
Navigation-Aware Path Planning and Multi-Agent
Coordination in Challenging Environments

Kristen Michaelson
Dept. of Aerospace Engineering and

Engineering Mechanics
The University of Texas at Austin

Austin, TX, USA
kmichaelson@utexas.edu

Manan Gandhi
Sandia National Laboratories

Albuquerque, NM, USA
mgandhi@sandia.gov

Renato Zanetti
Dept. of Aerospace Engineering and

Engineering Mechanics
The University of Texas at Austin

Austin, TX, USA
renato@utexas.edu

Abstract—Effective information-gathering is crucial for teams
of agents operating in challenging environments. Traditional path
planning methods may fail to produce sufficiently informative
trajectories. This work presents a cost function for optimal
global planning that captures the total navigation uncertainty
over the course of the trajectory. The cost metric, based on
linear covariance analysis (LinCov), induces navigation-friendly
behaviors by drawing agents into regions where they can collect
informative measurements. This idea is extended for multi-agent
planning: one agent acts a a moving beacon, providing positioning
information to other agents operating within range.

Index Terms—global planning, rapidly-exploring random trees,
linear covariance analysis

I. INTRODUCTION

In a GPS-denied environment, autonomous agents must
safely navigate around obstacles and each other without access
to precise global positioning. Since GPS is unavailable, each
agent’s navigation performance depends on alternative obser-
vations from onboard sensors. An interesting tradeoff arises:
agents must plan safe, efficient trajectories while ensuring that
enough information is gathered to produce a good navigation
solution. A minimum-distance trajectory may not be optimal
if the agent cannot obtain useful positioning information.
Conversely, an information-rich trajectory may take too long
to execute if the agent must deviate significantly from the most
efficient path to gather information. In this work, we design
trajectories for multi-agent navigation by combining two ideas:
(1) global path planning, and (2) linear covariance analysis.

Numerous algorithms exist for finding connected paths
between a starting point and a goal point in the environment.

This work is sponsored by the Air Force Research Laboratory, Munitions
Directorate (RWTA), Eglin AFB, FL. Opinions, findings and conclusions,
or recommendations are those of the authors and do not necessarily reflect
the views of the sponsoring agencies. The research shared in this report is
from an ongoing research project sponsored and funded by Sandia National
Laboratories in partnership with the University of Texas at Austin under
contract 1885207. Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. This paper describes objective technical
results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department
of Energy or the United States Government.

Fig. 1. Path planning with LinCov. An agent plans a trajectory from its starting
location (▲) to a goal point (⊗) in the environment. The covariance (i.e., the
navigation uncertainty) at each point along the trajectory is represented by
an ellipse (dashed lines). The proposed cost metric is the total volume of the
“covariance tube” beginning at the starting point up to the node of interest (•).
The size of the covariance ellipse decreases along a segment if measurement
information is received. Otherwise uncertainty my increase, decrease, or stay
the same.

Most of these algorithms generate paths in discrete segments.
The segments are connected by waypoints, or nodes (see Fig.
1). In rapidly-exploring random tree algorithms (RRT and
RRT*) [1], [2], paths are sought by generating a connected
graph. New nodes are added to the graph by choosing random
points in the environment. If the point does not conflict with
any obstacles, it is connected to the closest existing node. In
RRT*, each node carries a scalar cost value. Traditionally, the
cost is the total distance along the segments between the node
and the starting point. Once one or more complete paths to the
goal location are found, the minimum-cost path that reaches
the goal is selected.

Consider a scenario where agents can receive range mea-
surements or other information from beacons at known loca-
tions in the environment. The beacons can only contact agents
passing within a certain radius. An RRT-based planner may
miss trajectories that pass through these information-rich areas
if they do not lie along the shortest path from the starting point
to the goal. One way to quantify navigation performance given
a nominal trajectory is linear covariance analysis (LinCov) [3],
[4]. LinCov predicts the agent’s navigation uncertainty as it
moves along the trajectory. Trajectories that reach the goal
point without passing close enough to a beacon to collect

measurements will have very high uncertainty throughout.
Using LinCov, we can find goal-reaching trajectories with the
best navigation performance.

