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TAYLOR PROPAGATION FOR ENSEMBLE BASED FILTERING

Felipe Giraldo-Grueso*, Alberto Fossà †, Ryan J. Menges‡, Daniel J. Scheeres§,
Renato Zanetti¶

The propagation step in spacecraft navigation can be computationally expensive
when dealing with particles. This makes the implementation of nonlinear filters
difficult for onboard applications. Studying fast and accurate propagation schemes
is therefore crucial to enable the use of nonlinear filters onboard spacecraft. In this
work, numerical propagation based on the Taylor method is compared with Runge-
Kutta (RK)-type integrators in the context of the Earth-Moon system, modeled
via the circular restricted three-body problem (CR3BP). The Taylor integrator is
shown to be faster that the numerical propagators in this environment, without
accuracy loss. In addition, the Taylor integrator is used for the propagation step in a
relative navigation scenario, where the ensemble Gaussian mixture filter (EnGMF)
is used to estimate the state of a chaser, in a quasi-periodic orbit (QPO), relative
to Gateway, in the near rectilinear halo orbit (NRHO). In this example, the Taylor
integrator shows to be faster than the RK-type integrators, and the runtime remains
nearly constant when considering longer propagation horizons.

INTRODUCTION

In state estimation, the Bayesian recursive relations (BRRs) are solved to estimate the state
probability density function (PDF).1 These relations are composed of two steps. In the case of
continuous dynamics, the first step deals with the propagation of the state PDF via the Fokker-Planck
(FP) equation2 (for discrete dynamics, the Chapman-Kolmogorov (CK) equation is used for the
PDF propagation1). In this step, the state PDF is propagated to the next measurement epoch. After
recording a measurement, the second step is to update the state PDF using Bayes’ rule. If the
dynamics and measurement models are linear and driven by zero-mean Gaussian additive noise, the
BRRs can be analytically solved using the Kalman filter (KF).1 When the dynamics become highly
nonlinear and the state PDF starts to become non-Gaussian, the BRRs can become intractable. In
this case, using linear filters, such as the KF, can result in loss of accuracy and consistency.

Most onboard navigation solutions use linear filters, such as the extended Kalman filter (EKF)1

or the unscented Kalman filter (UKF),3 to produce a fast approximation to the Bayesian estimation
problem. Note that in this work, the linearity of a filter is defined with respect to the use of the
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measurement in the update step. In space applications, these filters are typically coupled with
numerical integrators, to propagate the previous state estimate to the current epoch. While this
approach has been proven to be effective, the accuracy of the estimate could be improved by using
nonlinear filters such as the particle filter (PF),4 the ensemble Gaussian mixture filter (EnGMF),5–7

or the point mass filter (PMF).8–11 The challenge with nonlinear filters is that they rely on particles
or grids, which can make the onboard numerical integration computationally unfeasible. Therefore,
exploring different methodologies to accurately propagate the state in a rapid manner could enable
the use of nonlinear filters for onboard spacecraft applications.

Sequential filters for onboard orbit determination (OD) typically rely on Runge-Kutta (RK) type
numerical integrators for the propagation step.12 These are explicit methods that come in two
flavors: fixed or adaptive step size. The former are simpler to implement and require a known
number of operations to propagate the state after selecting the step size. However, to preserve the
accuracy, the step size must be tuned for the regions where the dynamics are faster, thus forcing the
integrator to take redundant steps in the slower regions. This issue is addressed by adaptive step
size integrators, which adjust the step size based on the local error, although at the expenses of a
more complex algorithm. A different approach to numerical integration is the Taylor method.13 In
contrast to high-order RK integrators that evaluate the dynamics at multiple points within the same
step, the Taylor method achieves the same accuracy by evaluating the higher-order derivatives of the
dynamics at a single point. This is particularly advantageous at tighter tolerances, as the growth in the
computational cost when moving to higher accuracies is slower compared to that of RK integrators.13

These properties are demonstrated in this work where heyoka,14 a highly optimized implementation
of the Taylor method, is used to improve the performance of nonlinear sequential filters.

