ρ
. (72)

Time and Measurement Updates Using Distinct Gyroscopes

Similarly to what was done in the bias free case, it is possible to use the measurement coming
from gyro 1 as input to propagate the state, and the measurement coming from gyro 2 to perform
the measurement update. For a linear system subjected to an uncertain input uk−1 ∼ N (ûk−1, U)
and some process noise vk−1 ∼ N (0, Q), the dynamics are:

x̄k = Φx̂k−1 +Bûk−1, (73)

P̄k = ΦPk−1Φ
T +BUBT + ΓQΓT . (74)

For a planar rotation with biased angular velocity measurements, it follows that

ûk−1 = ω̃
(1)
k , (75)

Φ =

1 −∆t 0
0 1 0
0 0 1

 , (76)

B =

∆t
0
0

 , (77)

Γ =

−∆t 0
1 0
0 1

 , (78)
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U = ρσ2, (79)

Q =

[
ρσ2

b 0

0 σ2
b

]
. (80)

To perform the measurement update using the angular velocity coming from gyro 2, the modified
Kalman update described in Equations (15)-(19) is used. In the case considered, it is evident that:

H =

[
1

∆t
0 1

]
, (81)

J =

[
− 1

∆t
0 0

]
, (82)

R = σ2. (83)

Considering an initial state xk−1 ∼ N (x̂k−1, Pk−1), where

x̂k−1 =

θ̂k−1

b̂
(1)
k−1

b̂
(2)
k−1

 , Pk−1 =

Pθθ 0 0
0 ρPbb 0
0 0 Pbb

 (84)

upon propagating the state using ω̃
(1)
k and updating it using ω̃

(2)
k , the estimate at time k is given by:

x̂k =

 θ̂k

b̂
(1)
k

b̂
(2)
k

 =



θ̂k−1 +∆t

(
ω̃
(1)
k − b

(1)
k−1

)
+ ρ

(
ω̃
(2)
k − b

(2)
k−1

)
1 + ρ

b̂
(1)
k−1 −

ρB
(
ω̃
(2)
k − b

(2)
k−1 − ω̃

(1)
k + b

(1)
k−1

)
A

b̂
(2)
k−1 +

B
(
ω̃
(2)
k − b

(2)
k−1 − ω̃

(1)
k + b

(1)
k−1

)
A


, (85)

Pk =



Pθθ +∆t2
Pbbρ+ ρσ2 + ρσ2

b

ρ+ 1
−∆tρB
ρ+ 1

−∆tρB
ρ+ 1

−∆tρB
ρ+ 1

ρB − ρ2B2

A
ρB2

A

−∆tρB
ρ+ 1

ρB2

A
Pbb + σ2

b −
B2

A


, (86)

where

A = (ρ+ 1)
(
Pbb + σ2 + σ2

b

)
, (87)

B = Pbb + σ2
b . (88)

The covariance matrix Pk associated with this estimate is a full matrix, meaning that even if the state
θ, b(1), and b(2) were initially uncorrelated, after the first update step they become fully correlated.
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Transformation of variables. In this section, we propose a linear transformation of both the state
and the input. This approach serves as the foundation for a new method introduced in next section
of this paper, which incorporates information from the two gyros without relying on the delayed
state update.

It is possible to introduce an average bias b(∗)k as

b
(∗)
k =

b
(1)
k + ρb

(2)
k

1 + ρ
, (89)

and a difference bias ∆bk as
∆bk = b

(1)
k − b

(2)
k . (90)

After this linear transformation, the state to be estimated becomes
θk

b
(1)
k

b
(2)
k

 =⇒


θk

b
(∗)
k =

b
(1)
k + ρb

(2)
k

1 + ρ

∆bk = b
(1)
k − b

(2)
k

 . (91)

Similarly, it is possible to transform the measurements coming from the two gyros. We introduce
an average angular velocity measurement ω̃(∗)

k as

ω̃
(∗)
k =

ω̃
(1)
k + ρω̃

(2)
k

1 + ρ
, (92)

and a difference angular velocity measurement ∆ω̃k as

∆ω̃k = ω̃
(1)
k − ω̃

(2)
k . (93)

After applying these transformations to the state and input, the estimated state given by Equations
(85), (86) becomes:

x̂k =

 θ̂k

b̂
(∗)
k

∆b̂k

 =


θ̂k−1 +∆t

(
ω̃
(∗)
k − b

(∗)
k−1

)
b̂
(∗)
k−1

σ2∆b̂k−1 +
(
Pbb + σ2

b

)
∆ω̃k(

Pbb + σ2 + σ2
b

)

 , (94)

Pk =



Pθθ +∆t2
Pbbρ+ ρσ2 + ρσ2

b

ρ+ 1
−
∆tρ

(
Pbb + σ2

b

)
ρ+ 1

0

−
∆tρ

(
Pbb + σ2

b

)
ρ+ 1

ρ
(
Pbb + σ2

b

)
ρ+ 1

0

0 0
σ
(
Pbb + σ2

b

)
(ρ+ 1)

Pbb + σ2 + σ2
b


. (95)

These transformations highlight the fact that the attitude is propagated optimally by considering
only the average angular rate and the average bias. Furthermore, the expected value of the average
bias is constant, while its covariance increases over time. The difference in biases depends solely on
the difference in angular rates. It is also important to note that the difference in biases is uncorrelated
from both the average bias and the attitude.