In this work, we incorporate LinCov into an RRT*-based
trajectory planner. To do this, we calculate both a LinCov-
based cost and a covariance matrix as each new node is added
to the tree. The covariance matrix at each node is simply the
parent node’s covariance matrix propagated along the nominal
trajectory between the two nodes. The added cost is the total
volume of the navigation uncertainty over the new segment
(Fig. 1). In this way, navigation information is incorporated
directly into a hybrid cost value that considers both distance
traveled and navigation uncertainty.

Our implementation consists of modifications to the im-
plementation of RRT* in the PythonRobotics library [5]. In
the multi-agent case, we propose designating one agent as the
“navigator.” The navigator is tasked with gathering positioning
information from the beacons. This positioning information is
then shared among agents within communication range of the
navigator.

Linear covariance analysis was also incorporated into
RRT*-based planners in [6] and [7]. In [6], LinCov is used
for collision-checking; to account for uncertainty in obstacle
positions as the agent passes through a GPS-denied region.
A proposed node is rejected if the probability of collision is
too high. In [7], measurements are not included; obstacles are
simply inflated proportionally to the propagated uncertainty. In
this work, we focus on inducing navigation-friendly behaviors
by attracting agents to regions of the space where measure-
ments are available.

Similar methods have also been used in model-predictive
control. An information-minded approach was used for motion
planning in [8], where an observability metric is included
in the cost function for differential dynamic programming
(DDP). The cost is a weighted sum of terms related to control
effort, navigation uncertainty, and terminal error. The weights
must be hand-tuned for different planning scenarios. The cost
function proposed in this work does not require any hand-
tuning of weights, though any specific penalty on control effort
has been abstracted away to total distance traveled. Another
uncertainty-based weighted cost function is presented in [9],
which contains similar experiments to the ones in this work.
In [9], a traditional RRT-based planner is used to find an initial
feasible trajectory. The trajectory is then refined for reduced
navigation uncertainty using DDP.

A method for “tube-based,” “risk-bounded” local planning
is combined with RRT in [10]. The method proposed in this
work could be used as an alternative way to form “tubes” for
the motion primitives in [10]. In fact, the authors of [10] use
Monte Carlo analysis to show that their tube formulation is
conservative in at least one example; the prescribed tube is
wider than the true uncertainty in the dynamics. LinCov is
designed to capture these uncertainty values exactly without
the burden of running Monte Carlo analysis.

The remainder of this work is organized as follows: Section
II details the proposed cost metric; Section III presents results

for single-agent planning; Section IV extends the algorithm
presented in Section II to multi-agent planning and presents
results for two multi-agent planning scenarios; and Section V
presents conclusions and future work.

II. A NAVIGATION-AWARE COST METRIC FOR GLOBAL
PLANNING

In RRT*, a graph is built by connecting new nodes to
existing nodes, starting at the start point and expanding toward
the goal. A segment connecting two nodes forms a portion of
the trajectory. The node that the agent reaches first is called the
“parent” node, and the subsequent node is called the “child”
node. Every node has exactly one parent, except the start node,
which has no parent. We propose a cost metric for RRT* based
on the total volume of the covariance tube from the start node
to the new node. The volume of the covariance tube between a
parent node and a new node can be calculated by propagating
the parent node’s covariance matrix along the segment between
the nodes. This concept is illustrated in Fig. 2.

Fig. 2. Calculating the cost of a new node (◦). The new node’s cost is the
cost of the parent node (•), plus the volume of the covariance tube between
them. The volume of the covariance tube can be approximated by dividing
the segment connecting the nodes into finite intervals of length ds.