In cislunar space, where observations are sparse and the dynamics are highly nonlinear, using linear
filters for onboard OD can lead to poor estimation performance.6 Nonlinear filters can offer improved
accuracy in such environments, though at the expense of increased computational demands due to
the propagation of particles. Therefore, the adoption of these fast Taylor propagation techniques
could yield benefits by allowing the use of nonlinear filters for onboard OD. In this work, the
circular restricted three-body problem (CR3BP) is used to model the Earth-Moon system, focusing
on spacecraft orbiting a 9:2 resonant near rectilinear halo orbit (NRHO) and a nearby quasi-periodic
orbit (QPO). This setup provides a challenging scenario for evaluating the performance of the Taylor
integrator under highly nonlinear conditions. Additionally, its use within a nonlinear filter is validated
through a relative navigation scenario, where linear filters are shown to diverge.

The remainder of this paper is organized as follows. First, the CR3BP is presented. Next, the
Taylor method is discussed focusing on the characteristics of the chosen implementation, namely
heyoka. The equations for the EnGMF are then presented. Subsequently, two numerical examples
are presented. The first example compares the Taylor integrator with several state-of-the-art RK-type
integrators. The second example validates the use of heyoka in a relative navigation scenario using
the EnGMF. Finally, conclusions are drawn.

THE CIRCULAR RESTRICTED THREE BODY PROBLEM

The CR3BP is a dynamical model that describes the motion of an infinitesimally small body under
the gravitational attraction of two massive bodies, known as primaries.15 The two primaries have
masses m1 and m2, respectively, where m1 ≥ m2. These primaries are modeled as point masses,
and assumed to move in a circular orbit about their common barycenter. The third body has mass
m3 ≪ m1,m2, and does not affect the motion of the primaries. The system is completely described
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by the mass parameter µ, which is defined as the ratio between m2 and the sum of the primaries’
masses, i.e.

µ =
m2

m1 +m2
, (1)

where 0 < µ ≤ 1/2 since m1 ≥ m2.

The motion of m3 is studied in a rotating frame, the synodic frame, in which the two primaries
remain stationary. The frame’s origin O coincides with the barycenter of m1 and m2, while its x
axis is along the P1 − P2 segment, pointing towards P2, where P1 and P2 are the location of the
primaries. The z axis is aligned with the primaries’ angular momentum vector, ω, and the y axis
completes the right-handed triad. The construction of the frame is shown in Fig. 1 together with the
inertial frame OXY Z . Capital letters denote the axes of the inertial frame, while lowercase letters
denote those of the rotating frame. Both frames share the same origin O.

Units are defined such that the distance between the primaries is equal to one and the period of
their orbit is equal to 2π. Using these units, the synodic frame rotates with respect to the inertial
frame with constant angular velocity ω = 1k̂, where k̂ is the unit vector along the Z axis. The
primaries are located at P1 = (−µ, 0, 0) and P2 = (1− µ, 0, 0), respectively, while the third mass is
located at P3. The position of the latter is r = [x y z]T, and its velocity is v = [ẋ ẏ ż]T. The vectors
r1 and r2 denote the position of P3 relative to P1 and P2, respectively.
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Figure 1: Definition of the CR3BP synodic frame.

The gravitational potential generated by the two primaries on P3 is given by

U (x, y, z) = −1− µ

r1
− µ

r2
, (2)

where r1 and r2 are given by

r1 = ∥r1∥ =

√
(x+ µ)2 + y2 + z2,

r2 = ∥r2∥ =

√
(x− 1 + µ)2 + y2 + z2.

(3)

The equations of motion (EOMs) that govern the motion of m3 are then expressed in the synodic
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frame as15

ẍ− 2ẏ = −∂Ū

∂x
,

ÿ + 2ẋ = −∂Ū

∂y
,

z̈ = −∂Ū

∂z
,

(4)

with Ū (x, y, z) the augmented or effective potential given by

Ū (x, y, z) = −1

2

(
x2 + y2

)
+ U (x, y, z) . (5)

Equation (4) is a system of three second-order ordinary differential equations (ODEs) that must be
numerically integrated with known initial conditions (ICs) to predict the motion of m3 over time.
Since the EOMs in Eq. (4) are Hamiltonian and independent of time, they admit an energy integral
of motion E. However, the Jacobi constant C = −2E is used more frequently.15 It is computed as

C (x, y, z, ẋ, ẏ, ż) = −
(
ẋ2 + ẏ2 + ż2

)
− 2Ū (x, y, z) . (6)

TAYLOR INTEGRATION

Numerical integration methods based on Taylor series expansions were first developed to study
the dynamics of beams in particle accelerators.16 These techniques have since been adopted to
solve different initial value problems (IVPs) in astrodynamics, including the CR3BP,13 the N -body
problem,14, 17 and the dynamics around irregularly-shaped bodies such as asteroids and comets.14

Similarly to RK methods, the Taylor integrator is an explicit method. It differs however in the way
each step is computed, and, for variable step size integrators, in the way the error is controlled.

