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Abstract

The point mass filter (PMF) is a widely used strategy for solving the state esti-
mation problem. In this filter, a deterministic grid of point particles is used to
numerically solve the Bayesian recursive relations. Since the probability density
function of the state is only approximated at the grid points, the placement of
the grid is crucial for the performance of the filter. A new strategy, named the
Silverman mass filter (SMF), has recently been developed, in which a Gaussian
sum filter (GSF) update is performed before placing a new grid. In the SMF,
the grid is placed at the mean of the GSF-updated points and is oriented and
expanded to match their covariance. While the SMF has been shown to improve
upon the standard PMF, the grid placement in the SMF can be inefficient for
highly multimodal problems. This work introduces two new techniques for grid
placement in the SMF: a clustering-based approach and an optimal deterministic
sampling technique. These new techniques are shown to improve grid placement
in the SMF when applied to a bimodal distribution example. Furthermore, the
techniques are evaluated in three sequential filtering problems, including: the
univariate nonstationary growth model, the Ikeda map, and a cislunar orbit deter-
mination example, where they show improved performance over the standard
SMF by providing a more consistent and accurate state estimate.
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1 Introduction

The state estimation problem for discrete-time continuous-amplitude systems involves
solving Bayesian recursive relations (BRRs) [1]. The BRRs first describe the time evo-
lution of a state probability density function (PDF) using the Chapman-Kolmogorov
equation. After the PDF has been propagated and a measurement obtained, the PDF
is updated using Bayes’ rule. These relations can be solved analytically for linear
dynamics, measurement models, and Gaussian additive noise. However, when either
the dynamics or the measurement models are nonlinear, the solution can become
intractable [1]. Since nonlinear dynamics and measurement models are of interest for
aerospace applications, such as atmospheric entry [2, 3] and terrain relative navi-
gation [4, 5], various alternatives must be explored to numerically approximate the
solution to the BRRs.

Point mass filters (PMFs) are a strategy for numerically solving the BRRs [6].
Instead of describing the state PDF with random samples, as done in particle fil-
ters, the state PDF is discretized using a deterministic grid, where each grid point
is assigned a probability value. This deterministic approach makes the approximation
of the posterior PDF significantly superior to random sampling approaches [7]. As a
result, PMFs have been shown to outperform particle filters in nonlinear systems [7-9).

In the PMF, the BRRs are numerically solved by first propagating an initial grid,
representing the previous posterior PDF, using the system dynamics. A new grid
is then placed at the mean and covariance of the approximated prior distribution,
calculated using the propagated grid points. Once a new measurement is obtained, the
grid is appropriately weighted using Bayes’ rule. Since the PMF approximates the state
PDF at these discrete points, placement of the grid can severely affect the estimation
performance. Consequently, much of the research on this type of filter has focused on
finding the optimal placement of the grid to improve estimation performance 7, 10-14].

A variant of the PMF, called the Silverman mass filter (SMF), has recently been
proposed [4]. This new filter considers the propagated points as a Gaussian mixture
(GM), allowing the use of a Gaussian sum filter (GSF) update before placing the
new grid. Performing a GSF update leads to a better approximation of the mean and
covariance of the posterior PDF, which can then be used to place the new grid closer to
the true posterior distribution. These techniques are similar to the ensemble Gaussian
mixture filter (EnGMF) [15-18], but have the advantage of using deterministic points.

If the posterior PDF is approximately unimodal, placing a new grid at the updated
mean and covariance from the GSF-updated points (as done in the SMF) can be an
improvement over placing a grid at the approximated prior distribution (as done in
the PMF). However, for multimodal distributions, using only the mean and covariance
of the approximated posterior distribution can be an inefficient approach to place the
new grid. Since the points from the GSF update each carry their own mean, covariance,



and probability mass, more efficient approaches can use the full information from these
updated points to find higher-quality grids.

This work presents two different strategies for generating the new grid in the
SMF from the GSF-updated points.! In the first strategy, a density-based clustering
algorithm is used to cluster the GSF-updated points. Once clustered, the individual
mean and covariance of each cluster are calculated. A new grid is then placed on
top of each cluster, improving the placement of the deterministic points and resulting
in an overall grid that better describes the posterior distribution. Given that the
clustering algorithm used is purely density-based, a second strategy is presented that
considers the probability masses of the updated points. In this strategy, a set number
of deterministic points are sampled from each Gaussian component describing the
approximated posterior PDF, which are then optimally reduced to obtain a higher-
quality approximation.

Throughout this work, a ‘dual banana’ distribution [20] is used to illustrate the
limitations of the standard grid in the SMF and the advantages of the two proposed
techniques for grid construction. For this example, the prior distribution is assumed
to be Gaussian and centered at the origin, with a range measurement also assumed
to be obtained from the origin. This setup results in a bimodal posterior distribution
that resembles the shape of two bananas. Although the standard grid in the SMF fails
to efficiently capture the true posterior distribution, the new points obtained using
the two new approaches result in a better representation of the posterior PDF. The
performance of the standard SMF and its two new variants is also evaluated using
a sequential filtering problem involving nonlinear and chaotic dynamics, as described
by the Ikeda map. Both new techniques demonstrate better estimation performance
and consistency compared to the standard SMF. Additionally, this manuscript has
been extended to include a summary of the new algorithms in pseudocode, and a
performance study of the standard SMF and its two variants in two new sequential
filtering problems: the univariate nonstationary growth model and a cislunar orbit
determination example.