Consider a system with state vector x(k) and discrete-time
linear dynamics

x(k) = F (k − 1)x(k − 1) +G(k − 1)ν(k − 1). (1)

where ν(k − 1) is a random process noise drawn from
the Gaussian distribution N (0,Q(k − 1)). If the navigation
uncertainty at time k − 1 can be represented by covariance
matrix P (k − 1), then the propagated covariance matrix at
time k is

P̄ (k) = F (k − 1)P (k − 1)F (k − 1)T+

G(k − 1)Q(k − 1)G(k − 1)T . (2)

If a noisy measurement is received at time k,

z(k) = H(k)x(k) + η(k), (3)

where η(k) is the Gaussian measurement noise, η(k) ∼
N (0,R(k)), then the covariance matrix decreases as

P̂ (k) = P̄ (k)−K(k)H(k)P̄ (k) (4)

where K(k) is the Kalman gain,

K(k) = P̄ (k)H(k)T (H(k)P̄ (k)H(k)T +R(k))−1 (5)

Thus, a covariance matrix representing the navigation un-
certainty is available at every time step; if no measurement
is received, the covariance matrix at time step k is simply
the propagated covariance matrix P̄ (k). If a measurement is
received, then the covariance matrix at time step k is the
updated P̂ (k). These are the Kalman filter equations [11],
[12].

LinCov is used to propagate the estimated uncertainty
along nominal trajectories for nonlinear systems. Though
the uncertainty distribution does not remain Gaussian (i.e.
cannot be represented exactly by a covariance matrix) in
nonlinear systems, a covariance matrix can be propagated
over a trajectory in much the same way as the Kalman filter
by linearizing nonlinear dynamics and measurement models
about the current state estimate [3]. We do not consider
true state dispersions in this work, as the agent is assumed
to follow the nominal trajectory during planning. Thus, the
LinCov covariance matrix is computed in the same way as the
Extended Kalman Filter (EKF) covariance matrix [12], [13].

A covariance ellipsoid can be drawn from any covariance
matrix by computing the eigenvalues and eigenvectors. The
length of each axis is the square root of an eigenvalue, and
the axes are aligned with the corresponding eigenvectors. For
a 2 × 2 covariance matrix P (k) with eigenvalues λ1(k) and
λ2(k), the covariance ellipsoid is a two-dimensional ellipse.
The area of the covariance ellipse is

A(k) = π ·
√
λ1(k) ·

√
λ2(k) = π ·

√
|P (k)| (6)

For a straight-line segment connecting two nodes, the volume
of the covariance tube can be numerically approximated as

V ≈
N∑

k=1

A(k) · ds (7)

where the segment has been divided into N sub-segments of
length ds. A function that computes the LinCov-based cost
metric is shown in Algorithm 1.

Algorithm 1 Navigation-Aware Cost Metric
Require: parent, the parent node; ds, the step size; N , the

number of steps
1: P (0)← parent.P
2: cost← parent.cost
3: for k = 1 . . . N do
4: Calculate A(k) using Eq. (6)
5: cost← cost+A(k) · ds
6: Propagate P (k − 1) using (2)
7: if agent in range of beacon then
8: Update P (k) using Eq. (4)
9: end if

10: end for
11: return P , cost

Algorithm 1 returns a covariance matrix and a cost value
to be assigned to a new node. The covariance and cost
values originate at the parent node. The covariance matrix is

propagated over the length of the new segment, and its final
value is stored as the navigation uncertainty at the new node.
The new node also has a cost value equivalent to the cost of
the parent node, plus the volume of the covariance tube along
the segment between them.

This cost metric satisfies the monotonicity and boundedness
assumptions in optimal motion planning (see Problem 2 of
[2]). In fact, it takes partial inspiration from the line integral
metric proposed in [2]. At each step in Algorithm 1, the area
of a covariance ellipse is multiplied by ds to get a finite
differential volume. In this way, the area of the ellipse acts as
a scalar potential function. Of course, any other scalar value
computed from the covariance matrix P (k) could be used as
a potential; higher-dimensional ellipsoids may be of interest.

III. PLANNING FOR A SINGLE AGENT

In the following sections, we present trajectory planning re-
sults for RRT* using the cost metric in Algorithm 1. Consider
the Dubins vehicle dynamics,

ẋ = V cos θ

ẏ = V sin θ

θ̇ = u

(8)

where V is the speed of the vehicle, θ is its heading angle,
and u is a control input.

