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POLYNOMIAL-BASED SOLUTION TO THE TARGETING PROBLEM
FOR ONBOARD APPLICATIONS

Alberto Fossà*, Roberto Armellin†, Didier Henrion‡§, and Renato Zanetti¶

This paper solves the targeting problem focusing on accuracy and efficiency.
Given the initial spacecraft state, the objective is to compute the optimal maneuver
to reach the target state in a fixed time interval. The problem is firstly recast as
a polynomial optimization problem (POP) using high-order Taylor expansions of
the dynamics and the constraints. Moment-sum-of-squares (SOS) optimization is
leveraged to efficiently solve this POP. A convex formulation based on a second-
order expansion of the dynamics is also proposed. The POP is more suitable for
large maneuvers and long time spans, while the convex formulation is preferred
when efficiency is paramount.

INTRODUCTION

As spacecraft operations are evolving towards complete onboard autonomy, the need for efficient
and robust trajectory planning is becoming increasingly important. The deployment of fully au-
tonomous systems is however constrained by the onboard computational resources and by the need
for a guaranteed solution to the problem at hand. This is evident in the context of trajectory optimiza-
tion, which mostly relies on the numerical solution of large nonlinear programming (NLP) problems.
Recent research thus focused on more efficient methods that can provide a guaranteed convergence
to the global optimum. One of such techniques is convex optimization,1 whose main drawback is
that most optimization problems in astrodynamics are intrinsically nonconvex. This limitation can be
overcome by solving a sequence of relaxed convex sub-problems around a nominal trajectory, giving
birth to the so-called successive convex optimization. Another class of optimization problems that
received significant attention in recent years is that of polynomial optimization problems (POPs).2–4

Although not yet common in astrodynamics, this class of problems positions itself between NLPs and
convex optimization, allowing for more flexibility in the formulation of the trajectory optimization
problem while still providing several advantages over traditional NLP. Dedicated algorithms such as
moment-sum-of-squares (SOS) optimization can in fact solve POPs efficiently, while guaranteeing
under mild assumptions that the global optimum is found.

The focus of this work is thus on the solution of the targeting problem leveraging these advanced
optimization techniques. The design of an impulsive maneuver that steers the spacecraft from a given
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initial state to a desired final state is in fact a common problem in astrodynamics. This problem is
typically solved by analyzing the first-order sensitivity of the final state with respect to deviations in
the initial conditions (ICs), which limits its applicability to small maneuvers and short time spans.
In contrast, this papers reformulates the targeting problem as a POP in which the dynamics and the
constraints are expanded at higher order to better account for the effects of the nonlinear orbital
dynamics. These expansions are computed efficiently using differential algebra (DA) techniques,5

thus avoiding the need for the numerical integration of the variational equations along with the state.
For those cases in which a second-order expansion of the dynamics is sufficiently accurate, the POP
is further reformulated as a convex optimization problem, leading to an even more efficient solution
that still outperforms traditional first-order methods in terms of robustness and optimality.

The paper is organized as follows. Firstly, the targeting problem is formulated as a NLP problem
using the true dynamics. Secondly, a POP formulation is presented, detailing how DA techniques are
used to compute the arbitrary order Taylor expansions of the dynamics and the constraints. Then, a
convex relaxation of the original problem is derived from a second-order expansion of the dynamics,
and some considerations are made to improve the numerical conditioning of the problem. Finally, a
numerical example is presented to demonstrate the performance of the proposed methods compared
to the solution of the original NLP problem.

PROBLEM STATEMENT

Consider the targeting problem where the objective is to minimize the initial impulsive maneuver
required to steer the spacecraft from a given initial state to a desired final state in a fixed time interval.
This problem can be formulated as follows:

min
∆v

∥∆v∥2 (1)

subject to the equality constraints:

x(tf ) = x(t0) +

∫ tf

t0

f(x(t), t) dt , (2a)

x(t0) = x−
0 +

[
0n×1

∆v

]
, (2b)

and inequality constraint:

[x(tf )− x̄f ]
T P−1 [x(tf )− x̄f ] ≤ d2, (3)

where f(x(t), t) are the ballistic dynamics, x−
0 ∈ R6×1 is the initial state before the maneuver,

x̄f ∈ R6×1 is the target state, t0 and tf are the initial and final times, ∆v ∈ R3×1 is the impulsive
maneuver, P ∈ R6×6 is the target covariance matrix, and d ∈ R is the target distance. Equation (3)
is an upper bound on the squared Mahalanobis distance between the final state x(t) and a probability
distribution with mean x̄f and covariance matrix P .