The remainder of this paper is organized as follows. Section 2 provides a brief intro-
duction to state estimation for discrete-time continuous-amplitude systems. Section 3
introduces the SMF and uses the ‘dual banana’ distribution to demonstrate the limi-
tations in grid construction. Section 4 presents the clustering-based approach, and the
optimal deterministic sampling technique is presented in Section 5. Both techniques
are evaluated using the ‘dual banana’ distribution in their respective sections. The
proposed techniques are then compared in Section 6 using three sequential filtering
problems, including the univariate nonstationary growth model, the Tkeda map, and
a cislunar orbit determination example. Finally, Section 7 draws conclusions.

2 State Estimation for Discrete-Time Systems

The solutions to the BRRs are the foundation of the state estimation problem. In
this section, these relations are presented and discussed in the case of discrete-time

1This paper is an extension to the work presented at the 2025 AAS/ATAA Spaceflight Mechanics
Meeting [19].



continuous-amplitude systems, as they are fundamental for the derivation of the SMF.
Let x be the state at time k, evolving according to discrete dynamics model fj and
following the measurement model hj, where

Tpr1 = Jr (Tk, qr) (1)
Yr = hy (g, M), (2)

with g representing the process noise, y; the measurement, and 7; the measurement
noise.

The first step in the state estimation problem is to use the Chapman-Kolmogorov
equation to propagate the state PDF [1]. Thus, given an initial state PDF p(xy|y1.x),

P (Try1|yre) = /P(wkﬂ\fﬂk)P(fﬂk\yLk) dxy, (3)
S(xk)

with S (@) denoting the support of @y, and p (xxy1|xy) the transition density. Assum-
ing that a measurement is available (k «— k+ 1), the second step is to update the PDF
using Bayes’ rule [1], where

(yk|mkayl:k—l)p(mk|y1:k—1)' )

P (xlyrn) = 2
P (YrlY1:6-1)

Therefore, the Chapman-Kolmogorov equation is used to propagate the PDF, and
Bayes’ rule is used to update the PDF, together forming the BRRs. In the state
estimation problem, these equations are solved recursively until a desired time step.
However, as noted earlier, the solution can become intractable when the dynamics and
measurement models are nonlinear.

3 Point Mass Filtering

The PMF is a filtering strategy used to solve the state estimation problem by dis-
cretizing the support of the state PDF on a deterministic grid. This section provides
a summary of the SMF, a new variant of the standard PMF, which uses GMs and
kernel density estimation (KDE) techniques to achieve better estimation performance.
This summary is included in order for this work to be self-contained, but the readers
are encouraged to refer to the original paper for a more detailed explanation [4]. The
SMF approach begins by approximating the initial posterior state PDF with a grid of

point particles X 1(;')’6’

N
p(xk|y1.e) ~ Zwl(jl)k ) (:ck — X](;‘)k) , (5)
i—1

where w](;&c represents the assigned probabilities for each point, and N is the number

of points.



The SMF proposes to describe the initial Dirac mixture (DM) as an equivalent
GM,

p(zk|y1x) Zwk‘k hm N (wk, ](c‘)k,P) (6)
where p(P) is the spectral radius of the covariance matrix P. By describing the PDF
as a GM and assuming zero-mean additive process noise with covariance @, the GSF

algorithm [21, 22] and KDE techniques can be used to propagate the PDF to the next
time step, resulting in a predictive distribution,

P (Trt1|y1:r) Zw,ﬁuk (wk+1§ Jr (XS‘L) 7Bk) . (7)

Note that other kernels can be used [23], but this work uses Gaussian kernels. For this

propagation step, w,(:}rll E= w,(;l)k, and,

By = 5215k+1|k + Qr, (8)

Pk+1lk = Zwk|k (ch\)k) Zwk\k (ng)k)] [--17, (9)

where [---] signifies the same quantity as the preceding parentheses, and (32 is the
bandwidth parameter, calculated using Silverman’s rule of thumb [24],

b (vmra) 10

where N is the state space dimension. The bandwith parameter, 5517 can be scaled
by a factor 0 < a, such that

B2 = afBd. (11)

sil

As Silverman’s rule of thumb is known to be conservative for some non-Gaussian
distributions [25], the scaling factor is usually chosen to satisfy 0 < o < 1. As «
increases, the filter becomes more conservative, preventing divergence in challenging
scenarios. As the filter becomes more conservative, estimation accuracy might improve.
However, if the filter is too conservative, the estimation accuracy might degrade. The
optimal « value depends on the application, but o = 1 is usually a good starting
point. For more information on how to pick «, readers are encourage to refer to the
SMF paper [4].

