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UNCERTAINTY QUANTIFICATION USING DIRECTIONAL
SPLITTING AND GAUSSIAN MIXTURE MODELS WITH
APPLICATIONS TO ORBITAL DYNAMICS

Renato Zanetti: Kyle J. DeMars] Derek Tuggle®,
Kristen Michaelson*, and Maaninee Gupta'

A novel adaptive algorithm is proposed to propagate forward in time an arbitrary
distribution through nonlinear dynamics forced by white noise. The new scheme
employs Gaussian Mixture Models and automatically refines the number of com-
ponents to better encompass the effects of the nonlinear dynamics. The refinement
is done in directions that suffer from both high nonlinearity and high uncertainty.
An orbital uncertainty quantification numerical example is provided to validate the
effectiveness of the proposed methodology.

INTRODUCTION

Uncertainty quantification refers to determining the evolution through time of either the proba-
bility distribution function (PDF) or of some key moments of the distribution, such as mean and
covariance. The first methods for quantifying the uncertainty when dealing with orbital motion be-
gan with applying techniques like the Kalman filter [1] to the problem of estimating the trajectories
of satellites [2] and to the circumlunar navigation problem [3, 4]. A Bayesian connection to the
Kalman filter was established shortly thereafter [5], which paved the way for key advancements in
non-Gaussian filtering [6, 7]. Recent efforts in orbital uncertainty quantification have focused on de-
termining the non-Gaussian evolution of the uncertainty in terms of achieving tractable descriptions
of the probability density function (pdf) for the uncertainty of the position and velocity of an orbiting
object, as opposed to moments (e.g. mean and covariance), of the pdf. Several methods for quanti-
fying the pdf have been developed, such as using Gaussian mixture models (GMMs) [8, 9, 10, 11],
differential algebra [12], or transformation of variables [13]. A great many other methods have been
developed; an excellent survey of uncertainty propagation in orbital mechanics is given in Ref. [14].

The motivation for using GMMs in nonlinear estimation is twofold. First, local or linearized solu-
tions such as an extended Kalman filter (EKF) are potentially unsuitable for approximating moments
of a pdf generated by nonlinear transformations. If a prior pdf is represented as a GMM (a process
known as splitting the prior), then smaller eigenvalues of each of the component’s covariance matri-
ces indicate that the mixture components are better candidates for local methods. Second, any pdf
can be exactly represented by a GMM if an unlimited number of components is allowed such that
each component has infinitesimally small covariance [6, 7], and thus finitely parameterized GMMs
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are often perceived as universal approximators [15, 16]. This property has beneficial implications
for use in representing both prior and posterior pdfs. Better suitability of linearized solutions is
irrelevant if the GMM representation is a significant departure from what is considered to be the
true prior of the problem, so the ability to reasonably approximate the prior is crucial. Nonlinear
transformation of a single Gaussian results in a non-Gaussian pdf that can be better approximated
by a GMM than by a single Gaussian constructed with the transformed mean and covariance matrix.

The current work provides a novel technique to propagate uncertainty through nonlinear orbital
dynamics utilizing splitting GMMs and builds on the foundations from References [11] and [17]. A
key contribution for this work is the expansion of the splitting philosophy in [17], which only treated
the measurement update portion of the filter, to the continuous time propagation phase, although the
approach is applicable to discrete time systems as well. Ref. [17] develops a scheme using a scalar
measurement and checks nonlinearity of a single transformation, while the current work deals with
vector-based time propagation and necessitates to detect not only if nonlinearities are present, but
also when. The proposed splitting scheme has a distinct advantage of selecting a splitting direction
based on the combined notions of nonlinearity and uncertainty while much of prior work only
considers eigendirections of the prior covariance matrix [11, 18, 19, 20]. Ref. [21] utilizes splitting
as a means to ensure validity of Taylor series expansions when approximating differential entropy of
a multivariate Gaussian mixture. Implicitly then, [21] similarly recognizes that splitting is warranted
in regions of the state-space where both nonlinearities and uncertainty are pronounced. Though this
is a guiding principle, both concepts of nonlinearity and uncertainty are not jointly considered in
designing when splitting should occur, along which direction it should occur, and when it is no
longer warranted. The current work seeks to do so. Other methods addressing at least one of these
design points exist, but they consider only discrete transformations rather than the continuous time
propagation problem [22, 23, 24]. In [25], the decision to split is based on uncertainty while the
direction taken for splitting was one that maximized nonlinearity of the model dynamics. Ref. [26]
uses a second-order divided difference term evaluated at a certain distance from the mean in order to
quantify nonlinearity. This quantity is evaluated for a set of directions (including spectral directions
for the prior covariance as well as some that are specific to the underlying dynamics model), and
the direction for splitting is chosen as the one that maximizes the quantity for the set.

Implicit in discussing direction, the splitting method is 1-D, meaning a univariate splitting tech-
nique is used to place multivariate components along a certain direction in the state-space. Many
1-D methods involve iteratively applying the scheme so that multidirectional splitting may be
achieved. Another approach to multidirectional splitting is offered in Ref. [27] where pdfs are
not traditionally split but rather resampled in an importance-type manner while bounding compo-
nent covariances via linear matrix inequality constraints. A full filter for this approach was provided
in [28] for discrete-discrete estimation. Ref. [29] introduces two splitting techniques, one multidi-
rectional split, and one unidirectional split. The unidirectional splitting technique uses the state
transition matrix in conjunction with unscented transformation to compute the departure from lin-
earity, which is different from the approach proposed here that uses the Kullback-Leibler divergence
(KLD).