Equations (1), (2) and (3) define a NLP problem that can be readily solved with dedicated
algorithms such as IPOPT.6 As the objective function is not differentiable in ∆v = 0, Eq. (1) is
replaced by its square to avoid potential issues during the numerical solution of the NLP problem.
The objective thus becomes:

min
∆v

∥∆v∥22 (4)

subject to the equality constraints in Eq. (2) and inequality constraint in Eq. (3).
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POLYNOMIAL OPTIMIZATION PROBLEM

Solving the NLP problem defined by Eqs. (2), (3) and (4) might become computationally intensive,
as the dynamics in Eq. (2a) must be numerically integrated at each solver iteration. The proposed
solution is to compute a high-order Taylor expansion of x(tf ) function of ∆v, and evaluate this
expression in place of Eq. (2a). As Eqs. (2b), (3) and (4) are already polynomial functions of ∆v, the
original NLP problem becomes a POP. The latter can be then solved efficiently using the techniques
described in the next section.

Polynomial expansion of the constraints

Consider the spacecraft state x defined as:

x =
[
rT vT

]T
=

[
x y z vx vy vz

]T ∈ R6×1, (5)

and the impulsive maneuver ∆v given by:

∆v =
[
∆vx ∆vy ∆vz

]T ∈ R3×1. (6)

A polynomial expansion of the final state can be obtained efficiently using DA techniques.5 The
impulsive maneuver is firstly initialized as:

[∆v] = 03×1 + δv, (7)

where the square brackets denote Taylor polynomials, and δv =
[
δvx δvy δvz

]T are the three
independent DA variables that represent an infinitesimal maneuver along the x, y and z directions,
respectively. Then, evaluating Eq. (2) in the DA framework results in the following expression for
the final state:

[x(tf )] = T (k)
x(tf )

(δv) , (8)

which is a vector of k-th order Taylor polynomials in δv. Substituting Eq. (8) into the right-hand side
(RHS) of Eq. (3) finally yields to the following approximation of the squared Mahalanobis distance:[

d2M (tf )
]
= {[x(tf )]− x̄f}T P−1 {[x(tf )]− x̄f}

= T (k)

d2M (tf )
(δv) ,

(9)

which is again a k-th order Taylor polynomial in δv. As the flow of the dynamics is embedded in
Eq. (8), Eqs. (2) and (3) are replaced by the single inequality constraint:

T (k)

d2M (tf )
(∆v) ≤ d2. (10)

and the original NLP problem is recast as the POP of minimizing Eq. (4) subject to Eq. (10).

Quadratic expansion of the constraints

Consider the polynomial expansion of the final state given by Eq. (8). Choosing k = 2 and
expanding terms yields

[xi(tf )] =
∑
|α|≤2

ci,αδv
α i ∈ [1, 6], (11)
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where [xi(tf )] are the six components of the DA vector [x(tf )], ci,α are the coefficients of the
monomials function of δvα, and α := (αj) ∈ N3 is a multi-index with αj corresponding to the
exponent of δvj for j = x, y, z. Equation (11) can then be rewritten in matrix form as

[x(tf )] = c0 +Az, (12)

where c0 ∈ R6×1 is the vector of constant coefficients, A ∈ R6×9 is the matrix of first and second
order coefficients, and z is defined as

z = [zα]|α|≤2 =
[
z100 z010 z001 z200 z110 z020 z101 z011 z002

]T
= [δvα]|α|≤2 =

[
δvx δvy δvz δv2x δvxδvy δv2y δvxδvz δvyδvz δv2z

]T
.

