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INFORMATION-BASED GUIDANCE FOR ANGLES-ONLY
RELATIVE NAVIGATION IN NONLINEAR DYNAMICS

Sergio Bonaccorsi*, Alberto Fossà†, Roberto Armellin‡, Pierluigi Di Lizia§,
Renato Zanetti¶

The increasing presence of small spacecraft in environments characterized by non-
linear dynamics demands autonomous navigation strategies capable of dealing
with limited sensing capabilities. This work presents a guidance policy that im-
proves angles-only relative navigation performance through impulsive maneuvers
that maximize information gain. The maneuver is optimized using both nonlinear
programming and polynomial optimization under constraints on fuel consumption
and tracking of a reference trajectory. The second method outperforms in terms
of computational time, proving to be a valuable initial step for onboard guidance
algorithms implementation. The test cases involving two spacecraft on close cis-
lunar orbits demonstrate improved state observability. A sensitivity analysis pro-
vides insight into the behavior of the methods under uncertainties. Applications of
such guidance policy may include formation flying, satellite inspection, and aster-
oid exploration missions, where enhanced navigation performance is essential for
mission success in complex dynamical environments.

INTRODUCTION

A growing number of spacecraft is expected to operate in lunar and cislunar regimes. At the
same time, space exploration is increasingly leveraging small platforms like SmallSats and Cube-
Sats, which offer cost-effective opportunities for scientific and technological advancements. For
both scientific and economic purposes, these small spacecraft generally carry an optical payload
capable of acquiring images of target objects. Such data can then be processed through appropriate
image processing pipelines to finally provide angular measurements of a given target. Issues related
to state estimation operations in such a chaotic dynamics by relying on angles-only measurements
are therefore becoming more and more relevant.1 The primary weakness of this navigation method
is that range information is not directly measured, thus leading to observability issues. Within this
context, the motivations for enabling guidance and navigation co-design become evident. Employ-
ing control actions to enhance state estimation performance can be critically advantageous across
a variety of mission scenarios, such as spacecraft formations, satellite inspection, and asteroid ex-
ploration. This approach allows the spacecraft to actively improve the information content of its
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measurements, thereby improving navigation accuracy in situations where observability is other-
wise limited. Moreover, as autonomous spacecraft operations increasingly assume a central role in
space mission design, the interest for computationally efficient algorithms to be used for real-time
onboard operations is growing.

Information-based guidance has emerged as a promising framework for enhancing navigation
performance in angles-only scenarios where observability is limited. A key contribution is the work
of Woffinden and Geller, who formally analyze the observability conditions of angles-only naviga-
tion systems.2 In a two-body dynamics framework, they show that without control input, the system
is unobservable due to the range ambiguity in the relative state. However, they demonstrate that a
properly designed impulsive maneuver can ensure full system observability, highlighting the cru-
cial role of control actions in enabling reliable state estimation from bearing measurements alone.
More recently, Greaves and Scheeres have extended these principles to inter-satellite tracking in
cislunar space. They present an analytical formulation for the computation of impulsive maneuvers
that maximize the deviation in optical-only measurements, known as the Maximum Measurement
Deviation (MMD) maneuver. The approach relies on linearized relative dynamics and introduces
an eigenvalue-based solution to identify the control direction that maximizes the sensitivity of the
measurement space to changes in the state. The MMD maneuver is elegant and computationally
efficient, but it does not explicitly account for practical mission constraints such as reference tra-
jectory adherence. As such, it can be used as a foundational benchmark for more general guidance
strategies.

This study aims to evaluate the potential and limitations of an information-driven guidance policy.
The idea is to address a guidance problem focused on maximizing the information content of angles-
only measurements by pursuing the relative range uncertainty reduction as proposed by Greaves and
Scheeres.3 Starting from this foundation, the study introduces incremental improvements over prior
approaches by incorporating key operational constraints. These include maintaining proximity to
a reference trajectory and keeping fuel consumption below a specified threshold. The proposed
solution consists of an impulsive maneuver designed to reduce the relative uncertainty, thereby
improving overall mission performance and reducing the need for future intensive navigation efforts.
Furthermore, a novel contribution is offered through the formulation of the guidance problem within
a polynomial optimization framework.