Among 1-D methods, the current work includes the following two additional contributions. First,
a univariate splitting library is provided that results from optimization of the Kullback-Leibler di-
vergence (KLD) under the constraints of preserving the first two moments of the original pdf. The
Kullback-Leibler divergence, also known as relative entropy, is extensively used for comparison
among pdfs for purposes of density estimation [30]. Second, a novel procedure for expanding the



univariate results to multidirectional splitting for an arbitrary direction is offered. This procedure is
both variance-preserving and avoids the explicit use of matrix square root for the prior covariance
as previously done. Since the initial dissemination of this work [31], a plethora of nonlinearity- and
non-Gaussianity-based splitting methods have been developed. Numerous methods for splitting the
initial uncertainty distribution are discussed in [32]. An adaptive splitting method based on [32] is
proposed in [33].

PRELIMINARY NOTIONS

The ultimate goal of this work is to approximate the time evolution of the pdf, py)(x,t), of a
stochastic process x(t) whose evolution is governed by a nonlinear stochastic differential equation

x(t) = f(x,t) + L(x,t) v(t) 1)

where x(t), f(x,t), and x(¢) are n-dimensional column vectors (n = 6 for the orbit propagation

problem considered here). The process noise v(¢) is an m-dimensional column vector (m = 3

for the orbit propagation problem considered here). Matrix L(x,t) is n x m and for the orbit
. . T

propagation problem is given by L(x,t) = [Osx3 I3xs]

We are not limiting our study to the approximation of the first (mean) and second (covariance)
moments; rather, we are interested in the full pdf, which results in knowledge of moments of all
orders. Full knowledge of the distribution is generally needed to calculate collision probability or
to obtain the Minimum Mean Square Error (MMSE) estimate of the state; it is necessary to fully
quantify the uncertainty of the system.

For a generic stochastic dynamic system, the evolution of the probability density is governed by
the Fokker-Planck-Kolmogorov (FPK) equation [34]. For the nonlinear dynamic system in Eq. (1)
driven by zero-mean white noise v with power spectral density Q the FPK equation is
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where f;(x,t) is the i-th component of vector f(x,t) and L(x,t)QL(x,¢)T);; is the 4j-th matrix
component. The FPK equation is linear with respect to the distribution py;)(x, t), butitis not trivial
to solve. In fact, exact analytical solutions are very scarce and numerical solutions are computa-
tionally demanding and difficult to obtain. Since this is a linear PDE, when the initial distribution is
equal to the weighted sum of simpler functions, p;(x), via

N
Px(to) (X, t0) = Z w; pi(X)
i=1

then the evolution of the pdf can be computed as the sum of the evolution of the simpler components.
It is assumed that each of the components p;(x) satisfies the conditions of being itself a pdf (non-
negative and integrate to one); therefore the weights w; need to add to one in order for the sum
to also integrate to one. It is also assumed that all weights are positive; this assumption trivially
guarantees that the total pdf remains non-negative for all values of x.

There are very few situations in which the FPK equation is solvable, but one particularly notable
solution is for the linear Gaussian case in which the solution stays Gaussian at all times with the



evolution of the mean and covariance matrix exactly expressed by the Kalman filter propagation
equations [35]. Furthermore, if: (1) the dynamic system is linear, and (2) the initial pdf is exactly
representable as a sum of Gaussians, there is an exact, closed-form solution of the evolution of
the non-Gaussian pdf [6]. Unfortunately, these two conditions are rarely encountered in practice.
Therefore it is usually necessary to approximate the initial distribution as a sum of Gaussians in
which all the Gaussian components have a covariance matrix “small” enough such that the nonlin-
ear dynamics is appropriately approximated by its linearization. GMM-based nonlinear uncertainty
quantification techniques operate exactly under this basic working assumption: the initial distribu-
tion is well approximated by a GMM in which components are “small” enough such that for each
of them linearization holds.

In the GMM framework, the total initial probability density function is approximated by a sum
of Gaussian probability density functions; hence, we have that

to) sz Pg(x;%i(to), Pi(to))

where t represents the integration start time and py(x; m, P) represents a Gaussian pdf in x with
mean m and covariance P. Starting from this initial pdf, if for each of the Gaussian components
the nonlinear dynamics f(x, t) is accurately approximately by its first order Taylor series centered
at the component’s mean, the propagated probability density function is accurately approximated
by

Px (tf sz pg X5 Xl(tf) Pi(tf))
=1

where X;(t7) and P;(t) are the solution of integrating the following ODEs from t to ¢ 7 [7]
xi(t) = f(%i,1) )

P;(t) = F(X;(t),t)Pi(t) + P;()F (%4 (1), ) + L(x ()t)QL(f{i(t),t)T 3)

of (x,t)

x=%;(t)

The total mean x(¢) and covariance P(t) of a GMM can be obtained from the mean and covari-
ance of the individual components as

= Zw i(t) (5)

P(t) + X Z wl i —|— X; (t) X; (t)T) (6)

DEVELOPMENT OF PROPOSED SCHEME

As previously stated, the goal of the proposed algorithm is to represent the uncertainty during
propagation through nonlinear dynamics by using GMMs. Techniques are developed to split GMM
components at the appropriate time when the linearization assumption ceases to be accurate and in
the appropriate direction where nonlinear effects are more pronounced. The proposed approach is



to: (1) develop an automated technique to determine when linearized propagation is not adequate
and hence splitting of components should occur; (2) develop a technique to determine the direction
of maximum nonlinearity during nonlinear propagation, the split should occur in this direction; (3)
develop a covariance-preserving multivariate splitting technique that refines the components along
a predefined direction; and (4) develop a univariate, variance preserving, splitting library. These
steps will be introduced in the following subsections.