(13)

Substituting Eq. (12) into Eq. (3) yields

[Az − (x̄f − c0)]
T P−1 [Az − (x̄f − c0)] ≤ d2, (14)

which can be rewritten as
zTQz + cTz + r ≤ 0, (15)

where

Q = ATP−1A, (16a)

c = −2 (x̄f − c0)P
−1A, (16b)

r = (x̄f − c0)
T P−1 (x̄f − c0)− d2. (16c)

Equation (15) is a fourth-order approximation of the constraint on the squared Mahalanobis distance
function of the DA variables δv. It does however not coincide with Eq. (9) for k = 4, as the dynamics
in Eqs. (11) and (12) are truncated at second order. Moreover, additional constraints must be enforced
to ensure the consistency of the polynomial expansion according to Eq. (13):

z2100 − z200 = 0 z100z010 − z110 = 0

z2010 − z020 = 0 z100z001 − z101 = 0

z2001 − z002 = 0 z010z001 − z011 = 0.

(17)

Equations (16c) and (17) provides the basis for the convex relaxation of the targeting problem
presented later in this paper.

MOMENT-SUM-OF-SQUARES OPTIMIZATION

Although POPs can be solved using generic NLP solvers, these algorithms treat the objective and
constraints functions as black-boxes, and do not exploit their polynomial structure. Moreover, most
solvers are gradient-based, meaning that the provided solution might be only locally optimal. In
contrast, moment-SOS optimization2, 4 exploits the polynomial structure of the problem and builds a
hierarchy of convex problems that can be solved efficiently via semidefinite programming (SDP)4

techniques. Their solutions provide increasingly tighter lower bounds of the cost function until
the optimal value is attained. The optimal solution to the original POP is then recovered from the
underlying relaxation.
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Moment-sum-of-squares hierarchy

The following paragraphs recall the basic ingredients of the moment-SOS hierarchy. Readers
interested in further details can consult the lecture notes7 or the more technical and comprehensive
monograph.4

Consider the POP
p∗ := min

χ∈X
p(χ) (18)

where p is a given multivariate polynomial of the indeterminates χ ∈ Rn, and

X := {χ ∈ Rn : gk(χ) ≥ 0, k = 1, . . . ,m} (19)

is a bounded set defined by a given vector g := (gk)k=1,...,m of polynomials. Since X is compact
and p is continuous, a minimizer exists. Yet, the POP in Eq. (18) is a difficult global optimization
problem with potentially many local and global optima.

The first step consists in reformulating the POP as a finite-dimensional linear programming (LP)
problem. Let R[χ]d denote the vector space of polynomials of χ of degree at most d. It can be
indexed by Nn

d := {α ∈ Nn :
∑n

i=1 αi ≤ d}. Let b(χ) := (bα(χ))α∈Nn
d

denote a basis for this
space, with the convention that b0(χ) := 1, so that every element p ∈ R[χ]d can be expressed as a
linear combination

p(χ) =
∑
α∈Nn

d

pαbα(χ). (20)

Now consider a linear functional on R[χ]d. In basis b, such a functional can be represented with a
vector y := (yα)α∈Nn

d
as follows:

ℓy(p) :=
∑
α∈Nn

d

pαyα. (21)

Informally, ℓy linearizes polynomials, compare Eq. (20) and Eq. (21). Note that ℓy(1) = 1. Given
any vector χ ∈ X , note that for the specific choice y = b(χ), the linear functional ℓy(p) = p(χ)
coincides with the point evaluation at χ, and the expression p(χ) (which is nonlinear in χ) can be
replaced with the expression ℓy(p) (which is linear in y). The constraint

y ∈ b(X ) := {b(χ) : χ ∈ X } (22)

is however nonconvex. Since ℓy(p) is linear in y, Eq. (22) can be replaced with the convex constraint

y ∈ M (X ) := conv b(X ) (23)

where conv denotes the convex hull*. Now consider the finite-dimensional LP problem

p∗M := min
y∈M (X )

ℓy(p). (24)

It turns out that solving the LP in Eq. (24) is equivalent to solving the original nonconvex POP in
Eq. (18):

Lemma 1 p∗ = p∗M .

*The convex hull of a set A is the smallest closed convex set containing A .