If V and u are subject to stochastic process noise with power
spectral density qv and qθ respectively, then we can approxi-
mate the discrete-time process noise covariance Q(k − 1) as

Q(k − 1) ≈
[
qv∆t 0
0 qθ∆t

]
(9)

where ∆t is the time interval between time steps k − 1 and
k. The uncertainty dynamics can be approximated in discrete
time using Eq. (2) with

F (k − 1) =

1 0 −V sin θ∆t
0 1 V cos θ∆t
0 0 1

 , G(k − 1) =

cos θ 0
sin θ 0
0 1


(10)

where x =
[
x y θ

]T
is the state vector.

When the agent is close to a beacon, it receives range
measurements

z =
√
(x− bx)2 + (y − by)2 + η (11)

where (bx, by) is the location of the beacon and η ∼ N (0, R).
The linearized covariance update is calculated using Eq. (4)
with measurement linearization

H(k) =


x−bx√

(x−bx)2+(y−by)2

y−by√
(x−bx)2+(y−by)2

0


T

. (12)

Note that the covariance matrix is 3 × 3 for this example,
since the state vector has dimension 3. We use the position
covariance, P (1:2, 1:2), in Eq. (6). This captures the position
uncertainty as the trajectory evolves.

Fig. 3. RRT* with navigation-aware cost metric. An agent plans trajectories from the start node (left) to the goal node (right). Each panel shows the
RRT*-generated tree after n iterations. The region where the agent can contact the beacon is shown in blue. Trajectories passing through the blue region are
preferred.

Fig. 3 shows planning results for a scenario in which an
agent must plan a trajectory from the starting node at the left
of the field to a goal node at the right. The initial covariance
is

P0 =

0.12 0 0
0 0.12 0
0 0 0.012

 (13)

where the position covariance values are given in position units
and the angle variance is in radians. The process noise power
spectral densities are qv = qθ = 5× 10−4.

A large obstacle sits between the start and goal nodes.
Range measurements are available from a beacon located at
(4, 0) with R = 0.12. For RRT* with a distance-based metric,
goal-reaching trajectories above and below the obstacle would
yield the same cost. Using the navigation-aware cost metric in
Section II, trajectories beneath the obstacle are preferred since
measurements are available in that region.

To study the evolution of the tree, we run a large number
of iterations. We choose an expansion distance of 1 unit and
a goal sampling rate of 10% for RRT*. As new nodes are
added to the tree, Algorithm 1 is executed to assign them cost
and covariance values. Each straight-line segment connecting
a parent node to a new node is divided into steps of equal
length, roughly 0.1 units. The heading angle θ is assumed to
point along the segment, in the direction of motion. The time
step ∆t is determined assuming constant velocity V = 1.

After 100 iterations, the planner has reached the goal node
from above the obstacle. This is only due to chance; clearly,
more iterations are required, as the cost of the goal-reaching

trajectory is high. By 500 iterations, the tree has rewired itself
such that trajectories below the obstacle expand through the
goal node. This is because the beacon region is so low-cost,
it is actually lower cost to travel to the upper-right corner of
the field through the beacon region than to dead-reckon in the
region above the obstacle.

This trend becomes clearer as more nodes are added;
trajectories originating below the obstacle wrap up and around
it. In fact, there exist no goal-reaching trajectories passing
above the obstacle. Also, note the behavior at the lower-left
corner of the field: for some nodes, it is cheaper to enter the
beacon area and leave it than to proceed directly from the
start node. When iterations finish, the path corresponding to
the goal node with the lowest cost is selected. The chosen path
after 1500 iterations is shown at the bottom right of Fig. 3.

Fig. 4 shows the final trajectory. The trajectory is smoothed
using spline interpolation, and a final LinCov pass is computed
at high rate (∆t = 0.01). Covariance ellipses represent the
predicted navigation uncertainty at points along the trajectory.
The uncertainty grows slightly as the navigator approaches
the beacon region. Then, when a measurement is received, the
uncertainty is rapidly reduced in the direction of the beacon.
The uncertainty continues to decrease as the agent approaches
the beacon. It then slowly begins growing again as the agent
turns away from the beacon and moves toward the goal point.