The statement of the problem is first introduced, with details about the formulation in two dif-
ferent frameworks, namely the nonlinear programming (NLP) problem and the polynomial opti-
mization problem (POP). The numerical results obtained from these two approaches applied on two
different scenarios are then presented and compared in terms of performance through different met-
rics. A sensitivity analysis is performed to assess the robustness of the solutions under uncertainties
and in different configurations. Key observations on the results are then discussed. Finally, the
conclusions summarize the main findings, highlight the objectives achieved, and propose directions
for future research.

PROBLEM STATEMENT

In the context of the Circular Restricted Three Body Problem (CR3BP),4 the following guidance
problem is considered for the design of information-driven maneuvers. The objective is to minimize
the relative range uncertainty between the observer spacecraft and a target in a fixed time interval.
Additionally, nonlinear constraints on a limited fuel budget and maximum distance from the refer-
ence trajectory are included. The timeline of the analyzed scenario is illustrated in Figure 1. The
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red bar indicates the relative navigation phase, while the green arrow marks the moment at which
the impulsive maneuver, derived from the optimization process, is applied. The days elapsed since
the starting point are shown above the timeline, whereas the relevant time markers used to define
the quantities involved in the optimization problem are displayed below.

Figure 1: Timeline of the guidance problem. The red bar represents the relative navigation phase
and the green arrow marks the maneuvering point. Above the timeline, the days after the starting
point are reported. Below the timeline, the times used within the optimization problem are reported.

Nonlinear Programming Problem

Following the work by Greaves and Scheeres,3 the same quantity representing the relative range
uncertainty will be considered for the optimization problem.

σ2
ρ(∆v) = MT

ρ P̃fMρ (1)

Here, P̃f is the covariance at the final time of the navigation window, and Mρ maps the covari-
ance onto the relative range direction between the observer and the target ρ̂f , such that

Mρ =
[
0T6×1 ρ̂T

f 0T3×1

]T
(2)

In the NLP framework, the problem can be then formulated as follows:

min
∆v

σ2
ρ(∆v) (3)

subject to the equality constraints:

x(t1) = x(t0) +

∫ t1

t0

f(x(t), t) dt (4a)

x(t0) = x−
0 +

[
0n×1

∆v

]
(4b)

and inequality constraints:

[x(tk)− x̄k]
T W [x(tk)− x̄k]− 1 ≤ 0 (5a)

∆vT∆v −∆v2max ≤ 0 (5b)

where σ2
ρ is the uncertainty associated to the relative range ρ, f(x(t), t) is the ballistic dynamics,

x−
0 ∈ R6 is the initial state before the maneuver, x̄k ∈ R6 is the reference state at time tk, ∆v ∈ R3

is the impulsive maneuver, W ∈ R3×3 is a weight matrix chosen to limit the distance from the
reference trajectory. Then, tk are the k-th times represented in Figure 1, where t0 is the maneuvering
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time, t1 is where both the cost function and the first nonlinear constraint are evaluated, and t2 and
t3 are the second and third evaluation points of the constraint. The presence of more than a single
time for the evaluation of the constraint on the distance from the reference path is chosen such that
a sort of continuous bounding along the trajectory is imposed. The time for the evaluation of the
cost function t1 must coincide with the end of the navigation window.

Equations (3) to (5) define an NLP problem that can be readily solved with dedicated algorithms
such as MATLAB fmincon.

Polynomial Optimization Problem

According to the needs of reducing the computational time for a possible onboard implementa-
tion, the numerical integration of the dynamics at each iteration should be avoided. An efficient
alternative is to replace the integration with a high-order Taylor expansion of x(t1) as a function of
∆v, computed via differential algebra (DA).