Splitting Criteria

The key contribution of this work is the directional splitting of a GMM during orbital dynamics
propagation to better represent to evolution of the PDF. Most of the existing GMM splitting literature
assumes discretized dynamics with a constant discretization time step. Discretization is not used
here; the use of nonlinear integration is a key aspect of this work. The goal is to detect the need of
a component split as soon as the linearization assumption ceases to be satisfactory. The nonlinear
flow of the orbital dynamics can be expanded in a Taylor series; for small time steps linearization
of the solution flow is a very good approximation of it; as the time step increases, the linearization
assumptions ceases to be valid. A key characteristics of the orbital flow is that it is not an odd
function and that when a first order approximation of the Taylor series ceases to be satisfactory the
next terms to dominate the solution are the second order terms.

A variable step integrator with error control is used to propagate the orbital dynamics:
x = f(x,1)

The numerical integration scheme employed includes an exit condition, which, when triggered,
terminates the integration and forces a component split. After the split integration resumes until the
following split condition. The goal is therefore to find an exit condition that is triggered when the
linearity assumption ceases to be satisfactory and the second order terms contribute enough to the
solution. This exit condition is the splitting criteria presented in this section.

The automatic criteria to determine when a split is needed is chosen as [36, 17]. The GMM
propagation is accurate as long as the propagation of the individual components also accurately
represent the time evolution of the pdf. Starting from a Gaussian distribution, a propagation of only
the mean and covariance accurately represents the entire pdf when it remains Gaussian, i.e. when the
system is linear. Putting these two concepts together, the GMM propagation is accurate when each
of the components is operating in a regime when the linearization assumption holds. Our strategy is
to detect when a linearized solution (EKF) differs from a higher order solution (HOF), such as the
Gaussian Second Order Filter or the Unscented Kalman Filter. This difference is quantified using
the Kullback-Leibler divergence assuming a Gaussian posterior approximation by both filters; 7 is
a threshold.

DKL[pg(X;XHOF7P;OF) H pg(x;f(E‘KF7PEt(F)} >T (7

where

N . 1
DKL[pg(X;XHOF’PI;’_OF) H pg(X;XEKF’PEJ;(F)} = i(log{‘PE—t{F|/|P[j—0F’} —-—n
e { Pl (Br )T+ Beicr — Rnor) (B) ™ Roser = Ruor)) ®)

HOF EKF EKF

This approach provides an immediate quantification of the loss in information associated with ap-
proximating the higher order solution with an EKF. Eq. (8) provides the difference between includ-
ing and ignoring nonlinearities in Gaussian propagation. A KL divergence that is above the desired



threshold for splitting indicates a possible inadequacy in approximating the propagated solution as
Gaussian. As this approximation fails, the component is re-approximated itself as a GMM via a one
dimensional split along the direction of highest nonlinearity weighted by the directional uncertainty.

The threshold 7 is chosen to limit the maximum allowable divergence between the two distri-
butions. Once again we consider two Gaussian random vectors with mean and covariance matrix
represented in Table 1, where v is some unit vector and scalars ¢ > 0, k > 1. Distribution 1 repre-

Table 1. Normal Distributions for Threshold Selection

Normal Distribution 1: u, by

Normal Distribution 2: 1 + CE%V, %2

sents the true distribution (in our case approximated by the higher order filter) while Distribution 2
represents some departure from it (in our case the EKF) parameterized by scalars ¢ and k. The KL
divergence for this comparison reduces to

1
7= Dgr[p1||p2] = 5(n(k: —logk — 1) + ¢%k) 9)

We know that an EKF will always have covariance matrix smaller than a Gaussian Second Order
Filter. With this perspective, constant k& is chosen as the maximum divergence that we allow the
two covariances to have, while scalar c is the number of standard deviations by which we allow
the means to diverge. Once the designers have chosen the maximum allowable discrepancy for
their application, the algorithm detects when a component split is necessary using Eq. (7). As the
threshold does not depend on the specific solutions at each step, it can be precomputed and stored.