5



Proof: On one hand, for any global minimizer χ∗ of Eq. (18), notice that y∗ := b(χ∗) ∈ M (X )
is admissible for Eq. (24), with value ℓy∗(p) = p(χ∗) = p∗ ≥ p∗M . On the other hand, it holds
that p(χ) ≥ p∗ for all admissible χ ∈ X , and hence ℓy(p) ≥ ℓy(p

∗) = p∗ for any admissible
y ∈ M (X ). In particular this is true for a minimizer, implying p∗M ≥ p∗. □

The difficulty in solving Eq. (24) is however concentrated into the constraint set M (X ). Despite
being finite-dimensional and convex, this set is difficult to manipulate. Just determining whether
it contains a given vector can be challenging. The main idea behind the moment-SOS hierarchy
consists of approximating M (X ) with a family of increasingly tight semidefinite representable*

convex sets. Optimization of linear functions on semidefinite representable sets is the subject of SDP,
and it can be done efficiently with interior-point algorithms.8

A hierarchy of semidefinite representable outer approximations of M (X ) can be constructed as
follows. Let g0 := 1, let rg be the smallest integer larger than maxk

deg gk
2 , let r ≥ rg be any integer

and, for each k, let rk be the smallest integer larger than r − deg gk
2 . Then define

M (X )r :=
{
(yα)α∈Nn

d
: ℓy(1) = 1, ℓy(q

2gk) ≥ 0, ∀q ∈ R[χ]rk , k = 0, 1, . . . ,m
}

=
{
(yα)α∈Nn

d
: ℓy(1) = 1, Mrk(gky) ⪰ 0, k = 0, 1, . . . ,m

} (25)

where the matrix Mrk(gky) represents the quadratic form q 7→ ℓy(gkq
2) in basis b, i.e.

Mrk(gky) := ℓy(gkbα1bα2)α1,α2∈Nn
rk
. (26)

The notation reflects the fact that the matrix depends linearly on gk (for given y) and also linearly
on y (for given gk). In particular, the positive semidefiniteness constraint Mrk(gky) ⪰ 0 is a linear
matrix inequality (LMI) in y, which implies that M (X )r is semidefinite representable. When
k = 0, the matrix

Mr(y) := ℓy(bb
T ) (27)

is called the moment matrix, where the linear functional acts entrywise on the rank-one matrix bbT

with T denoting the transpose. Given α ∈ Nn
d , the scalar yα is called the pseudo-moment of degree

α.

The following result, a consequence of the so-called Putinar Positivstellensatz, states that the
convex semidefinite representable sets defined above are nested outer approximations converging (up
to taking the closure) to M (X ):

Lemma 2 M (X )r ⊃ M (X )r+1 ⊃ · · · ⊃ M (X )∞ = M (X ).

Now consider the following hierarchy of SDP problems called moment relaxations, indexed by
the relaxation order r:

p∗r := min
y∈M (X )r

ℓy(p). (28)

This hierarchy generates a monotonically non-decreasing converging sequence of lower bounds2 on
the POP in Eq. (18):

Theorem 1 p∗r ≤ p∗r+1 ≤ · · · ≤ p∗∞ = p∗.

*A set is semidefinite representable if it is the linear projection of a linear section of a finite-dimensional cone of
positive semidefinite matrices.
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Let y∗ denote the vector of pseudo-moments obtained by solving the moment relaxation of Eq. (28)
for some given r. The objective is to determine whether p∗r = p∗. The first candidate for global
optimality is the vector of first degree pseudo-moments:

Lemma 3 Let χ⋆ := (y⋆α)|α|=1. If χ⋆ ∈ X and p(χ⋆) = p⋆r then p⋆r = p⋆.

Proof: Every admissible vector for the POP yields an upper bound on the value of the POP. If this
upper bound is a lower bound, it means that it is optimal. □

Another useful property to check is whether the moment matrix has rank one:

Lemma 4 If rankMr(y
⋆) = 1 then p⋆r = p⋆.