Polynomial expansion of the constraints. Consider the spacecraft state x defined as:

x =
[
rT vT

]T
= [x y z vx vy vz]

T ∈ R6×1 (6)

and the impulsive maneuver ∆v given by:

∆v = [∆vx ∆vy ∆vz]
T ∈ R3×1 (7)

A polynomial expansion of the final state can be efficiently obtained using DA techniques.5 The
impulsive maneuver is firstly initialized as:

[∆v] = 03×1 + δv (8)

where the square brackets denote Taylor polynomials, and δv = [δvx δvy δvz]
T are the three

independent DA variables. Then, evaluating Eq. (2) in the DA framework results in the following
expression for the final state:

[x(t1)] = T (n)
x(t1)

(δv) (9)

which is a vector of n-th order Taylor polynomials in δv. Substituting Equation (9) for different
propagation times tk into the right-hand side of Equation (5a) finally yields the following approxi-
mation of the nonlinear constraint:[

d2ref (tk)
]
= {[x (tk)]− x̄k}T W {[x (tk)]− x̄k}

= T (n)

d2ref(tk)
(δv)

(10)

which is again a n-th order Taylor polynomial in δv.

Optimization as a nonlinear programming problem. Given Equation (10), the original optimiza-
tion problem is recast into the following POP:

min
∆v

σ2
ρ(∆v) (11)

subject to:

T
(n)

d2ref(tk)
(∆v)− 1 ≤ 0 (12a)

∆vT∆v −∆v2max ≤ 0 (12b)
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The constraint in Equation (12a) substitutes both Equations (4) and (5a) using a k-th order approx-
imation of the dynamics and of the squared distance from the reference trajectory. As POPs are a
particular case of NLPs, this problem can readily be solved using a generic NLP solver.

Sum-of-squares optimization. Although POPs can be solved using generic NLP solvers, these
algorithms treat the objective and constraints functions as black-boxes, and do not exploit their
polynomial structure. Moreover, most solvers are gradient-based, meaning that the provided solu-
tion might be only locally optimal. In contrast, Sum-of-squares (SOS) optimization6, 7 exploits the
polynomial structure of the problem to find a lower bound of the cost function over the feasible set.
The global optimum (or optima) are then retrieved as the points where this bound is attained.

To solve the POP defined by Equations (11) and (12) using SOS optimization, an additional
scalar variable α ∈ R is introduced. This variable represents the sought-after lower bound of the
cost function. The optimization problem is then reformulated as:

max
α,∆v

α (13)

subject to the inequality constraints:

α− σ2
ρ(∆v) ≤ 0 (14a)

T
(n)

d2ref(tk)
(∆v)− 1 ≤ 0 (14b)

∆vT∆v −∆v2max ≤ 0 (14c)

SOS optimization builds a hierarchy of relaxed problems that can be solved efficiently via semidef-
inite programming (SDP).7 Their solutions provide increasingly tighter lower bounds of the cost
function in Equation (13) until the optimal value α∗ is attained. The optimal solution to the original
POP is then recovered from the underlying relaxation.

NUMERICAL RESULTS

The goal of the following results is to show that having a specific information-based guidance
policy allows to reach greater advantages in the uncertainty reduction, while keeping the fuel con-
sumption and the reference tracking constraints satisfied. For this reason, the performance of the
maneuvers coming from the resolution of the NLP problem and the POP are compared against the
Target Point Approach (TPA), which is a typical method for the design of station-keeping maneu-
vers. The comparison is done because the goal is to reduce the relative uncertainty by exploiting the
change of geometry generated by the impulsive maneuver, but such a change, and the subsequent
improvement, can be achieved with any applied maneuver. Therefore, the idea is to highlight the
benefits of the previously introduced guidance policy for this kind applications.

These analyses are indeed of interest because the most frequently executed maneuver throughout
the mission is typically the station-keeping one, which ensures the spacecraft remains close to its
reference trajectory. Consequently, if a reduction of the relative range uncertainty with respect to a
target is required, mission operators may consider scheduling a navigation window that leverages the
change in relative geometry induced by the already-planned station-keeping maneuver to enhance
estimation performance. In such cases, introducing an additional, dedicated information-driven
maneuver might not be desired unless the expected improvement in estimation performance clearly
justifies the added complexity and resource expenditure.
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Two scenarios are considered to evaluate the algorithms under different dynamical conditions.
In both cases, the impulsive maneuver is scheduled at apolune to minimize the risk of significant
deviation from the reference trajectory.