Consider the IVP {
ẋ (t) = f (x, t) ,

x (t0) = x0,
(7)

with x ∈ Rn the state vector, f : Rn × R → Rn the dynamics, t ∈ R the time, x0 the ICs, and t0
the initial time. Given the state x(tk) at time tk, the Taylor integrator computes the state at time
tk+1 = tk + hk as13

x (tk+1) =

p∑
n=0

1

n!
x(n) (tk)h

n
k , (8)

where x(n)(tk) is the n-th time derivative of the state evaluated at tk, hk is the current step size, and
p > 0 is the order of the integrator. Note that for p = 1 Eq. (8) reduces to the Euler method. From
Eq. (7) the following relation holds

x(n) (t) = f (n−1) (x(t), t) n > 0, (9)

i.e. the n-th time derivative of the state coincides with the (n− 1)-th time derivative of the dynamics
∀t ∈ R and n > 0. From Eqs. (8) and (9) follows that the dynamics must be at least p − 1 times
differentiable, and that these derivatives must be evaluated repeatedly to solve Eq. (7). If the first
requirement is intrinsically related to the problem being solved, the second one is efficiently addressed
by using automatic differentiation (AD) techniques. Contrarily to other numerical differentiation
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techniques such as finite differences methods, AD provides machine-precision accuracy with no
computational overhead compared to the evaluation of the analytical derivatives. Given its advantages,
this technique is at the core of most modern Taylor integrators,13, 14, 17 including the integrator used
in this work.

The Taylor integration method is a variable order integrator and there are two independent
parameters that can be tuned to control its error: the order p and the step size hk. If the same
accuracy can be obtained for different combinations of these parameters, it is of interest to select the
combination that minimizes the number of operations required to integrate the dynamics over a given
time span. Denoting with εm the maximum allowed absolute truncation error, the optimal order pm
satisfies13

pm =

⌈
−1

2
log εm + 1

⌉
, (10)

where ⌈·⌉ denotes the ceiling function. The corresponding step size hk at time tk is then computed as

hk =
ρm,k

e2
exp

(
− 0.7

pm − 1

)
, (11)

with e denoting Euler’s number and ρm,k an estimation of the smallest radius of convergence among
the Taylor series of all state variables at time tk.14 Although Eq. (11) is not an explicit function of
εm, the step size hk still depends on the error tolerance through the order pm. One advantage of the
Taylor integrator is that pm can be much larger than the order of typical RK methods. This makes the
Taylor method particularly suitable for high-accuracy applications, as its runtime is less affected by
tighter tolerances where higher-order expansions are exploited to limit the number of steps.13

Motivated by the previous points, this work uses heyoka,14 an adaptive Taylor integrator. This
integrator is implemented in C++ and includes the AD framework for the computation of the higher-
order derivatives of the dynamics. The code is open-source* and exposed to Python through the
pybind11 library†. A Python package that depends on heyoka’s Python wrapper was developed
and used in this work to build the adaptive integrator for the CR3BP dynamics. As the examples in this
work are implemented in MATLAB, this integrator is called directly from the MATLAB environment
using its native Python interface.

ENSEMBLE GAUSSIAN MIXTURE FILTER

As mentioned previously, the EnGMF has been shown to outperform linear filters, such as the
UKF.6 The EnGMF can be categorized as a hybrid PF coupled with ideas from the Gaussian sum
filter (GSF).18, 19 Instead of propagating multiple Gaussian distributions, which can be expensive,
the EnGMF propagates particles and uses kernel density estimation (KDE) techniques20 to build a
Gaussian mixture (GM) from the propagated particles. For this section, let the dynamics be expressed
as

xk+1 = Fk (xk) + νk, (12)

where xk ∈ Rn is the state at time step k, Fk : Rn×R → Rn is the flow of Eq. (7) obtained either by
numerical integration or via the Taylor propagator, and νk ∈ Rn is additive white Gaussian process
noise. In addition, let the measurement model be described as

yk = hk (yk) +wk, (13)

*https://github.com/bluescarni/heyoka
†https://github.com/bluescarni/heyoka.py
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with yk ∈ Rs the measurement at time step k, hk : Rn × R → Rs the measurement model, and
wk ∈ Rs additive white Gaussian measurement noise.