IV. MULTI-AGENT PLANNING

Consider a multi-agent motion planning scenario where one
agent, designated the “navigator,” receives measurements from

Fig. 4. Final trajectory for single-agent planning with 3σ covariance ellipses
representing position uncertainty

beacons. The navigator then provides range measurements to
other agents operating in the environment. In this way, the
navigator acts as a moving beacon.

Algorithm 2 shows a modified version of Algorithm 1 for
multi-agent planning. In Algorithm 2, each node carries a time
value, t. First, the navigator plans its trajectory according to
Algorithm 1. Then, the navigator’s trajectory and communi-
cation range is provided to each of the agents for their own
motion planning. In Algorithm 2, the covariance matrix P (k)
is only updated if the agent is within communication range
of the navigator at the current time, t. It is assumed that the
navigator provides range measurements corrupted by additive
Gaussian measurement noise with covariance matrix Rn.

When an agent receives a measurement from the naviga-
tor, its onboard state estimate becomes correlated with the
navigator’s state estimate. Ignoring this correlation leads to
overconfidence in the measurement [14]. Therefore, the agent
must augment its own state estimate with the navigator’s state
estimate and uncertainty.

x′(k) =

[
xa(k)
xn(k)

]
, P ′(k) =

[
Paa(k) Pan(k)
Pna(k) Pnn(k)

]
(14)

The matrix Pan represents the correlation between the agent’s
estimate of its own state and the navigator’s state estimate.

Assuming the agent and the navigator dynamics are subject
to process noise with the same spectral density, the uncertainty
can be propagated using,

P̄ ′(k) = F ′(k − 1)P ′(k − 1)F ′(k − 1)T+

G′(k − 1)Q′(k − 1)G′(k − 1)T (15)

where

F ′(k − 1) =

[
Fa(k − 1) 0

0 Fn(k − 1)

]
,

G′(k − 1) =

[
Ga(k − 1) 0

0 Gn(k − 1)

]
,

Q′(k − 1) =

[
Q(k − 1) 0

0 Q(k − 1)

] (16)

Algorithm 2 Navigation-Aware Cost Metric for Environment
with Moving Beacons
Require: parent, the parent node; ds, the step size; ∆t, the

time step; N , the number of steps
1: P ′(0)← parent.P ′

2: cost← parent.cost
3: t← parent.t
4: for k = 1 . . . N do
5: t← t+∆t
6: Calculate A(k) using Eq. (6)
7: cost← cost+A(k) · ds
8: Propagate P ′(k − 1) using Eq. (15)
9: if agent in range of navigator at time t then

10: Update P ′(k) using Eqs. (17)-(19)
11: Update P ′(k) using Eqs. (4)-(5) and (20), where

(nx, ny) equal to the navigator position at time t
12: end if
13: end for
14: return P , cost, t

and Fa(k − 1), Ga(k − 1), Fn(k − 1) and Gn(k − 1) are
calculated as in (10) using the agent states and the navigator
states respectively. For the cost metric, we use the agent’s
position covariance, P ′(1:2, 1:2).

The navigator updates its state and uncertainty estimates
using a measurement from a beacon. The navigator provides
the agent: (1) its own current state and uncertainty estimates,
and (2) a measurement of the range between the navigator and
the agent. Using this information, the agent can replace its
onboard estimate of the navigator state with information from
the navigator. The state update takes place in two phases. First,
the agent’s estimate of the navigator’s covariance, P̄nn(k),
is replaced by the covariance reported by the navigator,
P̂nn(k). Since the agent’s own covariance is correlated to the
navigator’s covariance, P̄aa(k) and the correlations P̄an(k)
and P̄na(k) must also be updated.