The time evolution of the relative range uncertainty is computed according to a linear covariance
analysis around the true states. This is equivalent to a Cramer-Rao lower bound analysis, which, for
nonlinear systems with Gaussian process and measurement noise, is generated through the Extended
Kalman Filter (EKF) covariance prediction and correction equations, linearized around the true
system state.

Short-Term Scenario

In this first test case, the observer spacecraft follows a Near-Rectilinear Halo Orbit (NRHO)
trajectory, while the target follows a very close quasi-periodic orbit designed to share the same
orbital period, thereby inducing a naturally bounded relative motion. The results here presented
relies on the short timeline of Figure 1. Indeed, in Figure 3 the blue band represents the relative
navigation window in which the covariance is updated through the linearized approach. The values
of the thresholds of the nonlinear constraints are of 100 km for the radius of the reference tracking
and 1 m/s for the fuel budget.

Before presenting the optimization results, Figure 2 illustrates that any applied maneuver en-
hances estimation performance. To generate this plot, 100 randomly oriented impulsive maneuver
vectors, each with a 1 m/s magnitude, were propagated through the same pipeline. The correspond-
ing uncertainty evolutions appear as gray curves. The optimal solutions, obtained by solving the
NLP and the POP, are highlighted in red and yellow, respectively. This comparison underlines both
the beneficial effect of applying a maneuver and the added value of specifically optimized maneu-
vers over arbitrary ones.

Figure 2: Comparison between state estimation performance generated by randomly oriented im-
pulsive maneuver vectors and optimized solutions by the NLP and POP.

Concerning the optimization results against the TPA, from Figure 3 two main aspects are immedi-
ately evident. The first is that the optimal solutions given by NLP and POP reach a higher reduction
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of the relative range uncertainty. Second, these two solutions are superimposed, meaning that the
resolution process within the polynomial framework agree with the fully nonlinear procedure.

Figure 3: Comparison of the time evolution of the relative range uncertainty resulting from the
application of the maneuvers coming from the TPA, the NLP, and the POP.

Other relevant peculiarities of the solutions are the fuel consumption and the ability to track the
reference. Regarding the first, as many works from the literature have shown, the opposing nature
between observability performance and fuel expenses results in a Pareto front, reflecting the trade-
off between competing criteria. The existence of such competitive nature translate into the fact
that imposing a larger fuel budget in the setup of the algorithm results in a higher reduction of the
uncertainty level. This is clearly visible in Figure 3 considering the fuel consumption shown in
Table 1.

The possibility of arbitrarily setting the fuel budget is a great advantage from an operational point
of view, since the user can balance a trade-off between the fuel capacity of the spacecraft and the
current need for an improvement in the navigation performance. However, it must be reminded
that a lower bound in the level of estimated uncertainty exists, meaning that there is a limit in the
achievable improvement. In addition, by running multiple simulations, it has been noted that the
algorithm is always capable of reaching a lower value of relative uncertainty if the fuel expense is
larger or equal to the one of the TPA solution. This means that the primary goal of the guidance
policy has been achieved and that the user can decide to tune the fuel budget depending on the
current needs. On the other hand, a larger fuel budget might translate into a larger separation
distance from the reference trajectory, but always between the bounds of the imposed constraint.

Method ∆v

TPA 0.017 m/s
NLP 1.000 m/s
POP 1.000 m/s

Table 1: Fuel consumption for the TPA, NLP and POP solutions.
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Long-Term Scenario

After verifying the effectiveness of the algorithms in producing solutions that reduce estimation
uncertainty, the focus shifts toward assessing the long-term impact of applying an information-
driven guidance policy. While the primary objective remains the immediate reduction of relative
range uncertainty with a prescribed deviation from the nominal trajectory, it is equally important
to understand how this improvement evolves over time and to quantify the overall benefit of the
strategy. To this end, three key aspects are considered: the long-term evolution of the relative range
uncertainty, the cumulative fuel consumption, and the reference tracking performance.