The EnGMF is composed of four steps.6 The first step is to propagate the previous posterior
particles, which represent the state PDF at time step k as a Dirac mixture (DM)

p(xk|yk) ≈
1

N

N∑
i=1

δ
(
xk −X+(i)

k

)
, (14)

where X+(i)
k represents the i-th posterior particle at time step k and N is the total number of particles.

The particles are propagated to the next time step k + 1, such that

X−(i)
k+1 = Fk

(
X+(i)

k

)
+ ν

(i)
k , (15)

where X−(i)
k+1 is the i-th prior particle at time step k + 1 and ν

(i)
k is the i-th process noise sample at

time step k. With the propagated particles, the propagated PDF can be described as

p(xk+1|yk) ≈
1

N

N∑
i=1

δ
(
xk+1 −X−(i)

k+1

)
. (16)

The second step is to build a GM from the DM in Eq. (16) using KDE techniques

p(xk+1|yk) ≈
1

N

N∑
i=1

N
(
xk+1;X

−(i)
k+1 , β

2
silP̂k+1

)
, (17)

where

P̂k+1 =

[
X−(i)

k+1 −
1

N

N∑
i=1

X−(i)
k+1

]
[·]T , (18)

and β2
sil is given by Silverman’s rule of thumb20

β2
sil =

(
4

N (n+ 2)

) 2
n+4

. (19)

The third step is to update the GM in Eq. (17) once a measurement (yk+1) is obtained. To update
the GM, a GSF update is performed18, 19 such that

p(xk+1|yk+1) ≈
N∑
i=1

w̃
(i)
k+1N

(
xk+1; X̃

+(i)

k+1 , P̃
(i)
k+1

)
, (20)

where X̃
+(i)

k+1 and P̃
(i)
k+1 are obtained by performing a Kalman update on each component, and the

weights, w̃(i)
k+1, are proportional to the probability of the measurement, i.e.

w̃
(i)
k+1 ∝ N

(
yk+1;hk+1

(
X−(i)

k+1

)
,W

(i)
k+1

)
, (21)
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where W
(i)
k+1 is the i-th innovation covariance. Note that the first two moments of Eq. (20) can be

obtained using the following formulation

x+
k+1 =

N∑
i=1

w̃
(i)
k+1X̃

+(i)

k+1 , (22)

P+
k+1 =

N∑
i=1

w̃
(i)
k+1

(
P̃

(i)
k+1 +

[
X̃

+(i)

k+1 − x+
k+1

]
[·]T

)
. (23)

The fourth and final step is to resample particles (X+
k+1) from the GM in Eq. (20), to return to a

DM approximation as in Eq. (14). Sampling points from a GM is not a straightforward process. The
canonical EnGMF samples points randomly.5, 6 Other strategies have been implemented to sample
deterministic points, although with a higher algorithmic complexity.21 This work adheres to the
canonical formulation and samples points randomly. Figure 2 shows a flowchart of the four steps in
the EnGMF.

Figure 2: Flowchart of the four steps in the EnGMF.

Note that the most computationally expensive parts of this algorithm are the propagation of the
particles in Eq. (15) and the Kalman update of each of the Gaussian components in Eq. (17). This
work focuses on comparing different propagation methods, as presented in the previous section, in
order to study their effect when using them within the EnGMF framework.

NUMERICAL EXAMPLES

This section presents two numerical experiments. The first example compares the performance of
the Taylor integrator, heyoka, with other state-of-the-art numerical integrators. The second example
compares the impact of different integrators when implemented in the EnGMF to perform relative
navigation. Both consider spacecraft in the cislunar region and model the dynamics with the CR3BP.