Splitting Direction

After determining that linearized uncertainty propagation is no longer acceptable and that a com-
ponent split is needed, the next step is to determine the direction of the split, i.e. the direction of
maximum nonlinearity. This section expands prior work [36] to split nonlinear vector functions of
the state. Prior work was only applicable to scalar functions and applied to the measurement update.
Let z € R™ be a nonlinear function of the state x € R with additive error 7, i.e.

z=1f(x)+n

The m x n Jacobian is denoted by F', such that
F=[F7 ¥l ... FI]"
= 1F1 2 m
where F; is a row-vector representing the Jacobian of the i-th scalar component of the nonlinear
function. A linear system posseses constant first-order derivatives; the directional derivative of the
Jacobian evaluated at the prior mean, or the rate of change of the Jacobian at X in direction u, is
therefore a reasonable quantification of nonlinearity. The directional derivative is given by

VuFGo| = lim FEHOW —FE)

X a—0 «

(10)




The Taylor series for the Jacobian, which is

OF;(x)T

Fi(x) = Fi(%) + <ax _[x—;—c]>T+...

can be substituted into Eq. (10) to provide the directional derivative of the Jacobian of the i-th scalar
component of f(x) as

Fz()_() + o (76Fi(x)

) e

VuFi(x)| = lim

X a—0 (6]
OF;(x)T
_ 4, T v
-t ox ‘
:uTDZ‘(}_()T

X

where D;(x) € R"*" is the Hessian of the i-th component of f(x). Assembling the components of
the directional derivative, it can be shown that the squared Frobenius norm is

HV“F(X)L—(H; = trace (VuF(x) V,F(x)7)

= u'D{(x) Di(xX)u
=1

—uT (Zn}(x) Di(i)) u

~— =

X

~~

—u'EX)u (11)

Eq. (11) provides a measure of the nonlinearity in a particular direction, u. Our choice of cost
function weights Eq. (11) by the uncertainty in that direction, e.g. if a direction is very nonlinear
but with no uncertainty, a split in that direction is not needed, leading to

5 ul E(x)u

J(u) = HVUF(X) . 0u= Tp-ig

- (12)
X
The direction u* that maximizes Eq. (12) can be easily computed after a change of variables. Let
v = S~'u where P~! = S~TS~! 50 that the following equivalent cost function can be examined:
T QT (%
- viS'EXX)Sv
J(v) = ————F— 13
(v) Ty (13)

The Rayleigh-Ritz inequality provides an upper bound for Eq. (13) that is the maximum eigenvalue
of matrix ST E(xX) S with the associated eigenvector v* being the maximizing argument. Changing
variables back to the original problem, the chosen direction for splitting is u* = Sv*.

Arbitrary Direction Splitting

After detecting the nonlinearities and the need to split (Splitting Criteria), and deriving the direc-
tion u of maximum nonlinearity along which the split is necessary (Splitting Direction), the next
step is to develop an algorithm able to apply the univariate split in an arbitrary direction u of a



multivariate Gaussian distribution. The univariate splitting library is presented in Section , and this
section shows how to apply the splitting library along u.

Assume the prior random vector x is Gaussian with mean m and covariance matrix P; the objec-
tive is to determine a GMM that is parameterized by w;, m;, and P;, ¢« € Z that preserves mean and
covariance, where Z denotes the set of indices describing the components that the prior mean and
covariance are being split into. The weights w; are determined by the univariate splitting library.
Let the variance of x along the unit vector u be denoted as 2, such that

u' P lu=1/02 (14)

where u is the direction along which the splitting is performed. Since the splitting occurs along the
unit vector u, it follows that

m; =m-+m; o, u (15)

where the scalar means, m;, are also determined by the univariate splitting library.

What is left to find are the component covariances, P;, such that the posterior GMM covariance
matches the covariance prior to the split. As commonly done, all components of the GMM are
assigned the same covariance matrix. Let P and m be the covariance and the mean prior to the
split, respectively. Preserving the covariance between the original covariance and the covariance of
the GMM implies that

P—i—mmT:Zwi( i +m; m; P—i—szmz m;
1€T 1€

where it is reminded that P; is the same for all of the GMM components. Substituting for the GMM
means from Eq. (15),

P+rmm'=P, +mm —|—[sz :|O'21111 +[szmz]0u [um +muT] (16)
i€l i€l

Choosing a symmetric univariate split results in
Z w;m; = 0
i€T
Hence, Eq. (16) can be solved for P; to yield
P,=P— [Zw ]a uu’ (17)
1€L

Eq. (17) is the general formula used by this algorithm. However, as shown in the next section, if the
univariate library is itself variance preserving, it follows that (see Eq. (21))

Z wim? =1-¢°

€L
meaning that in the case of variance-preserving univariate splitting, the covariance of each compo-
nent should be

PZ-:P—I—(UQ—l)criuuT (18)



which is only true when the univariate splitting is variance preserving. If this is the case, then
this formulation is equivalent to the solution by Vittaldev and Russell [26]. Notice, however, that
the univariate splitting libraries of Ref. [26] and the corresponding multivariate directional splitting
are not variance preserving. Eq. (18) has the advantage over Ref. [26] that it avoids the need of
computing the matrix square root of the covariance.

To verify that the proper uncertainty is obtained by choosing P; in accordance with Eq. (18),
consider the uncertainty of x; along the direction u, which is

-1
l/agu =u'P;lu=u’ [P + (0?2 —=1)02 u uT] u
From the matrix inversion lemma, it follows that
iU

-1
1/02, =uTP lu— uTP_1u< + uTP_1u> u'Plu

(02 —1)02
Applying Eq. (14) and reducing gives the final result that
1 1 [1 - 1] 11

— = == — 19)
2 2 2 2 52 (
Oiu  Ou o o5 O

That is, 02, = o2

o 2 o2, which is the desired result for the uncertainty of P; along the direction
u. Since Eqgs. (16) and (17) reduce the uncertainty in the u direction, Eq. (19) proves P; remains

positive definite.