When a measurement is obtained (k < k+ 1), a GSF update [21, 22] is performed
to obtain an approximation to the posterior distribution, such that

~(i
p(Tp|yre) ~ Zwk&c/\/ (wk,XHk,P]glk) (12)



where the notation - represents auxiliary variables obtained with a GSF update. Each
auxiliary mean and covariance of the approximated posterior distribution is given by

Xy = X0+ KO0, (13)
Py = Bioa = KW KO, (14)
with the rest of the variables defined as
Xl(cl|k 1= Fi 1( k)uk 1) (15)
()_yk_hk (X,(Cﬁk 1) (16)
K9 = B HOT (W@)) " (17)
w = Y B, \HO" + Ry, (18)
O (19)

If hy(+) is highly nonlinear, the GSF update can be performed in a unscented Kalman
filter (UKF) fashion [26]. In this new GM, each Gaussian component is weighted
proportional to the probability of the measurement,

a0 o vl (e (X)) W), 20)

With the approximated posterior distribution, a new grid is constructed in order
to continue with the recursion. In the SMF, a new rectangular grid is constructed after
the GSF update, by centering the grid at the updated mean and aligning it with the
updated covariance, given by

~(’L
Ty = Zwk\) kK (21)
~ ) (=6 . 50 ()"
Py = Zw}gfk (p,glk + X (XM> - Ekki;fk> , (22)
i=1

With this new grid, the approximate posterior distribution is once again described as
a DM,

wk|y1k: Zwldk <17 _X](C]|3€> (23)

where X (j|3c are the new M discretization points with their corresponding weights wl(cw)c



To obtain the new weights for each point, the following process is used. First, @
is marginalized to obtain an expression for the posterior distribution,

p(Trlyrr) = /p(wkywkfﬂyl:k) dxy_1, (24)
S(xp—_1)
= /P(yk|$k)p($k|-’ﬂk71) dxy_q, (25)
S(xrp—1)
—pwile) [ p(erler) do (26)
S(xp—_1)

At this point, note that the new grid (X)) and the previous posterior grid (&X', _1j5—1)
with its corresponding weights (wk,1| x—1) are available. Since the previous posterior
is approximated via a DM (or a GM with p (P) — 0), the sifting property can be used
to evaluate the obtained integral. Given

N
p(XTp—1|yr1:k—1) ~ Zw,(fl”k,lé (wkfl - Xﬁl‘k,l) , (27)
1=1

then Eq. (26) can be rewritten as

N
p(Tk|y1) = p(yklwk)/ p(xk|xK—1) Zw,@”k,lé (-’Bk—l - Xgll‘k,l) dy_1,

S(xr—1) =1
(28)
N . .
:p(yklwk)zp(xklxgzl\k—l) “’1(31\1@—17 (29)
i=1
resulting in weights proportional to
(4) (4) >
j j () 1 @) (@)
wkj\k xp (yk|xk]\k) Zp (ij\k|xk—1\k—1> wkz—l\k—l' (30)
i=1

Note that the weighting of the new grid makes no assumption about the location or
distribution of the points. In addition, from Eq. (30), it can be seen that this filtering
algorithm has a linear time complexity in both N and M, O (N - M). These equations
summarize the standard SMF methodology. Figure 1 shows a visual summary of the
key steps in this new technique.

Although the SMF has been shown to outperform the standard PMF [4], this
framework has clear limitations. The described procedure works well for approximately
unimodal PDFs, as in this case, the mean and covariance of the GSF-updated points
are indicative of where the grid should be placed. As the approximate posterior PDF
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Fig. 1: Flowchart summarizing the four key steps in the SMF: First, the initial grid
representing the previous posterior is propagated. Then, the propagated points are
updated using a GSF update. From the updated points, a new rectangular grid is
placed at the updated mean and covariance. Finally, the grid is weighted accordingly.

starts to become multimodal, the SMF grid placement becomes inefficient. If the modes
of the PDF are close together, the mean and covariance can still be indicative of where
the grid should be placed. However, as the modes start to move apart, using only
the mean and covariance can result in large grids, covering areas of very low or zero
probability. Therefore, other techniques have to be used to obtain better grid point
positions.

The problem of accurately placing a grid in a multimodal distribution has been
studied before. In [27], grid splitting is proposed after the measurement update, as
some areas of the state space may drop in probability when new information is
included. Therefore, after the measurement update step, the grid is split by finding
the locations where the approximate marginal PDF's are negligible. The new grids are
then used independently for the next time step. An improvement to the overall split-
ting method is presented in [28], by merging overlapping grids using the Mahalanobis
distance between their local means. The complete algorithm, using both splitting and
merging techniques, is presented in [7]. Instead of splitting the grid, in [29], a density
difference grid design is proposed. For this technique, the grid is designed to be sparse
in the low-probability regions and denser in the higher-probability regions, calculated
by the spatial variation of the PDF. These strategies are proposed in the framework
of the standard PMF, where a new grid is placed at the approximated prior. In the
SMF, an approximated posterior PDF is available before constructing the new grid,
via the GSF-updated points. Thus, compared to the other strategies, this work pro-
vides two new multigrid approaches by considering the approximated posterior given
by the GM in Eq. (12).