Integrator Performance

To assess the performance of heyoka, the latter is compared against the numerical integrators for
non-stiff ODEs available in MATLAB, namely ode45,22, 23 ode78,24 ode89,24 and ode113.23, 25

A C++ implementation of the Dormand-Prince (DP)54 method, generated from MATLAB source
code using the MATLAB Coder, is also included in the comparison. Note that these integrators are
coded in different programming languages. The MATLAB integrators are expected to be the slowest
since the code is interpreted. However, both heyoka and the DP54 method are implemented in C++
and thus compiled ahead-of-time (AOT). Moreover, the expression needed to evaluate the right-hand
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side (RHS) of Eq. (8) are computed and compiled just-in-time (JIT) when the propagator is called
for the first time, and then cached for subsequent use.*

These integrators are tested on the CR3BP dynamics to measure their runtime and their consistency
for different tolerances. The ICs used in this test correspond to the apolune of the 9:2 resonant L2

southern NRHO in the Earth-Moon system. These ICs are propagated for 9 revolutions, or about
59 days, and the simulations are repeated 300 times to obtain statistically significant results. The
average runtime for each method, as well as the runtime relative to heyoka, are shown in Fig. 3.
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Figure 3: Absolute runtime for all integrators (left) and runtime relative to heyoka for different
tolerances (right).

Regarding the MATLAB integrators, Fig. 3a shows that ode45 is the fastest method at looser
tolerances. However, higher-order methods become more efficient for tolerances tighter than 10−10,
as their runtime is less affected by the error threshold. The C++ implementation of the DP54 method
shows the same trend as ode45, but it is also one order of magnitude faster than the latter across all
tolerances due to being compiled. Finally, heyoka is the fastest among all tested methods, and its
performance is the least affected by the tolerance due to its variable order implementation. Figure 3b
shows that the Taylor integrator is 2.5 times faster than the C++ DP54 method for εm = 10−5, and
over 30 times faster for εm = 10−14. As expected, the gap between heyoka and the MATLAB
integrators is even larger, with the former being 20 to 90 times faster than the best performing
MATLAB alternative at each tolerance.

The accuracy of each method is assessed by comparing the Jacobi constant of the ICs with that of
the final state output by the corresponding integrator. This constant, defined in Eq. (6), is the only
integral of motion in the CR3BP. Figure 4 shows the Jacobi constant error for the different integrators
with different tolerances. From this figure, it can be seen that heyoka is the most accurate across all
tolerances, closely followed by MATLAB’s ode89 and ode78. The ode113 integrator performs
relatively the worst, while ode45 and the DP54 integrator perform equally in between.

*If anything, there is a clear overhead when calling the Python wrapper for heyoka from MATLAB.
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Figure 4: Jacobi constant error as a function of tolerance for all integrators.

Relative Navigation

To study the effect that different propagators can have on the propagation step for the EnGMF, a
relative navigation example is presented.26 In this example, a target spacecraft is modeled as NASA’s
Gateway on a 9:2 resonant NRHO. The chaser spacecraft, whose orbit is unknown and estimated,
resides in cislunar space near Gateway’s NRHO. The objective of this relative navigation example
is to estimate the absolute state of the chaser relative to the Earth-Moon barycenter using relative
measurements. These relative measurements are simulated to be obtained onboard the chaser by
observing the target.

For the specific scenario implemented here, Gateway is modeled on a 9:2 NRHO and the chaser
is on a QPO, both simulated using the CR3BP formulation. The QPO is two-dimensional (in
frequency) and corresponds to bounded non-periodic motion occurring on the surface of an invariant
torus near a periodic orbit possessing oscillatory modes.26 A two-dimensional QPO is defined by
two fundamental frequencies, and in this implementation, the chaser’s QPO is bounded relative
to Gateway’s NRHO, with one of its fundamental frequencies matching the orbital period of the
NRHO.26 The QPO of the chaser and the NRHO of Gateway are shown in Fig. 5.

A geometric representation of the relative dynamical model is shown in Fig. 6. In this figure, the
vectors rG and r represent the position vectors of Gateway and the chaser, respectively, relative to
the barycenter of the Earth-Moon system. The vector ρ, which is defined as

ρ = rG − r, (24)

represents the relative position between the two spacecraft. Using the notation from the geometric
representation shown in Fig. 6, the state for the chaser, estimated using the different filtering methods,
is defined as

x =

[
r
v

]
=

[
x y z ẋ ẏ ż

]T
, (25)

where r and v are the position and velocity vectors, relative to the Earth-Moon barycenter, of the
chaser. Within the estimation framework, the state for the target, Gateway, is defined as

xG =

[
rG
vG

]
=

[
xG yG zG ẋG ẏG żG

]T
, (26)

9



Figure 5: Chaser spacecraft’s unknown QPO and Gateway’s known 9:2 NRHO used for the relative
navigation example (adapted from Menges and Scheeres26, 27).

where rG and vG are the position and velocity vectors, relative to the Earth-Moon barycenter. The
state of Gateway is assumed to be known at all times onboard the chaser and is used within the
measurement model for estimating its orbital trajectory.
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Figure 6: Geometric model for a relative navigation example involving NASA’s Gateway on a 9:2
NRHO and a chaser spacecraft on a nearby orbit (adapted from Menges and Scheeres26).