Variance-Preserving Univariate Splitting

All is left to complete the algorithm is the development of a univariate splitting scheme for Gaus-
sian distributions. This is the topic of this section.

Starting from a univariate Gaussian distribution, denoted by p(x), the goal is to approximate it by
a GMM, denoted by ¢(x), where the reason for the approximation is to replace the original Gaussian
distribution by a combination of Gaussian distributions with smaller variance. The associated re-
gions with non-negligible probability are smaller for each of the Gaussians that replace p(z), which
allows linear transformations of uncertainty to be carried out with less approximation error than
would occur with the original distribution. Approximating p(x) by ¢(z) in this manner is referred
to as splitting, where the objective is to determine the parameters of g(x).

There are a variety of ways in which the splitting process can be formulated, such as minimizing
the Lo norm between p(x) and ¢(z) [11], minimizing the divergence between p(z) and ¢(x) [37],
matching the moments of ¢(z) to those of p(x) [37], or employing a power law in conjunction
with the Lo norm [38]. In this work the difference between probability distributions is consistently
evaluated with the Kullback-Leibler divergence (KLD); therefore the splitting library is formulated
by minimizing the KLD between p(x) and ¢(z); that is, given p(z) = py(z;0, 1), the objective is
to minimize

Dicalpllal = [ ploiog £Lao

to obtain the parameters of ¢(z), which is the GMM

—-M M
a(w;©) = wop(wimo, Po) + > wepg(wime, P)+ > wipg(aime, ), (Q0)
(=—1 /=1



where M is known and © is the set of parameters defining the GMM, i.e. © is the collection of
the weights, means, and variances appearing in Eq. (20). It is common to add constraints to the
GMM parameters, such as requiring that the weights are all positive, that they sum to one (which
ensures that ¢(z) is a pdf), or that the mean and variance of ¢(z) match those of p(x). Including
these constraints, the optimization problem may be stated as

min Dgp[pllg] subjectto wy, >0V £e{-M,...,M},
M

M M
ngzl, ngmgzo, and ng(Pg—i—m?):l.
=M =M (=—M

To reduce the parameter space for the optimization problem, the GMM is assumed to be symmetric,
ie.mg=0andw_y = wpand m_y = —my ¥V £ # 0, and the GMM is assumed to be homoscedas-
tic, such that P, = ¢2 ¥ £. Under this restricted GMM, the optimization problem becomes

M
min Dgr[p|lg] subjectto wy >0V £e{—-M,...,M} and Z wy =1,
=—M

in order for the variance of ¢(z) and p(x) to be the same, the common variance parameter of the
GMM must be chosen as

M
02:1—22w5m§. (1)
/=1

Thus, the first moment of ¢(z) is matched by symmetry, and the second moment is matched by the
selection of the common variance parameter via Eq. (21). Whenever an even-component mixture
is desired, the central weight is set to zero, i.e. wg = 0, which effectively nullifies the central
component’s appearance in Eq. (20). Thus, w,; and my for £ > 0 and wy (for odd-component
mixtures) fully define ¢(z).

In determining the weight and mean parameters, it is desired to ensure good separation between
the components of the GMM. The method proposed here is to divide the support of the distribution
into equiprobable bins and center the components at the means of these bins. Suppose it is desired
to split the distribution into three components. The three equiprobable regions, each possessing 1/3
of the probability, are (—oo, —0.43), [—0.43,0.43], and (0.43, c0), where the regions are straight-
forwardly determined from the cumulative distribution function. For the general case of splitting
the Gaussian into L components and hence dividing the support into L regions, if each region is
represented by an interval described by a; and b;, where a; < b;, then the mean of the region is

m; = L/bi ze~ /2 dy
‘ V2T Ja;

where the factor of L scales the distribution in this region to be a valid pdf. The means for each
of the L regions are then used as the means for the L components in the GMM. Only [(L — 1)/2]
means need to be calculated; the remaining means are found from the symmetry requirement. Once
the means are defined in this manner, wy for £ > 0 fully define the variable parameters that can be
chosen to minimize the Dy, [p||q]. Accounting for the symmetry constraint and the constraint that
the weights must sum to unity, there are | (L — 1)/2| free parameters in the optimization problem.
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The constrained KL divergence minimization problem is used to find 3-, 4-, 5-, and 6-component
splitting libraries (i.e. GMM approximations of a standard normal distribution). The resulting
distributions are illustrated in Figure 1, which graphically compares the target distribution, p(x),
to the determined GMM distribution, including the individual components of g(x). It is clearly
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= =
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O 0 ] L
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x
(c) 5-component (d) 6-component

Figure 1. Splitting library solutions found by minimizing the KL divergence.

observed that, while increasing the number of components improves the matching of ¢(z) to p(x),
the 5- and 6-component GMMs have two components that have significantly lower weights than the
remaining components of the GMM.