P̂aa(k)← P̄aa(k) + P̄an(k)

·
[
P̄−1

nn (k)P̂nn(k)P̄
−1
nn (k)− P̄−1

nn (k)
]
P̄na(k) (17)

P̂an(k)← P̄an(k)P̄
−1
nn (k)P̂nn(k) (18)

P̂na(k)← P̂an(k)
T (19)

Next, the updated matrices P̂aa(k), P̂an(k), P̂na(k), and
P̂nn(k) are re-assembled into the updated covariance matrix
P̂ ′(k). This approach is borrowed from the Q-method EKF
update [15], and it guarantees that P̂ ′(k) is a valid covariance
matrix.

Finally, a second update is performed on P̂ ′(k) using the
range measurement from the navigator to the agent. This

Fig. 5. Multi-agent planning. The navigator’s trajectory (left) is used as a moving beacon, providing measurements to the other agents (center, right).

update is an EKF update, as in (4)-(5). The measurement
Jacobian is,

H ′(k) =



x−nx√
(x−nx)2+(y−ny)2

y−ny√
(x−nx)2+(y−ny)2

0
−(x−nx)√

(x−nx)2+(y−ny)2

−(y−ny)√
(x−nx)2+(y−ny)2

0



T

(20)

where H ′(k) includes derivatives with respect to the agent’s
state estimate and the navigator’s state estimate.

A. Planning with navigator as moving beacon

Fig. 5 presents planning results for a group of three agents.
This time, planning runs for 500 iterations with an expansion
distance of 2 units. For faster planning, the segment length
is divided into steps of roughly 0.5 units. It is assumed that
all agents move at constant velocity V = 1. The navigator
provides range measurements with covariance Rn = 0.12. The
joint covariance P ′(0) is initialized with Paa(0) = Pnn(0) =
P0, and Pan(0) = Pna(0) = 0.

The navigator’s communication range covers the entire field.
The beacon location and characteristics are the same as in
Section III. If the time at the current iteration of the for-loop in
Algorithm 2 exceeds the total time of the navigator’s trajectory,
it is assumed that the navigator continues providing range
measurements from its goal point. The navigator’s covariance
does not change after it reaches the goal point.

In this example, the navigator begins at the lower-left corner
of the field and moves through the beacon region to the right.
Two agents also begin their trajectories at the left. This time,
a gap exists between two obstacles such that a very short
path to the goal node is available to Agent 1 (red). Agent 2
(purple) may move through the gap or above the upper obstacle
to its goal point at the upper-right. The navigator’s planning
tree expands upward from its start node. As in the previous
example, some trajectories that enter and leave the beacon
region are preferred over shorter trajectories that never collect
a measurement. None of the branches span the gap between

Fig. 6. Final trajectories for multi-agent planning. 3σ covariance ellipses
represent the position uncertainty. The navigator (black) sends range mea-
surements to Agent 1 (red) and Agent 2 (purple).

the obstacles. Both agents move along the shortest path to their
goal nodes, since they are able to receive measurements from
the navigator.

Fig. 6 shows all three final trajectories superimposed, along
with covariance ellipses representing the position uncertainty
of each agent. Each trajectory is smoothed using spline in-
terpolation. The three agents move roughly in parallel. The
navigator’s covariance immediately “snaps down” as it enters
the beacon region. This keeps the agents’ covariances from
growing in the direction of the navigator, though the naviga-
tor’s position uncertainty in the direction of the agents remains
high. As the navigator nears the beacon, its uncertainty reaches
a minimum. This is reflected in the agents’ uncertainty as
well; the navigator acts as a better beacon for them, since
its own uncertainty is very low. As the navigator exits the
beacon region, its uncertainty grows. As a result, the agents’
uncertainty grows as well.

B. Planning with static and moving beacons

Now consider a scenario in which agents can contact both
the navigator and the static beacon in the environment. This
is different than forcing all agents to pass through the region
of the static beacon, since they can still receive information

Fig. 7. Multi-agent planning for a scenario in which both navigator and agents can contact the static beacon. The navigator’s trajectory (left) is used as a
moving beacon, providing measurements to the other agents (center, right).

from the navigator. Thus, a tradeoff arises between flying a
longer trajectory through the measurement-rich beacon region,
or moving directly toward the goal and relying only on
measurements from the navigator.