3.1 Limitations in Grid Construction

This section provides an example where the SMF fails to obtain an accurate represen-
tation of the posterior distribution in the case of a bimodal PDF [20]. Consider the



following system where the prior distribution is given by

et ~ A ([o] o5 5])- (31)

If a range measurement is assumed to be obtained from the origin (k < k + 1),

we=yf () + (=) )

with a value of ¥, = 3 and a measurement error covariance of R = 0.12, the true
posterior distribution will have two modes that resemble the shape of two bananas,
as shown in Fig. 2. If a GSF update is performed on an initial grid with N = 400
points, centered on the prior mean and expanding the prior covariance (simulating the
propagated points from the previous posterior distribution), the GSF-updated points
cluster around the two modes of the true posterior distribution, as illustrated in the
left panel of Fig. 2. If the new grid, with M = 400 points, is created using only the
first two moments of the GSF-updated points (as is done in the SMF), a significant
amount of information is lost, as seen in the right panel of Fig. 2. In this case, using
the standard PMF approach, where the grid is centered at the prior mean and expands
the prior covariance, could yield a better grid approximation.

10
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Fig. 2: GSF-updated points in purple (left) and new grid in purple (right). The 10, 20,
and 3o contours of the prior distribution are shown in blue. The 20 and 30 contours
of the measurement likelihood are plotted in red. The true posterior distribution is
shown in yellow.

Therefore, a more sophisticated method that considers all the information provided
by the GSF update is required to create the new grid. Consequently, the problem to



be solved in this work can be formulated as follows.

Given the information from the GSF-updated points, what is the optimal grid?

In other words, this work addresses the challenge of optimally representing the GSF-
approximated posterior distribution,

N
(i AORES
p(@k|y1:k) ~ Zwli\)k'/\/ (wk? Xk\k’Pzi\L) (33)
i=1
as a DM approximation,
M . .
p(@k|yre) =~ Zw,(j,)cé (mk - X,(jlzc) : (34)
j=1

A possible solution would be to simply use the GSF-updated points for the next
iteration. However, using these points to represent the GM in Eq. (33) as a DM in
Eq. (34) can result in a poor approximation. As mentioned earlier, each GSF-updated
point represents a Gaussian distribution rather than a single point, meaning that
their locations are not optimized to be treated as such. Furthermore, points with
low probability would be fully considered, which could lead to filter degeneracy or
divergence, particularly in cases of poor propagation or low-quality measurements.

4 A First Approach Using Clustering Algorithms

By examining Fig. 2, it is clear that the GSF-updated points are clustered around the
two modes of the true posterior distribution. These points suggest using cluster-based
algorithms to autonomously determine the number of statistically significant clusters
and place independent grids on each. This section explores the possibility of using
clustering algorithms to obtain higher quality grids.

Density-based spatial clustering of applications with noise (DBSCAN) [30] is a
commonly used clustering algorithm. As its name suggests, this is a density-based
clustering algorithm that is used to find clusters and noise in a set of points. The
advantage of this algorithm is that, since it is purely density-based, there is no need
to pre-define the number of clusters desired, unlike other clustering methods such
as k-means [31]. In this algorithm, each point is classified as core, border, or noise.
Given the parameters epsilon and minPts, the algorithm works by following the next
steps: [30]

1. An unlabeled point is selected as the current point and the first cluster is
initialized.

2. The neighboring points within an epsilon distance from the current point
are found.

10



3. If the number of neighbors is less than minPts, the current point is labeled
as noise. Otherwise, the point is labeled as a core point that belongs to the
current cluster.

4. The same process is repeated over each neighbor until no new neighbors
can be added to the current cluster.

5. Steps 1 to 4 are repeated until all points are labeled.

Using DBSCAN, this approach proposes first to classify the GSF-updated points
into a set of clusters such that

~ (1)~ (2) =~ (L) 7,
Xk|k:{ Xigy Xk -s Xk|k}7 (35)

where (Z)i' k| represents each cluster and L is the total number of clusters found. With
the clusters identified, the mean and covariance of each one can be calculated as

On i

0~ @) () D506)

Dae = Tl X (36)
j=1
(ON . . T

(i)~ Wy (O~ D=G) (D <6) N ()~

Pap =Y w&l( P,Efl,1+ Xl X ) = Q&g &l 67)
j=1

where (VN are the number of points in the i-th cluster. In this case, the weights of the
clusters need to be re-normalized, such that

(ON

@) (s
3 w,ij‘i —1. (38)
j=1

With the mean and covariance of each cluster, new grids are placed at each cluster
center, aligned with its mean and covariance. The number of grid points for every new
grid is set to be equal to the number of points in its corresponding cluster,

ON = N, (39)

L
=1

3

making M = N. The union of all grids is then used as the new grid, which can be
weighted as in Eq. (30). It is important to mention that, since DBSCAN can classify
points as noise, the GSF-updated points classified as noise are not used to place the
grids. Instead, the total number of noise points is distributed among the new grids to
satisfy the constraint M = N.

As mentioned above, the number of grid points for every new grid is set to be
equal to the number of points in its corresponding cluster. Satisfying this constraint
can be difficult using rectangular grids, as not every number can be expressed as a

11



sum of squares (in the case of two-dimensional grids). For this work, instead of using
rectangular grids, generalized Fibonacci grids [32] are used to place a new grid on top
of each cluster. Generalized Fibonacci grids are a simple method to obtain equally
weighted deterministic samples of a multivariate Gaussian PDF, allowing the sampling
of an arbitrary number of homogeneously distributed points, even in high-dimensional
spaces. Figure 3 shows three Fibonacci grids, each obtained for a different number of
grid points in the case of a standard two-dimensional normal distribution. Note that
as fewer points are used, fewer points lie outside the 20 bounds. Therefore, if a smaller
number of points is used, the grid points can be stretched without losing homogeneity,
to cover up to an arbitrary number of o, resulting in a more conservative approach.