To assess the solution quality, the KL divergence is computed over the permissible range of free
parameters for each of the 3-, 4-, 5-, and 6-component cases. In particular, the only free parameter of
the 3- and 4-component cases is taken to be w1, and the free parameters of the 5- and 6-component
cases are taken to be w; and wy. The resulting curves and surfaces of the KL divergence are
illustrated in Figure 2, and the minimizing solutions represented in Figure 1 are depicted by the
marker along the curve or surface. From Figure 2(a), it is seen that as wy | 0, Dgr[p|lq] 4 O,
which is the case where the 3-component GMM is being reduced to a 1-component GMM (i.e.,
a single Gaussian) that is exactly p(x). As this eliminates the ability to split p(z) into separate
components, it is not of interest. Therefore, the local minimum that is found is the solution that is
of interest. In Figures 2(b)-2(d), it is seen that several local minima exist. In each case, however,
the local minimum with the largest weights is found, leading to a GMM with weights spread more
completely across the components.

SIMULATION RESULTS

The performance of the developed directional splitting procedure is demonstrated in three nu-
merical examples. The first example is a Keplerian orbit. This example is chosen to assess relative
performance of the proposed algorithm against other, existing, techniques. The second numeri-
cal example is a more realistic example with perturbations added. The final numerical example
addresses uncertainty propagation in cislunar space.

11
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Figure 2. KL divergence as a function of library parameters.

Example 1. Benefits of Directional Splitting

The purpose of this example is to show the benefits of the proposed directional splitting over
splitting in the direction of maximum uncertainty. In order to show the advantages of the proposed
directional splitting scheme, a direct comparison with AEGIS, the prior work from Ref. [11], is
shown. Since this example focuses on relative performance with respect to AEGIS, a simple base-
line Keplerian orbit is used. The absolute performance of the proposed algorithm against a more
realistic scenario is left to the next example.

In [11] the GMM components splitting is done in the direction of maximum uncertainty, i.e. the
nonlinearity of the dynamics is not taken into account, and splitting occurs in the direction of the
eigenvector associated with the maximum eigenvalue of the covariance matrix. For the comparison
to be meaningful, this example does not use the KL divergence criteria proposed in this work. Rather
the same split criteria used in [11] is employed, which is based on the differential entropy difference
between an EKF and a higher order filter. Much of the prior work in the literature performs splitting
of GMM components along the direction of maximum uncertainty. While this approach has been
shown to work well in practice, tailoring the added GMM components to the most needed directions
reduces the number of total components.

The differential entropy of a random vector gives an indication of the average amount of informa-
tion content and it can be used to evaluate the difference in information content between two distinct
random vectors. The differential entropy of a random vector with probability density function p(x)
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is defined as
H=- /S p(x) log p(x) dx = E{ log p(x)} 22)

where S is the support of the random vector. For a Gaussian distribution with covariance matrix P,
Eq. (22) reduces to

1
H= §log\27reP|

It can be noticed that this quantity is only a function of the covariance of the Gaussian random vari-
able, so it is not a function of the mean. The strategy employed in [11] is to monitor the difference in
differential entropy between the linearized (EKF) solution and a higher order (UKF) solution. If the
difference exceeds a predetermined threshold, the linearization assumption is deemed insufficient
and a component split is performed.

For Hamiltonian systems [39] the differential entropy is constant across EKF time propagation
[11]. Therefore, in this Keplerian orbital propagation scenario, it is not actually necessary to carry
both the EKF solution and a higher order solution. Only the higher order solution is necessary, as its
differential entropy variation is sufficient to determine its divergence from the linearized (constant
entropy) solution. The differential entropy approach from [11] has therefore attractive computa-
tional savings in Hamiltonian propagation cases. Our proposed approach with the KL divergence,
on the other hand, requires carrying both the EKF and the higher order solution even for Hamilto-
nian systems. However, in most practical engineering situations, diffusion terms are an important
part of the dynamics evolution, and hence the EKF solution needs to be carried explicitly in the
computations in order to implement the algorithm from [11].

An advantage of using the KL divergence over differential entropy is the fact that it evaluates
differences in both the mean and covariance of the two solutions. Consider the continuous propaga-
tion equations of the mean and covariance matrix of Eq. (1) using the Gaussian Second Order Filter
approximation [34, p. 340]

} (23)

T = fi(x,t) + 1tr {P 782fi(x’t)

2 ox OxT
T
p_ Al 5 pHXDN L Goar 24)
ox | ox |4

The evolution of the covariance matrix does not depend directly on the second order effects, rather
they enter indirectly through evaluating the Jacobian of the dynamics at the mean, whose evolution
contain the Hessian of the dynamics directly. It follows that situations could naturally arise where
the nonlinearity of the system is more effectively monitored with a splitting criteria that evaluates
both means and covariances. A well-tuned criterion based on the KL divergence, therefore, would
have the opportunity to identify the nonlinearity more rapidly. Nevertheless, a differential entropy
approach has been successfully used in the past and has clear computational advantages in the
traceless, diffusion-free, propagation case.

Since the orbit is Keplerian, without loss of generality, the orbital plane is chosen as the equatorial
plane and the z coordinates are omitted (since they are identically zero at all times). Denoting the
two-dimensional position by r and the two-dimensional velocity by v, the state vector and equations

13



of motion that describe the nonlinear dynamical system are

x=[v] ana x=[3] = r00 = |0

The acceleration due to gravity is denoted by g(r). For a two-body, point-mass formulation,

- _F
g(I‘) - 7“31‘

where 1 = 3.986004415 x 105 km?/s? is the gravitational parameter of the Earth and r = ||r| =
/22 + y2. Given the dynamical system, the Jacobian is readily obtained as

where G(r) is

H BT
G(r) = =-=I4+3=
(r) 3 + 5T
Recalling that D;(x) is the Hessian of the i-th component of f(x), it follows that D; = Dy = O

for the nonlinear dynamical system considered here; additionally, for ¢ = 1, 2,

2%9:(r)
D; = | or orT
b = |55t 9]

where

Iz T

er —15””

2.
r

12 KTy I
Or orT rd

rd

rrT+3ﬁ5r e;r—|—3 (25)
r

and e; is an element of the canonical base of R™, 1 = x, and ro = .