If an agent is within range of the static beacon and the
navigator at time t, then a combined update can be formed by
stacking the H and R matrices from each measurement:

H̃ ′(k) =

[
H ′

n(k)
H ′

b(k)

]
, R̃ =

[
Rn 0
0 Rb

]
(21)

where H ′
n(k) and H ′

b(k) are the H-matrices centered about
the navigator and the static beacon respectively. H ′

n(k) is
defined in Eq. (20). The agent’s measurement Jacobian with
respect to the beacon is,

H ′
b(k) =



x−bx√
(x−bx)2+(y−by)2

y−by√
(x−bx)2+(y−by)2

0
0
0
0



T

. (22)

where x and y are the agent’s position. The matrices H̃ ′(k)
and R̃ are used in Eq. (4) in place of H and R. Again in this
experiment, the uncertainty in the range measurements from
the navigator is Rn = 0.12 and the uncertainty in the range
measurements from the static beacon is is Rb = 0.12.

Fig. 7 shows planning results for agents that can contact
the navigator and the static beacon. The navigator’s path is
the same as in the previous example. Agent 2’s path is mostly
unchanged; the accumulated volumetric uncertainty of a long
trip into the region of the static beacon is simply too great.
However, comparing the planning tree in Fig. 5 (right) to the
planning tree in Fig. 7 (right), it is clear that Agent 2 is more
likely to enter the beacon region for goal nodes in the middle
and lower-right of the if it can contact the beacon.

Agent 1’s trajectory is different from the previous example.
Agent 1 enters the static beacon region, taking advantage of
the extra measurements available there. Interestingly, a longer
trajectory is chosen over two shorter goal-reaching trajectories;

Fig. 8. Final trajectories for multi-agent planning. 3σ covariance ellipses
represent the position uncertainty. The navigator (black) sends range mea-
surements to Agent 1 (red) and Agent 2 (purple). The agents can also receive
measurements from the static beacon.

one passes through the gap between the obstacles, and one
crosses through the beacon region but remains closer to the
lower obstacle. This behavior is built in to the cost metric;
the total volume of the covariance tube is smaller along the
longer path, since the agent’s position uncertainty is low. Fig.
8 shows the three final trajectories and covariance ellipses for
this experiment.

While the path lying far below the obstacle is ultimately
chosen (i.e. has the lowest cost), any criteria may be used to
decide between goal-reaching paths. For example, if there is
some other incentive for Agent 2 to cross through the gap
that is not captured by the cost metric in Algorithm 2, then
it can be incorporated after the tree is built in the final path
selection. Also, it is important to note that the intersection
between Agent 1’s trajectory and the navigator’s trajectory in
Fig. 8 does not imply a collision between the two agents; since
the agents move at the same speed, Agent 2 arrives at the point
of intersection much later than the navigator.

V. CONCLUSION

This paper presents a cost metric for global planning that
incorporates information about navigation uncertainty. The

cost of each new node is the total volume of a “covariance
tube” originating at the start node. The covariance tube is
narrow in regions where measurement information is available
and wide in regions where the vehicle is forced to dead-
reckon. Overly-long trajectories are still penalized, like they
would be by a distance-based cost metric. However, slightly
longer trajectories may be preferred if they add significant
measurement information. We also consider multi-agent plan-
ning, and we show that the uncertainty-based cost metric can
be successfully incorporated into motion planning in scenarios
where one agent acts as a moving beacon.

This work could easily be combined with [6] or [7], where
LinCov is used in collision avoidance. In this work, we
apply a uniform buffer to all obstacles. However, a node
with very large position uncertainty should not be placed near
an obstacle. We also did not consider inter-agent collision
avoidance in multi-agent planning. This would be somewhat
more difficult to address, as trajectories would have to be
planned simultaneously. Removing the constant speed assump-
tion would perhaps help with collision avoidance, but it would
also introduce additional complexity.