In this case, the observer spacecraft is on the halo orbit of the LUMIO mission, and the target
follows a quasi-periodic orbit with matching period. The timeline depicted in Figure 4 illustrates
the structure of this analysis. In the figure, blue bars indicate the relative navigation phases during
which the covariance is updated for the three methods, while the orange bar corresponds to the phase
where the covariance is updated only for the TPA solution. The green arrow marks the maneuvering
point where the optimal solutions are applied (only for NLP and POP cases), and the red arrows
indicate the subsequent station-keeping maneuvers. This means that, also for the optimal strategies,
only the first maneuver is the result of an optimization process, while the other two are computed
according to the TPA method. The number of days elapsed since the initial reference epoch is also
shown above the timeline to provide temporal context.

From a practical standpoint, the objective is to assess whether the information gained through the
application of optimal maneuvers is sufficient to skip the subsequent navigation window while still
maintaining acceptable estimation performance. To evaluate this, the results are compared against
the TPA strategy, for which all navigation windows are consistently exploited.

Figure 4: Timeline of the long-term scenario. The blue bars represent the relative navigation phases
in which the covariance is updated for the three methods, while in the orange bar the covariance is
updated only for the TPA. The green arrow marks the maneuvering point in which optimal solutions
are applied (only for NLP and POP), the red arrows mark the next station-keeping maneuvers.
Above the timeline, the days after the starting point are reported.

Method ∆v

TPA 0.9784 m/s
NLP 1.4738 m/s
POP 1.4894 m/s

Table 2: Fuel consumption for the TPA, NLP and POP solutions for the analysis on the long-term
scenario.

The results shown in Figure 5 clearly indicate that, even when one navigation window is skipped,
the uncertainty level resulting from the application of the optimal maneuvers remains comparable
to that of the TPA strategy, which instead relies on all available navigation windows. This simple
analysis gives a first hint on the potential effectiveness and robustness of the information-driven
guidance approach in sustaining estimation performance over extended time horizons.
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Figure 5: Comparison of the time evolution of the relative range uncertainty resulting from the
application of the maneuvers coming from the TPA, the NLP, and the POP.

These considerations are also supported by the fuel consumptions reported in Table 2, which
shows that, as expected, the TPA strategy results in the lowest average cost. This is consistent
with its design objective of minimum fuel. However, this lower consumption comes at the cost of
requiring frequent navigation updates to sustain acceptable estimation performance. In contrast, the
NLP and POP strategies show slightly higher fuel consumption, which is the direct consequence of
maneuvers designed to enhance the observability of the system. The result is a moderate increase
in fuel usage in exchange for greater autonomy.

Accuracy of the Polynomial Approximation. From the results shown in Figure 5 and Table 2, it
is evident that the fully nonlinear approach of the NLP and the polynomial-based framework of the
POP produce different results, which is in contrast with the results presented in Figure 3, where the
two optimized solutions coincide.

When solving the problem within a polynomial framework there are two main aspects to be
monitored in order to assess the goodness of the solutions. These are the polynomial approximation
of both the cost function and the nonlinear constraints, and the use of a specific solver, which can
lead to sub-optimal solutions, not aligned with the NLP ones.

A deep analysis has been conducted to highlight the differences in the solutions obtained with
three different resolution approaches, namely the pure NLP based on the nonlinear representation
of both the cost function and the constraints, then the NLP based on the use of a polynomial ap-
proximation of the latter, which will be denoted as PolNLP, and finally, the use of a dedicated SOS
optimization framework to solve the POP.

Different setup for the nonlinear constraints have been tested to assess their role in the resolution
process. The results have shown that, for the NRHO case, all the approaches converge to the optimal
solution for each setup of the thresholds for the constraints. For the halo orbit case instead, the it
has been found that the optimal solution is achieved only with the NLP, while the PolNLP and the
POP converge to the same sub-optimal solution.

9



These results indicate that the solver itself does not play a decisive role in the resolution pro-
cess, as the PolNLP and POP methods yield consistent solutions. Instead, the critical factor is
the polynomial approximation of the cost function and nonlinear constraints, which facilitates the
problem’s tractability and ensures convergence. However, this approximation may also introduce
sub-optimality or limit the accuracy of the solution, particularly in scenarios where the nonlineari-
ties are significant.