For the orbital uncertainty propagation problems considered here, the initial state distribution is
taken to be Gaussian. The initial mean is represented by orbital elements given by a semi-major axis
of 35000 km, an eccentricity of 0.2, an argument of periapse of 0°, and a mean anomaly of 0°. The
true initial mean is given by converting the specified orbital elements into Cartesian coordinates,
yielding

0

r=1"0 and  m, = {4.133144} km/s

_ [28000} Km
where m, is the position part of the initial mean and m,, is the velocity part of the initial mean.
Furthermore, the initial covariance is taken to be diagonal with standard deviations in the position
elements of 1 km and standard deviations in the velocity elements of 1 m/s. Given the prescribed
initial mean and covariance in Cartesian coordinates, the objective is to propagate the uncertainty
for one orbital period, which is approximately 0.754 days or 65,165 seconds. To be consistent with
each other, both schemes perform the splitting into three components using the univariate library
shown in Table 2.

Using a differential entropy threshold of 0.0081 nats the AEGIS scheme produces a GMM with
217 components. By splitting along the most nonlinear direction as proposed in this work, we are
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Table 2. Univariate Splitting Library from Ref. [11]

Component # Weight Mean Std. Dev.
-1 0.22522462491 —1.0575154614 0.67156628866
0 0.5495507501 0 0.67156628866
1 0.22522462491 1.0575154614 0.67156628866
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Figure 3. Comparison between AEGIS (solid line) and directional splitting (dotted line)

able to obtain the same level of performance with a saving of roughly 25% of components; the
directional splitting scheme performs the propagation with 153 components. More importantly,
computing a kernel density estimate of the position’s distribution from the propagated Monte Carlo
points, and comparing it with the position PDF produce by AEGIS the resulting Integrated Square
Error (ISE) [16] is 2.44 - 10~°, while the newly proposed approach has an ISE of 1.73 - 10~ a 30%
improvement. ISE (error calculated from one set of Monte Carlo points) and MISE (mean of many
ISEs each computed from a different Monte Carlo set of points) are the standard statistical metrics
to evaluate PDF approximations.

Fig. 3 shows the distribution of the position uncertainty at the end of propagation. The solid
lines represent equal probability contours of the AEGIS scheme, while the dashed lines depict the
directional splitting results. It can be seen that the two approaches return effectively the same
distribution, but directional splitting allows the same results at a fraction of the cost.

Example I1. Propagation of Orbital Uncertainty

We next utilize the newly proposed splitting library in Table 3 with the threshold from Eq. (9)
taking parameters k = 1.012 and ¢ = 0.35. Furthermore, performance is demonstrated for a
more realistic orbit determination problem: tracking of 3D position and velocity for a satellite in
an Earth orbit. The satellite has a box-wing body equipped with a solar panel and maintains a
certain reference attitude with respect to the Earth and Sun. Surface areas and reflectivity properties
for each face are listed in Table 4. The true and modeled filter state dynamics are summarized
in Table 5. Notable discrepancies between the true and filter dynamics are: fidelity of the Earth
gravity field, attitude-based atmospheric drag, attitude-based solar radiation pressure (SRP), and
material-based SRP reflectivity coefficients. Dynamic mismodeling was addressed via the inclusion
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of process noise as in Eq. (1) with power spectral density value 10720133 %

Table 3. New Univariate Splitting Library used in this example

Component # Weight Mean Std. Dev.
-1 0.1616701997 —1.0908000117 0.78439476713
0 0.6766596007 0 0.78439476713
1 0.1616701997 1.0908000117 0.78439476713

Table 4. Satellite Geometry and Reflectivity Coefficients

Face (Body Axes) Surface Area  Cgiffuse  Cspecular
+X 6m? 0.04 0.59
+Y 8m? 0.04 0.59
+Z 12m? 0.80 0.04
-7 12m? 0.28 0.18
Solar Panel 15m? 0.04 0.04
Table 5. Propagation Models
Simulation Filter
Earth Gravity 20x20 EGM96 point mass + J
Point Mass Gravity Moon, Sun Moon, Sun
attitude-based, Table 4 cannonball, A=15m2
Cp =1.88 Cp =1.88
Drag m = 2000kg m = 2000kg
attitude-based, Table 4 cannonball, A=15m?
material-based with Table Cr=1.0
SRP m = 2000kg m = 2000kg