11



Time Update via Gyroscope Measurement Averaging

In the previous section, we demonstrated that it is possible to propagate the attitude optimally
using only the average gyro measurement and the average bias. Building on this result, in this
section, we develop a new approach to estimate the angular rotation and the gyro biases without
requiring the delayed state Kalman update.

First, reconsider the linear transformation of the state described by Equations (89), (90). The
following dynamics for the biases hold:

b
(∗)
k = b

(∗)
k−1 + ν

(∗),b
k , (96)

∆bk = ∆bk−1 + ν∆b
k , (97)

where ν
(∗),b
k ∼ N

(
0,

ρ

1 + ρ
σ2
b

)
and ν∆b

k ∼ N
(
0, (1 + ρ)σ2

b

)
. Furthermore, Equation (94) shows

that the angle θ can be propagated as:

θk−1 = θk−1 +∆t
(
ω̃
(∗)
k − b

(∗)
k

)
, (98)

where ω̃
(∗)
k ∼ N

(
ωk,

ρ

1 + ρ
σ2

)
Therefore, it is possible to perform a time update step starting from the estimate at time k − 1. It

is important to note that, due to the linear transformation of the state, the initial covariance matrix
in this case is:

Pk−1 =

Pθθ 0 0

0
ρ

1 + ρ
Pbb 0

0 0 Pbb (1 + ρ)

 . (99)

Utilizing Equations (73), (74), and remembering that in this case

ûk−1 = ω̃
(∗)
k , (100)

Φ =

1 −∆t 0
0 1 0
0 0 1

 , (101)

B =

∆t
0
0

 , (102)

Γ =

−∆t 0
1 0
0 1

 , (103)

U =
ρ

1 + ρ
σ2, (104)

Q =

 ρ

1 + ρ
σ2
b 0

0 (1 + ρ)σ2
b

 , (105)
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the prior estimate at time k is:

x̄k =

 θ̂k

b̂
(∗)
k

∆b̂k

 =

θ̂k−1 +∆t
(
ω̃
(∗)
k − b

(∗)
k−1

)
b̂
(∗)
k−1

∆b̂k−1

 , (106)

P̄k =


Pθθ +∆t2

Pbbρ+ ρσ2 + ρσ2
b

ρ+ 1
−
∆tρ

(
Pbb + σ2

b

)
ρ+ 1

0

−
∆tρ

(
Pbb + σ2

b

)
ρ+ 1

ρ
(
Pbb + σ2

b

)
ρ+ 1

0

0 0
(
Pbb + σ2

b

)
(ρ+ 1)


. (107)

By comparing Equations (94),(95) with Equations (106),(107), it is clear that while the expected
values and covariances of the angular location and the average bias are identical between the two
proposed methods, the estimate of the difference in biases is not. This discrepancy arises because
we are only using a linear combination of the two inputs and are neglecting some information that
could be obtained by considering each individual input.

Measurement Update via Gyroscope Measurement Difference. The method we propose involves
updating the state using the difference in the angular velocities of the gyros, after propagating the
state with the average angular rate. Equations (108)-(111) show that the difference in the angular
velocities of the gyros directly corresponds to the difference in biases. Therefore, it is possible to
perform a classical Kalman update since the measurement depends solely on the state at time k.

∆ω̃k = ω̃
(1)
k − ω̃

(2)
k (108)

= ω̃k + b
(1)
k + ν(1) − ω̃k − b

(2)
k − ν(2) (109)

= b
(1)
k − b

(2)
k − ν(2) + ν(1) (110)

= ∆bk + ν∆k (111)

where ν∆k ∼ N
(
0, (1 + ρ)σ2

)
.