4 2 0 2 4 -4 -2 0 2 4 -4 2 0 2 4
I T Tl

Fig. 3: Fibonacci grids for a standard two-dimensional normal distribution with 10
grid points (left), 25 grid points (center), 500 grid points (right). The circles represent
the 1o, 20, and 30 bounds.

It is important to note that this strategy can result in suboptimal grids for two
reasons. First, the results obtained with DBSCAN depend highly on the choice of the
parameters epsilon and minPts. Second, since DBSCAN is a density-based algorithm,
it does not consider the probability mass of each GSF-updated point, which represents
a Gaussian distribution rather than a single point. However, this clustering algorithm
has the potential to produce higher-quality grids compared to the original strategy
in the SMF. In addition, since DBSCAN has a worst-case time complexity of O(N?),
using this framework will not affect the overall complexity of the filtering algorithm.

To study the performance of this new grid construction scheme, consider the exam-
ple presented in the previous section. In this case, to evaluate the quality of the new
grid, the effective grid size is used. This metric is defined as

Mg = ————— ! " (40)
i=1

If Meg is close to 1, then the new grid accurately represents the approximate pos-
terior distribution. In the case where M.g < 1, the new grid is not an appropriate

12



representation of the underlying PDF. Figure 4 shows the different grids obtained for
the dual banana problem using the standard SMF approach and the clustering strat-
egy with different values for epsilon and minPts. More specifically, the top-left figure
shows the GSF-updated points with the traditional grid at the bottom-left. The top-
center figure shows the clusters obtained (in different colors) for the GSF-updated
points using epsilon = 0.50 and minPts = 5, with the corresponding new grid at the
bottom-center. The top-right figure shows the clusters obtained for the GSF-updated
points using epsilon = 0.17 and minPts = 3, with the corresponding new grid at the
bottom-right.

o Cluster 1 § o Cluster 1
o Cluster 2|« < .
S

2H ¢ Cluster 12

.' %4

[
of #

"

i

L

S

¢ = 0.240 © Mup=0428

el
-10 -5 -5
-10 -5 0 5 10 -5 0 5 -5 0 5
T T gl
|— Prior === Measurement Posteriorl

Fig. 4: Standard grid placement (left), grid placement using DBSCAN with epsilon
= 0.50 and minPts = 5 (center), and grid placement using DBSCAN with epsilon
= 0.17 and minPts = 3 (right). The top panels show the GSF-updated points and
clusters, while the bottom panels show the grid placement.

Figure 4 shows the advantages of using the clustering algorithm over the standard
SMF method. By using the clustering algorithm with epsilon = 0.50 and minPts = 5,
the GSF-updated points are divided into two clusters that accurately represent the two
modes of the posterior distribution. Placing the new grid on top of the two identified
clusters significantly increases the effective grid size compared to the standard grid.
If epsilon and minPts are decreased, the GSF-updated points are divided into more
clusters. By having more clusters, additional grids are superimposed, better capturing

13



the underlying shape of the posterior PDF, and thus further increasing the effective
grid size. Although the use of more clusters may increase the effective grid size, it is
important to mention that this can affect the consistency of the overall filter, as the
new grid can become too narrow.

5 A Solution Based on Optimal Point Sampling

As mentioned in the previous section, although using clustering-based algorithms
might yield higher-quality grids when compared to the standard SMF grid, relying
solely on density-based clustering methods can lead to overall suboptimal grids. Since
the GSF-updated points carry an individual mean, an individual covariance, and an
associated probability mass, density-based clustering methods will not use the full
information provided by the GM. This section presents an alternative solution that
uses all available information to find an optimal set of points using a reduction of DMs
by minimizing a distance measure.

Recall that the goal of this work is to represent the GSF-approximated posterior
distribution,

N
~ (i (1) 56
p(@lyie) = Y o N (wMXk\m,P]E,‘L) (41)
i=1

as a DM approximation,
Mo '
p(Tk|y1.) ~ Zwl(jll)cé (azk - XI(CJJC) ) (42)
j=1

Therefore, previously developed tools can be combined to find optimal points by max-
imizing the similarity between the two distributions. Specifically, the strategy used in
this work consists of two distinct steps. First, deterministic samples are obtained from
each of the Gaussian components that represent the GSF-approximated posterior dis-
tribution. Second, the union of these deterministic samples is optimally reduced to
obtain a high-quality DM approximation.

To explain the process of obtaining the high-quality DM approximation, two impor-
tant concepts have to be introduced first, the localized cumulative density (LCD) and
the modified Cramér-von Mises distance (MCVMD) [33-35].