In Sections III and IV, we show motion planning trees
generated by RRT* for single- and multi-agent planning in
a simple environment. We purposely choose a large number
of nodes and a short expansion distance to demonstrate the
navigation-friendly behaviors induced by the proposed cost
function. However, these problems could be solved much
faster—and with many fewer nodes—by increasing the ex-
pansion distance. Planning could also be made more efficient
by decreasing the fidelity of the covariance propagation (i.e.,
increasing the lengths of the sub-segment steps in Fig. 2).

The volume of the covariance tube was selected as the cost
metric in part because it is easy to visualize. It is approximated
numerically by multiplying the area of a covariance ellipse
by a small step length. The covariance ellipse is calculated
from a 2 × 2 covariance matrix, limiting consideration to
two states. However, any scalar value computed from the
propagated covariance matrix could be used in place of A(k).
The trace and the determinant are attractive choices, since they
incorporate uncertainty information about all the states; though
these may not be meaningful if the states have different units.
The determinant of the sub-matrix of P (k) corresponding
to any number of states with the same units is proportional
to the squared volume of the covariance ellipsoid for those
states. This squared volume could be used in place of A(k)
for higher-dimensional systems.

REFERENCES

[1] S. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Research Report 9811, 1998.

[2] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research, vol. 30,
no. 7, pp. 846–894, 2011.

[3] D. K. Geller, “Linear covariance techniques for orbital rendezvous anal-
ysis and autonomous onboard mission planning,” Journal of Guidance,
Control, and Dynamics, vol. 29, no. 6, pp. 1404–1414, 2006.

[4] L. Heflin, N. J. Zuiker, G. E. Calkins, Z. R. Putnam, and D. Whitten,
“Linear covariance analysis framework for aerospace vehicle trajectory
modeling and parametric design,” in AIAA SciTech 2022 Forum, p. 2276,
2022.

[5] A. Sakai, D. Ingram, J. Dinius, K. Chawla, A. Raffin, and A. Paques,
“Pythonrobotics: a python code collection of robotics algorithms,” arXiv
preprint arXiv:1808.10703, 2018.

[6] R. S. Christensen, G. Droge, and R. C. Leishman, “Closed-loop linear
covariance framework for path planning in static uncertain obstacle
fields,” Journal of Guidance, Control, and Dynamics, vol. 45, no. 4,
pp. 669–683, 2022.

[7] A. W. Berning, A. Girard, I. Kolmanovsky, and S. N. D’Souza, “Rapid
uncertainty propagation and chance-constrained path planning for small
unmanned aerial vehicles,” Advanced Control for Applications: Engi-
neering and Industrial Systems, vol. 2, no. 1, p. e23, 2020.

[8] M. Fujiwara and R. Funase, “Observability-aware differential dynamic
programming with impulsive maneuvers,” Journal of Guidance, Control,
and Dynamics, vol. 47, no. 9, pp. 1905–1919, 2024.

[9] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under
uncertainty using differential dynamic programming in belief space,” in
Robotics research: The 15th international symposium ISRR, pp. 473–
490, Springer, 2017.

[10] W. Han, A. Jasour, and B. Williams, “Real-time tube-based non-
gaussian risk bounded motion planning for stochastic nonlinear systems
in uncertain environments via motion primitives,” in 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 2885–2892, IEEE, 2023.

[11] R. Kalman, “A new approach to linear filtering and prediction problems,”
Transaction of the ASME- Journal of Basic Engineering, vol. 82, pp. 35–
45, 1960.

[12] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with applica-
tions to tracking and navigation: theory algorithms and software. John
Wiley & Sons, 2004.

[13] S. Yun, K. Tuggle, R. Zanetti, and C. D’Souza, “Sensor configuration
trade study for navigation in near rectilinear halo orbits,” The Journal
of the astronautical sciences, vol. 67, pp. 1755–1774, 2020.

[14] A. Bahr, J. J. Leonard, and A. Martinoli, “Dynamic positioning of bea-
con vehicles for cooperative underwater navigation,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 3760–
3767, IEEE, 2012.

[15] T. Ainscough, R. Zanetti, J. Christian, and P. D. Spanos, “Q-method
extended kalman filter,” Journal of Guidance, Control, and Dynamics,
vol. 38, no. 4, pp. 752–760, 2015.