The proposed algorithm was applied to propagate the same initial distribution from Example
I. using the filter dynamics over one orbital period. Additionally, 100,000 Monte Carlo samples
were sampled from the initial distribution and propagated via the true simulation dynamics. Results
are illustrated by Fig. 4 which shows a visual comparison between the proposed algorithm (solid
line) and a Gaussian kernel density estimator (dashed line) for different position dimensions. The
first 1000 Monte Carlo samples are shown in the plot (dots). The proposed algorithm required 633
components at the final time. The kernel density estimator is based on a 100 x 100 square grid of bins
utilizing the Monte Carlo samples. The first two moments were computed for both the Monte Carlo
and proposed filter solutions at the final time for quantitative comparison. The resulting means and
state element standard deviations are provided in Eqgs. (27) — (29). Euclidean distances are 3.68 km,
0.45 m/s between mean solutions and 1.0159 km, 0.1320 m/s between standard deviation solutions

for position and velocity, respectively.
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Monte Carlo:

[28000.07 [ 2.1801

m,= | 3135 |km Orr = [296.3976 | km (26)
| —0.66 | 0.9981
[ —4.10 [36.4843

m, = [4132.79| m/s opy = | 1.0838 | m/s 27)
| 0.063 | 1.0099

Proposed Algorithm:

[28000.05 [ 1.8800

m, = | 35.03 | km Orr = [295.4271 | km (28)
| —0.65 | 1.0015
[ —4.55 36.3528

m, = |4132.78| m/s ow = | 1.0881 | m/s (29)
| 0.058 | 0.9999

It can be seen that the proposed algorithm compares favorably with the density estimator, but the
results are obtained at a fraction of the computational cost of propagating 100, 000 samples.

1500
4 4
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= =2 —2
s o &80 80
g 8 g
T -500 g2 §-2
> N N
-1000 -4 -4
1500 -6 6
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x-Position [km] «10% x-Position [km] <104 y-Position [km]
(a) xvs. y (b) xvs. z () yvs.z

Figure 4. Comparison between proposed algorithm (solid line) and kernel density
estimator (dashed line) for orbital uncertainty propagation example.

Example III. Cislunar Uncertainty Propagation

Consider the NRHO with apolune initial condition,

1.021340029542164 —8.944373429458848 x 107
ro = |7.427823161812455¢ x 1073 | LU, vy = | 1.01759618312383 x 10! | LU/TU
—1.81619990249204 x 10! 4.569746377746858 x 10~

Each value in r¢ and v is defined in terms of the non-dimensionalized length units (LU) and time
units (TU) in the circular-restricted three-body dynamics:

Ty = Vg, 7;y = Uy, T, =1,
by =2+ 20, — (1 — p)(z + p) /12 — p(x — 14 p)/r),
by =y — 20 — (L= p)y/rd — py/rs,
b = —(1 = )2 /r? = puz/r?,

(30)
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where

re =[x+ p)? + 12 + 272 a1
T = [(x—1+u)2+y2+z2]%

and ;1 = 1.2150584269940 x 1072 is the ratio of the moon’s mass to the sum of the masses of the
Earth and the moon. The period of the orbit is 1.50206 TU. We consider the uncertainty distribution
at perilune, after 0.5 revolutions.

The initial distribution is Gaussian with covariance matrix,

Py = diag([10km, 10km, 10km, 0.1m/s, 0.1m/s, 0.1 m/s])> (32)
The process noise has power spectral density 10720133 % As in the previous example, the
splitting library is shown in Table 3. The splitting threshold is shown in Eq. (9) with parameters
k = 1.52 and ¢ = 0.35. Figure 5 shows the results of the proposed algorithm compared to a
kernel density estimate computed from 100,000 Monte Carlo points propagated at high fidelity,
including gravitational accelerations relative to the the moon, the Earth, and the Sun, as well as
solar radiation pressure [40]. Because the circular restricted three-body dynamics drift significantly
from the high-fidelity dynamics, the mean of the GM distribution was adjusted to match the mean

of the high-fidelity distribution. The proposed algorithm produced 117 components.

Monte Carlo:

2.8277 x 1076 0.0049
orr = |4.6662 X 107*| LU ow = [0.0030| LU/TU (33)
2.5260 x 107 0.0472
Proposed Algorithm:
2.7112 x 1076 0.0051
orr = [4.7399 x 107*| LU ow = [0.0035| LU/TU (34)
2.4558 x 107 0.0506
i %1072 o5 %1072 . ©10°3
1 8.5 8.5
Sos =) 3
< 'c 845 =845
20 = 2
§,0_5 é 8.4 é 8.4
- 8.35 8.35
1.5
0.98737 0.98738 0.98739 0.98737 0.98738 0.98739 1.5 1 -0.5 0 0.5 1 1.5
x-Position [LU] x-Position [LU] y-Position [LU] %102
(a) xvs.y (b) xvs. z () yvs.z

Figure 5. Comparison between proposed algorithm (solid line) and kernel density
estimator (dashed line) for cislunar example
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CONCLUSIONS

The objective of this work is to provide accurate uncertainty quantification for a random pro-
cess subject to nonlinear dynamics utilizing Gaussian mixture models. A new univariate splitting
library was developed to minimize a measure of information loss (Kullback-Leibler divergence)
while preserving the first two moments of the original Gaussian component before splitting. This
was extended to multivariate components by applying the 1-D library along a single direction such
that the first two moments are still preserved. The splitting direction chosen was one found to be
associated with both large prior uncertainty and nonlinearity in the system dynamics. Throughout
propagation, splitting was triggered automatically by an indication of unacceptable information loss
incurred by the use of an linearized solution instead of a higher-order solution. This work focused
on the propagation phase but could be augmented with existing schemes for the measurement phase.
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