5.1 Localized Cumulative Distribution

Let p(z) : RV — R, be the PDF of a random vector € R™s. The corresponding
LCD is defined as

P (m,b) = /RNS p(x) K (x —m,b) dx, (43)

where K (x — m, b) is a kernel centered on m with bandwidth b [35]. Following the
formulation in [35], where the kernel has to be separable and have equal width in every

14



dimension, this work considers Gaussian kernels of the form:

N. — (2@ — )2
K(x—m,b) = Hexp <(2l72)> . (44)

Note that other kernels could be used, but the Gaussian kernel simplifies the opti-
mization step defined in the next sections. With this definition and kernel, the LCD
for a DM is given by

NN — (2 _m<i>)2
P(m,b) = Zw;?) Hexp — g - (45)
j=1 i=1

5.2 Modified Cramér-von Mises Distance

The MCVMD allows for the comparison of similarity between two different distribu-
tions without restrictions on whether they are continuous or discrete. This distance is
defined as the integral of the squared difference between the LCDs of two PDFs [35],

dyvovm = /R w(b) /R N (P (m,b) — Py (m,b))* dm db, (46)

where w(b): Ry — [0,1] is an appropriate weighting function. If the weighting function
for the MCVMD is defined as

0, otherwise,

then the distance between the two distributions and its corresponding gradient can be
easily approximated for large values of by ax. In the case of two DMs and a large value
of bax, the MCVMD between these two distributions has a closed-form solution and
a closed-form solution gradient as well [35].

Let two DMs be expressed as

N

p1(x) = ng?lé (a: — Xgi)) , (48)
1;41 | |

pa (x) = Z w%)zé (a: — Xéz)) , (49)
i=1

where wx, and wx, are column vectors that represent the weights of each distribu-
tion, such that

T
1 2 N
Wx, = [w;i w(X)1 wgcl)} , (50)
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T
1 2 M
wx, = [wh) wf o wll] (51)

and X1, X9, are the matrices representing the set of points in the DM,

X2 XD A 52)

XQ:[X;” x® Xg””}. (53)

where X1 is a Ny x N matrix and X5 is a Ny x M matrix. With this notation, the
MCVMD for these two DMs can be written as

T T
dyovm (X1, X, wx,, wa,) = Wy, Mx, x, wx, — 2wy Mx, x, wx, (54)
T 2
+wX2MX2X2wX2 +K- ||X1wx1 - X2wX2H2a

where K > 0 is a constant that can be tuned so that all terms have similar significance,
and,

My, x, =xlog (Dx,x,), (55)

with xlog (2) = 2 -log(z) and Dx, x, representing the Euclidean distance matrix
between X; and X;. The gradient with respect to X; or Xy is not presented
for brevity, although it also has a closed-form solution that can be obtained by
differentiating Eq. (54) [35].

5.3 Optimal Sampling of Gaussian Mixtures

With the LCD and MCVMD defined, the process of obtaining high-quality points
can be presented. As mentioned before, the first step is to obtain equally weighted
deterministic samples from each Gaussian component, such that

N (o 25 P) = 5 20 (o0 - DY) )

where D are the total number of points to be sampled from each Gaussian component
and ’D,(€j|3C ; are the deterministic samples. With this approximation, the GM obtained
with the GSF update can be expressed as,

N
p(Tr|y1x) =~ Z - Zé (mk — D,(j‘;z) . (57)

To find the deterministic points, the previously mentioned Fibonacci grids are used.
First, a set of samples D, representing the Fibonacci grid of a standard multivariate
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Gaussian (i.e., zero mean and identity covariance), are obtained. Once the determin-
istic samples have been obtained, they can be scaled and shifted by the corresponding
mean and covariance,
Dy = {75(“]1/21) a0 (58)
|k, klk k|k

For this work, the Cholesky decomposition is used to compute the matrix square root.
The process of obtaining the unscaled deterministic samples D can be performed
offline, thus not increasing the overall complexity of the filtering algorithm.

Once the GM has been represented as a union of DMs, the final step is to optimally
reduce the approximation to obtain the desired high-quality approximation. This final
step can be expressed as the approximation of

N D . 1 M .
> 20 (D) & gy 200 (- X (59)
; j=1

«
Il
-

.
Il
-

N D . DN )
SN (e-p) - L ellaeod). @
i =1

&
Il
-

<.
Il
-

where Yy, represents the union of DMs with corresponding weights wyx, such that

DN . 1 :
2w (= Vi) = 37 220 (= - L) o
i=1 J=1

In this representation, the discrete density obtained in the previous step is reduced to
M equally weighted discretization points, representing the optimal points.

Using the notation presented for the MCVMD definition, the location of the new
points is found by solving the following minimization problem

1
L ). (62)

In this work, the MCVMD between the two DMs is minimized using Matlab’s fminunc
function with default settings, which uses the BFGS quasi-Newton method with a
cubic line search procedure. This step has to be performed online as it requires the
current GSF-approximated posterior. When used within the SMF framework, this
sampling technique, like the others, uses M = N.

Before presenting a numerical example of this technique, three remarks must be
made. First, it is important to discuss the initialization of the points X when solving
Eq. (62). To keep the deterministic nature of the filter, these points can be initialized
using a single Fibonacci grid, with M points, centered at the mean and covariance
of the GSF-updated points given by Eq. (36) and Eq. (37). This Fibonacci grid can

Xy = argm)in dvcvMm <X»yk|ka
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also be obtained offline and scaled by the mean and covariance of the GSF-updated
points when the reduction is performed. If M = N, the GSF-updated points can
be used to initialize the minimization problem instead. Second, note that the new
points X, are no longer weighted as in Eq. (30), since they are set to be equally
weighted. Therefore, using this sampling solution makes the SMF equivalent to a
deterministic EnGMF. Third, solving Eq. (62) increases the computational complexity
of the overall algorithm. If D-N > M, the time complexity of evaluating the MCVMD
and its gradient is O(D - N - M - N2) [35]. The complexity increases linearly with the
number of optimizer iterations, which can vary widely with respect to the specific
routine used. However, the main time complexity, O(D - N - M), can be reduced using
other techniques, such as divide and conquer. These factors must be considered when
comparing with the O(N?) complexity of the SMF and DBSCAN.