For this filtering scenario, the measurement model uses optical-only measurements consisting of
azimuth and elevation to Gateway, θ1 and θ2, measured from the chaser. As mentioned previously,
this model assumes that Gateway’s state is known onboard the chaser. The geometry associated with
these optical measurements is illustrated in Fig. 7, which shows the two angles relative to a rotating
coordinate frame centered on the chaser. The equations defining the optical angle measurements are
given by28

θ1 = tan−1
(
ρy (ρx)

−1
)
, (27)

θ2 = tan−1

(
ρz

(√
ρ2x + ρ2y

)−1
)
, (28)

where ρx, ρy, and ρz are the components of the relative position vector ρ, defined in Eq. (24), in the
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rotating coordinate frame, such that

ρ =
√
ρ · ρ =

√
ρ2x + ρ2y + ρ2z. (29)

Note that, since attitude dynamics are not taken into account in this example, the rotating coordinate
frame is aligned with the synodic frame but is centered at the chaser. Combining these expressions
for the angles-only measurement model, the relative measurement model used here is defined as

hk (x,xG) =
[
θ1 θ2

]T
. (30)
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Target

Figure 7: Relative navigation measurement model between NASA’s Gateway on a 9:2 NRHO and a
chaser spacecraft on a nearby orbit (adapted from Menges and Scheeres26).

For this example, three different filters are implemented and compared as follows:

1. UKF (DP54): This filter uses the UKF formulation and uses the DP54 propagator presented
in the Integrator Performance section to propagate the sigma points.

2. EnGMF (DP54): This filter follows the formulation presented in the previous section and
uses the DP54 propagator presented in the Integrator Performance section to propagate the
particles.

3. EnGMF (heyoka): This filter follows the formulation presented in the previous section and
uses the heyoka propagator presented in the Integrator Performance section to propagate the
particles.

The use of these three filters is made to compare the performance between linear and nonlinear filters,
and to evaluate the runtime efficiency between using numerical propagators vs. Taylor integrators.
For the UKF, α = 1, β = 2, and κ = 3− n, following the implementation described in Särkkä.29

For both versions of the EnGMF, 500 particles are used. The true chaser trajectory and Gateway’s
location are obtained by using MATLAB’s ode78.

For each filter, 100 Monte Carlo (MC) runs are performed starting from an initial condition

x0 ∼ N
([

396717.65 km 0 km −67769.35 km 0 m
s −97.58 m

s 0 m
s

]T
,P0

)
, (31)

representing the approximate apolune of the QPO, with

P0 =

[
(25 km)2 I3×3 03×3

03×3

(
5 m

s

)2
I3×3

]
. (32)
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The location of Gateway is initialized at the apolune of the 9:2 NRHO. The true chaser dynamics are
propagated with additive zero-mean Gaussian process noise as described in Eq. (12), with covariance

Qk = σ2
Q

[
∆t2k
2

I3×3 ∆tk I3×3

]T [
∆t2k
2

I3×3 ∆tk I3×3

]
, (33)

with σQ = 1× 10−12 km
s2

, and ∆tk = 0.5 days. The angular measurements (obtained every ∆tk) are
also corrupted with zero-mean Gaussian process noise as described in Eq. (13), with covariance26

Rk = σ2
RI2×2, (34)

with σR = 1× 10−5 rad.