Considering the measurement function:

zk = Hxk + vk, (112)

where vk ∼ N (0, R) and
H =

[
0 0 1

]
, (113)

R = (1 + ρ)σ2 (114)

and considering the Kalman update:

Kk =
(
P̄kH

T
) (

HP̄kH
T +R

)−1
, (115)

x̂k = x̄k +Kk (zk −Hx̄k) , (116)

Pk = P̄k −KkHP̄k. (117)

13



It follows that, after the update, the estimated state is:

x̂k =

 θ̂k

b̂
(∗)
k

∆b̂k

 =


θ̂k−1 +∆t

(
ω̃
(∗)
k − b

(∗)
k−1

)
b̂
(∗)
k−1

σ2∆b̂k−1 +
(
Pbb + σ2

b

)
∆ω̃k(

Pbb + σ2 + σ2
b

)

 , (118)

Pk =



Pθθ +∆t2
Pbbρ+ ρσ2 + ρσ2

b

ρ+ 1
−
∆tρ

(
Pbb + σ2

b

)
ρ+ 1

0

−
∆tρ

(
Pbb + σ2

b

)
ρ+ 1

ρ
(
Pbb + σ2

b

)
ρ+ 1

0

0 0
σ
(
Pbb + σ2

b

)
(ρ+ 1)

Pbb + σ2 + σ2
b


. (119)

By comparing Equations (94),(95) with Equations (118),(119), it is clear that the estimated state
and covariance are the same. We have thus proven that propagating the state using the measurement
from one gyro and updating the state with the measurement from the other gyro, while employing
the delayed state update, is equivalent to propagating the state with the average measurement ω̃(∗)

and performing a standard Kalman update using the difference measurement ∆ω̃.

Furthermore, we demonstrated that, through the linear transformation of the biases, the difference
in biases ∆b is uncorrelated from both the average bias b(∗) and the angle θ. This implies that to
propagate the attitude optimally, only the propagation step with ω(∗) is necessary. The update step
makes the difference in biases observable and is only useful if we are interested in determining the
individual biases, for example for fault detection and isolation purposes.

Observability Analysis and Attitude Measurement. Consider a generic linear time-invariant sys-
tem in discrete time

xk+1 = Φxk +Buk, (120)

zk = Hxk +Duk. (121)

(122)

The observability matrix can be computed as:

O =


H
HΦ

HΦ2

...
HΦn−1

 , (123)

where n is the number of states.

In the proposed method, the Φ and H matrices are defined respectively in Equations (101), (113).
Therefore, the observability matrix becomes:

O =

 H
HΦ

HΦ2

 =

0 0 1
0 0 1
0 0 1

 . (124)
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It is evident that this matrix has rank 1, as only the difference in biases ∆b is observable due to its
uncorrelation with the other states b(∗), θ.

To make the system fully observable, a measurement of the angular location θ̃k is introduced.
The measurement model in this case is:

θ̃k = θk + νθk , (125)

where νθk ∼ N
(
0, σ2

θ

)
It is clear that the state can be updated using both the angular measurement and the difference in

angular velocity. The complete measurement model is:

zk =

[
θ̃k
∆ω̃k

]
= Hxk + vk, (126)

where vk ∼ N (0, R) and

H =

[
1 0 0
0 0 1

]
, (127)

R =

[
σ2
θ 0

0 (1 + ρ)σ2

]
. (128)

In this case, the observability matrix can be recomputed, yielding:

O =

 H
HΦ

HΦ2

 =



1 0 0
0 0 1
1 −∆t 0
0 0 1
1 −2∆t 0
0 0 1

 . (129)

It is evident that, under the basic assumption of ∆t ̸= 0, the observability matrix is full rank,
meaning all the states are observable.

RESULTS AND DISCUSSION

To evaluate the performance of the proposed method, a Monte Carlo simulation with 1,000 runs
was conducted. We mathematically proved that the two proposed methods are equivalent; therefore,
this simulation provides insight into the observability of the states and allows for a performance
comparison against the current state-of-the-art approach, which relies on using only a single gyro.
This section is organized as follows: first, the Monte Carlo simulation parameters are described,
including the specifications of each sensor and the method used to generate the truth trajectory.
Finally, the numerical results are presented and discussed.

Monte Carlo Settings

The simulated scenario involves a lunar rover estimating its heading angle, θ, with respect to an
inertial reference frame using angular measurements from two baised gyros and a star tracker. A
star tracker provides two angle measurements: the heading and the elevation of a star. Since this
application is limited to planar motion, the elevation angle is discarded.
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For the simulation of the truth, we imposed that the true angular velocity follows a cosinusoidal
function:

ω(t) = ω0 cos (f0t) . (130)

The angular velocity can be analytically integrated to determine the true time history of the heading
angle over time:

θ(t) = θ0 +
ω0

f0
sin (f0t) . (131)

Table 1 reports the parameters used to simulate this true trajectory.

Table 1. Initial conditions of numerical integration.