Figure 5 shows a two-dimensional example of the optimal point sampling procedure
discussed. The underlying distribution is a GM with four equally weighted compo-
nents, each representing a petal of the distribution in the form of a clover. For each
Gaussian component, 144 deterministic samples are obtained using scaled Fibonacci
grids (N = 4, D = 144). These points, shown in gold in the figure, are the same
standard points used for each component, but each set is shifted by its corresponding
mean and covariance. The samples of each Gaussian component are joined to form
the first DM approximation to the GM. Finally, the DM is optimally reduced to 50
equally weighted points, shown in purple (M = 50). For this example, since M > N,
the reduced points are initialized using a Fibonacci grid with 50 points, centered at
the mean of the GM and oriented with respect to its covariance.

» -~/
g0 ) )
/f -~
///,2-"). N
BN ENY
(&7 &)
-5 i
-5 0 5

@Distribution Gaussian Samples ¢ Optimal Pointsl

Fig. 5: Optimal point sampling of a GM. The distribution is shown with solid blue
lines, the first DM approximation is shown with yellow points, and the optimally
reduced approximation is shown with purple points.
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Returning to the dual banana problem, Fig. 6 shows the points obtained by the
optimal point sampling solution. In this case, 5 deterministic points are sampled from
each Gaussian component (N = 400, D = 5). Since M = N, the reduced points are
initialized to be the GSF-updated points. As the final reduced points are set to be
equally weighted, Mg = 1. From this figure, it can be seen that the optimal points are
able to capture the entirety of the posterior distribution, showing a clear improvement
over both the standard solution and the clustering approaches. It is important to
note that these points are completely deterministic, meaning that no random number
generator is used, unlike the various resampling strategies commonly used in particle
filters.

4 -4
-4 -2 0 2 4 -4 -2 0 2 4
X1 X1
|—Prior — - Measurement Posterior

Fig. 6: GSF-updated points in purple (left) and new optimal grid in purple (right).

6 Numerical Examples

6.1 Univariate Nonstationary Growth Model

The univariate nonstationary growth model describes a nonlinear system governed by
the following dynamics and measurement model:

Tk 25$k

Thpr = + T+ a2 + 8cos (1.2k), (63)
2
Lk

— Zk 4

Yk 20 + Mk (64)

where 7, represents measurement noise. This problem has been widely used to analyze
various nonlinear and particle filters [36-38]. Due to the nature of the measurement
model, the posterior PDF is bimodal, making it an ideal candidate for studying the
performance of the strategies presented. Instead of reporting estimation accuracy and
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consistency, which is not particularly informative for this bimodal example [38], this
problem is used to show how each strategy evolves at each time step.

For this problem, the three strategies presented in this work are used and evaluated:

1. SMF': This represents the standard SMF grid design, where the new grid

is placed at the mean of the GSF-updated points and aligned with the
updated covariance.

2. SMF-DBS: This strategy involves the clustering methodology, where the

GSF-updated points are clustered using DBSCAN, and a Fibonacci grid is
placed on top of each cluster.

3. SMF-OPS: This strategy uses the optimal point sampling approach,

where deterministic points are first sampled from each Gaussian compo-
nent represented by the GSF-updated points, and then optimally reduced
by minimizing the MCVMD.

The three filtering strategies are presented in pseudocode in Algorithm 1. The only
difference between the three algorithms is the generation of the new grid after the
GSF update.

Algorithm 1 SMF/SMF-DBS/SMF-OPS

IHPUt: Xk—l\k—lvwk—ﬂk—l7Qk717yk7 Rkaa
Output: Xy, wy

1:

2

@

© ® 3> o oe

11:
12:
13:

14:

15:
16:
17:
18:
19:
20:
21:

22:

> Propagate the points with the dynamics:

:fori=1:N do _
L Xl(c?kq = fr (Xl(czzukq)
wl(czl)k—l = wl(clll\k—l
> Calculate covariance for predictive distribution:
Bijk—1 = B2 - Pyp—1 + Qr—1
> Perform GSF update: _
Use Egs. (13) to (20) to perform a GSF update: & s, Wy
> Generate the new grid
if SMF then B
Center a new grid at ), and align with Py, (Eqgs. (21) and (22)): X,
 Use Eq. (30) to obtain the new weights: wyx
if SMF-DBS then

Cluster the GSF-updated points i’k‘k = (1)‘1,“]“ ceey (L).X’Hk

Center a new grid at (V@ ;, and align with (i)ﬁmk (Egs. (36) and (37))
Join the collection of grids to obtain the new grid: X',