Degree of Nonlinearity Assessment. The cause of the difference among the reported solutions
may therefore be assigned to the degree of nonlinearity of the problem at hand. It might be possi-
ble that the halo orbit case presents a higher degree of nonlinearity, which makes the polynomial
approximation weaker and makes therefore converge the algorithms to a sub-optimal solution.

To better investigate this point, a quantitative analysis on the degree of nonlinearity between the
two cases is performed. For this purpose, two indexes from Junkins and Singla8 are used and here
recalled.

νΦ(t) =
∥x(t)−Φ(t, t0)x0∥

∥x(t)∥
(15)

νẋ(t) =
∥f(x, t)−Ax∥

∥f(x, t)∥
(16)

where x(t) is the propagated reference state at time t, Φ(t, t0) is the state transition matrix from
t0 to t, f(x, t) is the right-hand side of the CR3BP dynamics, and A is its Jacobian.

These indexes are evaluated along time within the interval of the simulation and the percentage of
the epochs for which the halo dynamics has a higher degree of nonlinearity over the NRHO one is
reported for both indexes in Table 3. This shows that the halo case presents stronger nonlinearities,
which might reasonably be the cause for the lack of accuracy of the polynomial approximation.

Index Percentage

νΦ(t) 81.7%
νẋ(t) 89.3%

Table 3: Percentage of the epochs for which the degree of nonlinearity of the halo is larger than the
NRHO.

SENSITIVITY ANALYSIS

For a deep investigation on the behavior of the algorithms and the resulting performance of the as-
sociated solutions, a sensitivity analysis is performed. A large initial dispersion, with a 60 km value
for the standard deviation in position and 10 cm/s for the velocity is selected to depict a situation
where the satellite operates in the vicinity of the reference path but within a broader tolerance. The
underlying rationale is that, by allowing the spacecraft to move freely within a larger yet constrained
region around the nominal path, rather than enforcing strict adherence to a specific trajectory, the
guidance problem gains additional degrees of freedom. This flexibility enables the identification
of more favorable trajectories from an observability standpoint, thus leading to improved relative
navigation performance through enhanced measurement geometry.
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Method ∆v

TPA mean 0.2988 m/s
NLP mean 0.9456 m/s
POP mean 0.8469 m/s

Table 4: Average fuel consumption for the TPA, NLP, and POP solutions based on 600 MC samples.

For the halo scenario in the short-term timeline, two different cases will be considered. The
first is intended to test the average performance of the methods in nominal conditions starting from
600 Monte Carlo (MC) samples extracted from the initial dispersion. The second analysis tests the
effectiveness of the algorithms under uncertainties.

For both cases, the values of the thresholds of the nonlinear constraints are of 200 km for the
reference tracking and 2.5 m/s for the fuel budget. These values are chosen to effectively highlight
both the potential and the limitations of the information-driven guidance policy. In particular, the
reference tracking bound is sufficiently large, and the fuel budget is high enough to permit maneu-
vers that can meaningfully enhance observability. This configuration enables a fair evaluation of
how the guidance strategy exploits the available freedom to improve navigation performance.

Nominal Setup

Several observations can be made based on the results shown in Figure 6. First, a significantly
large dispersion is observed in the time evolution of the relative range uncertainty across the Monte
Carlo realizations. This variability is a direct consequence of the large initial state dispersion. As
a result, the impact of the applied maneuvers on the estimation performance might relevantly vary
across different samples.

There is a difference between the NLP and POP solutions, which indicates that the polynomial
approximation used in the POP affects the resolution process, possibly driving the optimization
toward sub-optimal maneuver directions, particularly in highly nonlinear regions of the solution
space.

Both NLP and POP yield superior performance in terms of uncertainty reduction when compared
to the TPA strategy. This confirms the advantage of an information-driven guidance approach in
identifying maneuvers that effectively enhance observability.

As expected, the TPA strategy consistently delivers the best results in terms of reference tracking
and fuel consumption, as seen in Table 4.