Parameter Unit Value

ω0 deg/s 5

f0 Hz 0.1

θ0 deg 45

The numerical integration outputs were sampled at a fixed interval ∆tG, corresponding to the
sampling rate of the gyros. The angular velocity measurements were then corrupted with a random
noise sequence to simulate realistic gyro readings. Both gyros were assumed to have identical noise
characteristics, i.e., ρ = 1.

Regarding the evolution of the gyro biases, although their true dynamics evolve continuously, the
following discrete-time approximation was applied for the truth simulation.

b
(i)
k = b

(i)
k−1 + νb, (132)

where νb ∼ N (0, σ2
b ). The noise characteristics of the gyros are summarized in Table 2.

Table 2. Gyroscopes parameters.

Parameter Unit Value

∆tG s 0.01

ARW 15 deg/h/
√
Hz 0.72

σb
15 deg/h 0.05

Star tracker measurements were simulated by sampling the true heading angle at fixed intervals
∆tST and corrupting them with random noise. The characteristics of the star tracker are provided
in Table 3.

Finally, the filters were initialized with the same initial state estimate for each Monte Carlo run,
using the covariance matrix given in Table 4.

Monte Carlo Results

The estimation errors obtained from the Monte Carlo analysis are shown in Figures 1. These plots
demonstrate that the proposed method is consistent, as the mean of the estimation error remains
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Table 3. Star Tracker parameters.

Parameter Unit Value

∆tST s 1

σST deg 0.01

Table 4. Initial covariance matrix.

Parameter Unit Value

Pθθ deg2 0.12I3×3

Pbb deg2/s2 0.012I3×3

zero and the true and filter covariances align perfectly. This is expected since both the measurement
function and the dynamics are linear, making the Kalman Filter an optimal estimator in this case.

Figures 1(a) and 1(b) show the results obtained by propagating the state with ω̃(∗) and updating
it with ∆ω̃. In particular, Fig. 1(b) clearly shows that the heading angle θ and the average bias b(∗)

are unobservable, while the difference in bias ∆b is observable.

Figure 1(c) presents the same results as Figure 1(b), but in this case, the state is also updated
with the star tracker measurement. Interestingly, while the heading angle and the difference in bias
become observable, no observability is gained for the average bias. This is because the difference
in bias is uncorrelated with both the heading angle and the average bias. This conclusion is further
confirmed by Figure 1(d), which shows results obtained by propagating the state with ω̃(∗) and
updating it with the star tracker measurement. Comparing Figures 1(c) and 1(d) makes it evident
that, without the ∆ω̃ update, the heading angle and the average bias do not lose any observability,
but the difference in bias becomes unobservable. This clearly supports the main point of this paper:
the estimation of the difference in bias is completely independent from the other components of the
state and can be performed when accurate knowledge of the individual biases is necessary.

Finally, to evaluate the accuracy of the proposed method, the time-averaged RMSE was computed
as

RMSE =
1

NtNm

Nt∑
k=1

Nm∑
j=1

√√√√ Ns∑
i=1

(x
(i)
k,j − x̂

(i)
k,j)

2

Ns
. (133)

The results are summarized in Table 5, which indicates that utilizing all available gyros improves
attitude estimation accuracy by approximately 4% and bias estimation accuracy by approximately
20%.

Table 5. Time-averaged Root Mean Squared Error for the proposed method and using only one
gyroscope.

State Averaging Single Gyro

θ [arcsec] 29.567 30.724
b(1) [deg/h] 16.34 19.667
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(a) Estimation error of original state as a function of time
without angular measurement.

(b) Estimation error of transformed state as a function of
time without angular measurement.

(c) Estimation error of transformed state as a function of
time with angular measurement.

(d) Estimation error of transformed state as a function of
time with angular measurement and without ∆b update.

Figure 1. Comparison of estimation errors for different scenarios.

CONCLUSIONS

This work proposes two methods for fusing all available gyroscope measurements when redun-
dant IMUs provide faultless angular velocity estimates. The first approach uses one gyro for state
propagation and the other for state updates. The second method employs an averaged measurement
in the propagation step while retaining full observability of individual biases by updating the state
with the difference in angular velocity measurements. For planar rotation, the two approaches have
been shown to be analytically equivalent. Monte Carlo simulations demonstrate that the update step
in the second method can be neglected when bias estimates are not critical, without compromis-
ing heading angle estimation. Furthermore, incorporating all available measurements improves the
estimation accuracy of both attitude and gyro bias.
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The primary limitation of the averaging-based filter is its reliance on the assumption that gyro-
scopes have similar noise characteristics. However, in practice, this is not a significant concern,
as redundant IMUs typically share the same noise specifications. While this study focused on two
gyroscopes, the proposed algorithms can be readily extended to accommodate additional sensors.
Future work includes extending the methods to three-axis rotation and evaluating their performance
in a spacecraft attitude control scenario.
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