Proof: From the definition of the moment matrix in Eq. (27), if rankMr(y
⋆) = 1 for some y⋆, then

Mr(y
⋆) = b(χ⋆)b(χ⋆)T = y⋆(y⋆)T . Since y⋆ = b(χ⋆) is admissible for the moment relaxation

in Eq. (28), it follows that for all k = 1, . . . ,m, Mrk(gky
⋆) = gk(χ

⋆)b(χ⋆)b(χ⋆)T ⪰ 0 and hence
gk(χ

⋆) ≥ 0, which means that χ⋆ ∈ X is admissible for the POP in Eq. (18). Since the value of
the moment relaxation p⋆r = p(χ⋆) is a lower bound on the value of the POP, i.e. p⋆, and χ⋆ is
admissible for the POP, it follows that χ⋆ is optimal and therefore p⋆r = p⋆. □

A more general result called flat extension states:

Theorem 2 For some r∗ ≥ max(rg,
d
2), if vector y∗ is such that

rankMr∗−rg(y
∗) = rankMr∗(y

∗)

then p∗r∗ = p∗.

Note that Lemma 4 is a particular case of Theorem 2, since if rankMr∗(y
∗) = 1 for some r∗ then

rankMr(y
∗) = 1 for all r. Similarly, Lemma 3 is a particular case of Theorem 2, since in this case

the vector y∗ = ((χ∗)α)α is such that rankMr(y
∗) = 1 for all r.

If the rank condition of Theorem 2 is satisfied, then there are s := rankMr∗(y
⋆) weights wk ≥ 0,∑s

k=1wk = 1 and points χ⋆
k ∈ X such that Mr(y

⋆) =
∑s

k=1wkb(χ
⋆
k)b(χ

⋆
k)

T and p⋆ = p(χ⋆
k)

for all k = 1, . . . , s. Numerical linear algebra algorithms can then be applied on Mr(y
⋆) to extract

the points χ⋆
k, k = 1, . . . , s, which are all globally optimal for the POP in Eq. (18).

In practice, for increasing values of the relaxation order r, the moment relaxations in Eq. (28)
are constructed with the help of modeling software such as GloptiPoly9 or MomentOpt.jl*.
These relaxations are solved numerically with an SDP solver such as Mosek10 or Hypatia.jl.11

The numerical solution is then post-processed to detect global optimality using the conditions of
Lemmas 3 and 4 and Theorem 2, and to extract the global minimizers.

Second-degree relaxation of the targeting problem

Consider the POP given by Eqs. (4) and (10). Setting the expansion order k = 4 and using the
notation of the previous paragraphs, the problem becomes:

min
χ

p(χ) = χ2
1 + χ2

2 + χ2
3 (29)

*https://github.com/lanl-ansi/MomentOpt.jl
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subject to
g1(χ) = d2 − T (4)

d2M (tf )
(χ) ≥ 0, (30)

where χ := ∆v. Equation (29) is a second-order polynomial in χ, while Eq. (30) is a fourth-order
polynomial in the same variables. Therefore, rg = 2 and the first relaxation has degree r = 2. The
moment vector in the monomial basis read:

y =
[
yα

]
=

[
χα

]
, α ∈ N3

4 (31)

and contains the
(
3+4
3

)
= 35 moments from y000 = 1 to y004 = χ4

3. The POP given by Eqs. (4)
and (10) is thus equivalent to the following moment optimization problem (MOP):

min
y

pM (y) = y200 + y020 + y002 (32)

subject to

M2(y) =

y000 . . . y002
...

. . .
...

y002 . . . y004

 ⪰ 0 (33a)

M0(g1y) = cTg1y (33b)

y000 = 1, (33c)

where M2(y) is the moment matrix, which is a 10× 10 symmetric matrix constrained to be positive
semidefinite (PSD), and cg1 are the coefficients of Eq. (30) corresponding to the monomials χα. The
localizing matrix M0(g1y) is linear in the optimization variables y, and the MOP can be efficiently
solved by any SDP solver.

CONVEX OPTIMIZATION

Convex optimization has become very popular in astrodynamics, as it allows to solve large
optimization problems efficiently, while guaranteeing that the global optimum is found.1 It consists
in minimizing a convex function over a convex set, and it thus requires both the objective and the
constraints to be convex functions in the optimization variables. In this section, a convex relaxation
of the targeting problem is derived from the quadratic approximation of the constraint in Eq. (15).