In summary, the analysis highlights the complementary strengths of the evaluated strategies. The
information-driven approaches, namely NLP and POP, prove effective in enhancing state estimation
performance, particularly in scenarios where flexibility in trajectory deviation is accepted. However,
the POP method may still be prone to sub-optimal solutions due to the limitations of polynomial
approximation in highly nonlinear regimes. On the other hand, the TPA strategy remains the best
option when strict reference tracking is preferred. Therefore, the choice of the strategy should be
guided by the mission priorities. If improving navigation accuracy is critical and some deviation
from the reference path is acceptable, an optimal information-driven maneuver policy might be
adopted. On the other hand, if adherence to the nominal orbit is the main driver, the TPA approach,
or other well-known station-keeping strategies, offer more suitable solutions.
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(a) TPA solution. (b) NLP solution.

(c) POP solution. (d) Comparison between solutions.

Figure 6: halo case: time evolution of the relative range uncertainty based on 600 MC samples.

Performance Under Uncertainties

Here the behavior of the algorithm is evaluated when multiple sources of discrepancy from the
nominal conditions are considered. In particular, the following aspects are included in the simula-
tions: addition of an orbit determination error on the spacecraft state given as input to the algorithm,
addition of a maneuver execution error, and the computation of the time evolution of the covariance
through a navigation filter.

First, the algorithm is fed with an estimate of the true spacecraft state, and the resulting impulsive
maneuver is instead applied to the true state. This procedure is consistent with a realistic mis-
sion scenario, where the computation of correction maneuvers is performed relying on the orbital
knowledge provided by a previous orbit determination process. Consequently, the resulting com-
puted maneuver is applied to the actual spacecraft state, introducing a discrepancy due to estimation
errors and resulting in an imperfect realization of the intended correction strategy.

Then, when maneuver execution errors are considered, the resulting impulse has slightly different
magnitude and direction. This is also a crucial factor to be considered in order to assess the goodness
of the optimal solutions within a realistic framework.

Finally, a relevant layer of realism is added to the results previously shown. Up to this point,
the Cramer-Rao lower bound was evaluated. Therefore, during the simulated navigation window,
the spacecraft state is not estimated, while the uncertainty is reduced according to the value of the
Kalman gain and the information contained in the Jacobian of the angles-only measurement model.
Now, both the state and the covariance are predicted and corrected within an EKF. This implies that
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the results are affected by the presence of noise in the simulated measurements, and by the choice
of some filter parameters such as the initial guess and the noise matrix.

The performance analyzed through this new setting should be considered more reliable, given
that, in a real scenario, the time evolution of the covariance is actually produced through the oper-
ations of a navigation filter. However, it is important to note that the results and accuracy of such
a filter depend on numerous factors and parameter choices. For this reason, only preliminary and
general considerations will be presented in the following analysis, without attempting to capture the
full complexity of an operational navigation system.

(a) TPA solution. (b) NLP solution.

(c) POP solution. (d) Comparison between solutions.

Figure 7: Time evolution of the relative range uncertainty for the scenario with uncertainties based
on 600 MC samples.

Method ∆v

TPA mean 0.3000 m/s
NLP mean 0.9435 m/s
POP mean 0.8490 m/s

Table 5: Average fuel consumption for the TPA, NLP and POP solutions for the scenario with
uncertainties based on 600 MC samples.
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First, the most relevant thing to notice in Figure 7 is that the role of the maneuver in improving
the estimation performance is still present, even under the operations of a navigation filter. This
confirms again the validity of an observability-driven guidance policy.

Then, for some MC samples we can notice a drop in the level of uncertainty at the beginning
of the simulated navigation window. This may be justified by an overconfident behavior of the
filter, which is initialized with a very good initial guess and provided with measurements affected
by a very low level of noise. As said earlier, a deep analysis of these aspects is not the main
goal. However, this confirms that the actual performance must be assessed through a complete state
estimation algorithm to better highlight possible realistic outcomes.

According to this, another important aspect is the presence of certain MC realizations in which
the maneuver has no noticeable impact on the uncertainty reduction. The improvement resulting
from the control action strongly depends on the uncertainty level at the maneuvering time, making
it essential to account for the realistic filter behavior when assessing performance. The low effect of
the maneuver for some cases may be attributed to the already low covariance level achieved through
the information accumulated from the processed measurements within the navigation filter. This
observation reinforces the rationale underlying the information-driven guidance policy. Specifically,
the application of a maneuver to further reduce estimation uncertainty is beneficial primarily when
the current uncertainty level is sufficiently high to justify the control effort. If the filter alone is
capable of achieving satisfactory performance, then an additional control action may be unnecessary
and offer limited value.