To compare the performance of the three different filters, the standard deviation profiles are used.30

The standard deviation profiles for position and velocity are defined as,

σr(k) =
1

Nm

Nm∑
j=1

√
P

+(1,1)
k,j + P

+(2,2)
k,j + P

+(2,2)
k,j , (35)

σv(k) =
1

Nm

Nm∑
j=1

√
P

+(4,4)
k,j + P

+(5,5)
k,j + P

+(6,6)
k,j , (36)

where Nm is the total number of MC runs. The standard deviation profiles obtained with the filter
are compared with the sample standard deviation of the MC runs. The left panel in Fig. 8 shows the
trajectory of Gateway (following the NRHO) and the chaser spacecraft in the QPO. The right panels
in Fig. 8 shows the standard deviation profiles for each filter in solid lines. Their respective sample
standard deviations are shown in dashed lines. For a filter to be consistent, its solid and dashed lines
should match. If the filter is conservative, which can be desirable for aerospace applications, the
solid line lies above the dashed line. If the filter is overconfident, suggesting potential divergence in
the estimation error, the dashed line lies above the solid line.

From the standard deviation profiles, various conclusions can be drawn. First, it is clear that the
UKF starts to diverge after the first perilune pass. The UKF completely diverges after the second
perilune pass. In contrast, the EnGMF is able to accurately estimate the state throughout the entire
trajectory. Despite perilune spikes, the EnGMF quickly recovers after gaining angular information.
In addition, it can be seen that both the EnGMF (DP54) and the EnGMF (heyoka) provide the same
exact performance. This figure shows the advantage of using nonlinear filters for highly nonlinear
scenarios, and the equivalence of using numerical or Taylor integrators.

Figure 9 shows, on the left axis, the average position (Fig. 9a) and velocity (Fig. 9b) RMSE as
a function of measurement frequency for the EnGMF (DP54) and the EnGMF (heyoka). The
right axis of Fig. 9 shows the average runtime as a function of measurement frequency. Two main
trends can be observed in this figure. First, as expected, the average estimation error grows with
the sparsity of the measurements. As measurements become more sparse, the accuracy of the filter
degrades equivalently for the EnGMF (DP54) and the EnGMF (heyoka). Second, the advantages
of using the Taylor integrator can be noticed. As the propagation interval grows, the runtime for
the EnGMF (DP54) grows linearly. In contrast, the runtime obtained with the EnGMF (heyoka)
stays approximately constant. This shows that the main slowdown or computational bottleneck in the
EnGMF is the propagation step, which can be alleviated by using Taylor integrators without losing
accuracy.

12



0 5 10 15 20 25

100

105

<
r

(k
m

)

0 5 10 15 20 25

Time (days)

100

105

<
v

(m
/s

)

0.04
-0.18

y (LU)

0.00

0.
98

x (LU)

1.
00

-0.04

1.
02

-0.09

z
(L

U
)

0.00

UKF (DP54)
EnGMF (DP54)
EnGMF (heyoka)

Filter <
Sample <

Gateway
Chaser
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Figure 9: Position root mean square error (RMSE) and runtime as a function of ∆t (left) for the two
versions of the EnGMF. Velocity RMSE and runtime as a function of ∆t (right) for the two versions
of the EnGMF.

CONCLUSIONS

This work examined the implementation of the Taylor propagator, heyoka, with an EnGMF to
support autonomous onboard OD under nonlinear dynamical conditions. Using the Earth-Moon
system modeled by the CR3BP, the Taylor propagator was compared to existing numerical integrators,
including MATLAB’s ode45, ode78, ode89, and ode113, and a compiled DP54 implementation.
The results indicate that heyoka achieves low truncation errors and lower runtimes across a range
of tolerances, making it suitable for high-accuracy propagations.
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The Taylor propagator was then applied to the EnGMF to solve a relative navigation problem in
cislunar space. In this scenario, a chaser spacecraft on a QPO estimates its state using relative angular
measurements to NASA’s Gateway on a 9:2 resonant NRHO. The UKF diverged under these highly
nonlinear dynamics, whereas both EnGMF implementations, using DP54 and heyoka, produced
consistent state estimates. In addition, the EnGMF that uses the Taylor propagator maintained a
nearly constant runtime for longer propagation intervals, reducing the overall computational costs
associated with particle propagation.

Overall, combining Taylor integration and the EnGMF offers a practical solution for autonomous
onboard OD in nonlinear scenarios such as the cislunar space. This integrated approach reduces
the computational burden of propagating multiple particles and supports robust and accurate state
estimation in challenging dynamical environments. Future work could explore extensions to different
dynamical models and higher-fidelity onboard navigation systems to further enhance autonomous
capabilities.
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