Convex relaxation of the problem

Consider the optimization variables z defined in Eq. (13). After substituting these variables into
Eq. (4), the objective function becomes:

min
z

z200 + z020 + z002 (34)

which is a linear function of z. The constraints in Eqs. (2) and (3) are then replaced by Eqs. (15)
and (17). As the latter are nonconvex functions of z, they are relaxed into the following LMI:

1 z100 z010 z001
z100 z200 z110 z101
z010 z110 z020 z011
z001 z101 z011 z002

 ⪰ 0, (35)
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where the notation ⪰ 0 requires the matrix on the left-hand side (LHS) to be PSD. This matrix corre-
sponds to the moment matrix of degree one, denoted as M1(y) in the previous section. Therefore, it
must be singular with rank one for the equality constraints in Eq. (17) to be satisfied. The convex
relaxation of the original problem is finally given by Eqs. (15), (34) and (35).

Numerically robust formulation

The convex optimization problem presented above might be numerically ill-conditioned, as the
matrix Q is not full rank, and its entries might span several orders of magnitude. To improve the
numerical conditioning of the problem, a first step is to compute Q in a more robust way, i.e.:

B = DA, (36a)

Q = BTB, (36b)

where D is the square root of P−1 and B ∈ R6×9. This formulation is used in all numerical
examples presented in this paper.

For an even better conditioning, the inequality constraint in Eq. (15) can be reformulated as follows.
Firstly, an additional optimization variable β ∈ R is introduced, and the vector of optimization
variables z is augmented to include β:

z̃ =

[
z
β

]
. (37)

Then, Eq. (15) is split into two constraints:12

∥Rz∥22 ≤ β, (38a)

β + cTz + r = 0. (38b)

with R ∈ R9×9 the upper triangular factor of the QR decomposition of B such that Q = RTR. The
convex optimization problem is then defined by Eqs. (34), (35) and (38).

NUMERICAL APPLICATIONS

This section presents two applications of the polynomial optimization techniques to the targeting
problem in astrodynamics. The objective is to demonstrate their competitiveness compared to
the solution of a NLP and the use of polynomial map inversion techniques. All algorithms are
implemented in Julia using different modeling frameworks and solvers. The polynomial expansions
are computed with GTPSA.jl*, a Julia interface to the Generalized Truncated Power Series Algebra
(GTPSA) library.13 The original NLP is modeled using Optimization.jl,14 as it integrates
seamlessly with the DifferentialEquations.jl15 package used to solve Eq. (2a). The
MOP is modeled using the MomentOpt.jl†16 and SumOfSquares.jl16, 17 packages, while the
convex optimization problems are modeled using Convex.jl.18 The NLP problem is solved with
IPOPT,6, 19 while the SDP and convex ones are solved with Mosek.10

*https://github.com/bmad-sim/GTPSA.jl
†https://github.com/lanl-ansi/MomentOpt.jl
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Keplerian dynamics

The first test case is the scenario introduced in Eqs. (1), (2) and (3). In this example the ballistic
dynamics in Eq. (2a) is that of the restricted two-body problem (R2BP). After the initial maneuver,
the following equations of motion (EOMs) govern the motion of the spacecraft:

f(x(t), t) =

[
v

− µ

∥r∥32
r

]
, (39)

where x(t) is given by Eq. (5) and µ is the standard gravitational parameter of the central body. The
units are chosen such that µ = 1, the nominal orbit radius is r = 1, and the nominal orbit period is
T = 2π. At time t0 = 0, the spacecraft has deviated from its nominal orbit, and its state is given by:

x−
0 = x̄0 +∆x0

=
[
1 0 0 0

√
1/2

√
1/2

]T
+
[
10−5 10−5 10−5 0 0 0

]T
.