Finally, in Table 5 one can notice the lower average fuel consumption produced by the POP solu-
tions, which is aligned to the lower performance shown in the trend of the relative range uncertainty.

A concluding remark is that, although in very few cases, the NLP has failed to converge for
certain problem initializations, whereas the POP consistently converges to a solution, albeit one that
may be sub-optimal. This shows a more robust nature of the POP algorithm in dealing with this
maneuver design problem.

INTEGRATION WITHIN A GNC ARCHITECTURE

From an operational standpoint, the findings highlighted in the long-term scenario have signifi-
cant implications. By leveraging the enhanced information content induced by a specifically planned
optimal maneuver, it becomes possible to reduce the frequency of navigation updates without com-
promising estimation quality. This can lead to several practical advantages, such as reduced on-
board computational load, lower demands on ground support and communication bandwidth, and
decreased reliance on continuous measurement acquisition or processing. Additionally, fewer navi-
gation windows imply fewer required camera activations or measurement opportunities, which can
be beneficial for power-limited missions or when observational opportunities are constrained.

According to this concepts, for future developments, the information-driven guidance policy
might be seen as a building block to be integrated in a more complete GNC architecture. The
basic idea would be an algorithm aiming at optimizing the planning of the navigation strategy with
the final goal of reducing the overall costs. The purpose of the algorithm would then be to decide
whether to exploit already planned navigation windows and whether to use a control action to im-
prove estimation performance. The main idea is to consider a nominal mission timeline in which
station-keeping maneuvers and relative navigation windows are already scheduled and to let the
algorithm plan a strategy to optimize a general cost associated to navigation operations and risks.
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In essence, an optimal planning for navigation operations would maintain high estimation perfor-
mance while reducing navigation activities. This supports more autonomous and resource-efficient
mission operations, particularly valuable for deep-space or cislunar scenarios, where spacecraft ca-
pabilities might be limited and robustness is essential.

When dealing with a space-based measurement acquisition process, it is crucial to consider that
rapid changes in the relative geometry between the observer and the target can lead to periods in
which acquiring useful information becomes unfeasible. This limitation reinforces the importance
of maximizing estimation performance during the time windows in which measurements are actu-
ally available. Efficiently exploiting these opportunities through optimized guidance policies might
become critical to ensure navigation accuracy.

CONCLUSIONS

The goal of this work was to evaluate the potential and limitations of an information-driven guid-
ance scheme in the context of inter-satellite angles-only navigation in a three-body dynamics. The
analysis and results presented highlighted how guidance policies that explicitly account for state
estimation performance can outperform traditional station-keeping approaches when properly inte-
grated with mission constraints such as fuel consumption and reference tracking. Various test cases
were considered, including halo and NRHO configurations, with different levels of dynamical com-
plexity and constraint activation, allowing a comprehensive assessment of the proposed strategies.

A key finding of this work is that optimal impulsive maneuvers, computed both through fully
nonlinear or polynomial-based optimization frameworks, can significantly reduce the relative range
uncertainty even with a single action, and in some cases maintain improved performance over ex-
tended periods. This advantage is evident even when realistic errors are introduced in orbit determi-
nation and maneuver execution, confirming the robustness of the proposed methodology.

Importantly, the results confirmed that even a single well-designed maneuver can produce long-
lasting improvements in estimation performance, potentially allowing operators to reduce the fre-
quency of navigation updates without compromising accuracy. This insight offers clear operational
benefits, especially in missions where measurement acquisition opportunities are limited or where
resource usage must be minimized.

This study has demonstrated the feasibility and effectiveness of a guidance and navigation co-
design process aiming to enhance information acquisition in angles-only navigation. The formu-
lation and application of observability-aware cost functions within constrained optimization prob-
lems represent a step forward in enhancing autonomy and robustness in future space missions. The
proposed framework lays the groundwork for further research on adaptive, information-driven tra-
jectory planning under realistic mission constraints.
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