(40)

The objective is to steer the spacecraft back to its nominal orbit in half orbit period, i.e. target the
final state:

x̄f =
[
−1 0 0 0 −

√
1/2 −

√
1/2

]T
. (41)

at tf = π. The constraint in Eq. (3) is thus enforced with target distance d = 0.1 and covariance
matrix P given by:

P = diag
([
σ2
r σ2

r σ2
r σ2

v σ2
v σ2

v

])
. (42)

where σr = 0.1 and σv = 10−3σr are the standard deviations on the components of the position
and velocity vectors, respectively. To improve the numerical conditioning of the problem, the DA
variables in Eq. (7) are scaled by a constant coefficient s = 10−3, i.e.:

[∆v] = 02×1 + s · δv, (43)

and the flow in Eq. (8) is computed using Eq. (43) rather than Eq. (7). The optimal maneuver
∆v∗ is thus retrieved by multiplying the optimal solution to the corresponding problem by s. Four
different problems are solved to compare the optimization techniques described in this paper. They
are summarized in Table 1.

Table 1: Formulations of the optimization problems in the Keplerian dynamics scenario.

# Defining equations Type Framework Solver

A Eqs. (2), (3) and (4) NLP Optimization.jl IPOPT
B Eqs. (32) and (33) MOP MomentOpt.jl Mosek
C Eqs. (15), (34) and (35) convex Convex.jl Mosek
D Eqs. (34), (35) and (38) convex Convex.jl Mosek

The solutions to these problems are given in Table 2, in which both the components and magnitude
of the optimal maneuvers are reported.

The violation of the terminal constraint in Eq. (3) and of the equality constraints in Eq. (17) are
then assessed by computing the following quantities:

ϵ1 = [x∗(tf )− x̄f ]
T P−1 [x∗(tf )− x̄f ]− d2 (44a)

ϵ2 =
∥∥∥ζ∗ (ζ∗)T −Z∗

∥∥∥
∞

(44b)
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Table 2: Optimal maneuvers in the Keplerian dynamics scenario.

# ∆v∗x ∆v∗y ∆v∗z ∥∆v∗∥2
A −9.020 764× 10−6 −6.836 396× 10−6 −6.836 396× 10−6 1.322 296× 10−5

B −9.020 835× 10−6 −6.836 352× 10−6 −6.836 352× 10−6 1.322 297× 10−5

C −9.020 777× 10−6 −6.836 390× 10−6 −6.836 390× 10−6 1.322 297× 10−5

D −9.020 624× 10−6 −6.836 491× 10−6 −6.836 491× 10−6 1.322 297× 10−5

where x∗(tf ) is computed from Eq. (2) using the optimal maneuver ∆v∗, ζ∗ =
[
1 [z∗α]

T
|α|=1

]T
,

and Z∗ is the LHS of Eq. (35) evaluated at z∗. A negative value of ϵ1 indicates that the final state is
inside the target ellipsoid. Their values are reported in Table 3.

Table 3: Constraints violations in the Keplerian dynamics scenario.

# ϵ1 ϵ2

A 9.982 015× 10−9 0.000 000
B −7.528 311× 10−10 0.000 000
C −1.085 589× 10−9 7.321 633× 10−12

D −1.202 561× 10−9 1.768 767× 10−12

Tables 2 and 3 demonstrate that all methods converge to the same solution within a very small
margin of error. The NLP and SOS formulations do not augment the free vector with the squares of
the ∆v components, and thus ϵ2 is identically zero for problems A and B. The solutions to problems
C and D also satisfy Eq. (17) within the tolerance of the underlying solver, meaning that the solution
to the original problem is recovered with high accuracy. These results demonstrate that the proposed
methods are a viable alternative to more widespread techniques, as they combine the accuracy of the
NLP formulation with the efficiency and convergence guarantee needed for onboard applications.

CONCLUSIONS

This paper presented a reformulation of the targeting problem based on polynomial and convex
optimization techniques. It also demonstrated that these techniques provide a solution that is as
accurate as that obtained by solving the original NLP problem, while being more efficient and robust.
The proposed methods are thus suitable for onboard applications, where computational resources are
limited and convergence guarantees are paramount. Future work will focus on the extension of the
proposed methods to multi-impulsive maneuvers scenarios and on their application to more complex
dynamics such as those in cislunar regime.
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