. Use Eq. (30) to obtain the new weights: wy,

if SMF-OPS then

Generate first DM approximation (Eq. (60)): Yk, Wik

Initialize the new points: X

Reduce the approximation using Eq. (62) to obtain the new grid: &'y,
wl(jll)c =1/N
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To evaluate the performance of each strategy, all filters begin from an initial state
xo ~ N (0,1). The dynamics are propagated using additive white Gaussian noise with
a scalar covariance matrix ) = 10, while the measurements are corrupted by additive
white Gaussian noise with a scalar covariance matrix R = 1. The three strategies
start with a rectangular one-dimensional grid, centered on the mean of the initial state
expanding to 309, with a total of 14 grid points (N = 14). The Fibonacci grids used in
the SMF-DBS for each cluster are stretched to expand up to 60 in each direction, and
the DBSCAN parameters are set to epsilon = 4.5 and minPts = 3. The Fibonacci
grids used in the SMF-OPS to sample each Gaussian component are composed of 5
points without applying any stretching, and X is initialized to be the GSF-updated
points, X ;. The scaling factor for Silverman’s rule of thumb is set to a = 0 for all
strategies, as the process noise is considerably high in this problem.

Figure 7 shows the evolution of the approximated posterior PDF, estimated using
the GSF-updated points plotted in light blue. The new grid obtained with each strat-
egy from the GSF points is shown with red stems, and the true state is marked with
a black vertical line. Each grid is plotted according to its weights, with taller stems
indicating higher weights. The left panels show the standard SMF, the center pan-
els show the SMF-DBS, and the right panels show the SMF-OPS. The time index k
increases downward.

Standard SMF SMF-DBS SMF-OPS
=2
502
=
A
0 LJ
k=3
502
=
2,01
0 AN
k=4
502
=
201 .$
0

-20  -10 0 10 20 -20  -10 0 10 20
T

k=5
502
=
201
0 y.
20 -10 0 10 20
x

|— New Grid [_JGSF GM =——Truth|

Fig. 7: Evolution of the posterior PDF, estimated via the GSF GM plotted in light
blue. The new grid obtained with each strategy is shown with red stems. The standard
SMF is shown on the left, the SMF-DBS in the center, and the SMF-OPS on the right.
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In Fig. 7, the problems with the standard SMF grid placement can be seen. When
the approximated posterior PDF is highly bimodal, the rectangular grid poorly approx-
imates the underlying distribution, as observed at time steps k =2, £ = 3, and k = 5.
In contrast, the SMF-DBS is able to identify two clusters and place grid points at
appropriate locations in these bimodal time steps. However, the drawbacks of using
a density-based clustering algorithm are noticeable. For example, at time step k = 5,
the SMF-DBS places more points in the low-probability mode near x = —10 than in
the higher-probability mode near = = 10. This behavior does not occur with the SMF-
OPS, as the optimal sampling algorithm deterministically samples points directly from
the GM described by the GSF-updated points. As a result, fewer points are sampled
from the low-probability mode and more points are sampled from the high-probability
mode.

6.2 Sequential Filtering with the Ikeda Map

To evaluate the performance of the proposed approaches in a sequential filtering
problem, the Tkeda map is used, where

.Z’](clle =1+4u (m,(cl) costy — ac](f) sin tk) ) (65)

ng_gl =u (x,(cl) sinty + z,(f) cos tk) , (66)
6

th=04— (67)

1+ (x;”)z + (a:,(f))T

This highly nonlinear function is designed to model light circulating within a nonlinear
optical resonator [39, 40]. To induce a chaotic behavior and have a more difficult
filtering problem, u = 0.9. Figure 8 shows 1,000 trajectories for different initial states
propagated using v = 0.9. In addition, for this filtering example, the dynamics are
propagated with additive white Gaussian process noise with covariance matrix @ =
1 x 10721545 and a range measurement is assumed,

Yk = \/(xél))z + (:r,(f)>2 + N, (68)

where 7, is white Gaussian noise with scalar covariance matrix R = 1.

Each strategy is used to estimate the state in 1,000 different trajectories (N, =
1000). The trajectories are propagated for 50 time steps, starting from an initial true
state g ~ N (02x1, [ax2). All filters use grids with 25 points (N = 25), and start with
a rectangular grid centered on the initial state estimate. The grids in the standard
SMF are set to expand up to 30 in each direction. The Fibonacci grids used in the
SMF-DBS for each cluster are stretched to expand up to 60 in each direction, epsilon
= 0.275, and minPts = 10. The Fibonacci grids used in the SMF-OPS to sample each
Gaussian component are composed of 5 points with no stretching applied (D = 5),
and X is initialized using the GSF-updated points. The scaling factor used to scale
Silverman’s rule of thumb is set to 0.3 for all strategies (o = 0.3).
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x1
Fig. 8: Multiple trajectories for different initial states of the Ikeda map with u = 0.9.

To compare the accuracy of each strategy, the root mean square error (RMSE) is
used. For this work, the RMSE is defined as follows

B 1 [ IRA ) a0 )
RMSE(k) = 3 3| 37 2 (o) — 24k (69)
j=1-""™ S =1
where igl)k ; is the estimated state and :cg)] is the true state. To evaluate the con-

sistency of each strategy, the scaled normalized estimation error squared (SNEES) is
used,

N,

1 B . - N

T 2 (@~ Eweg) (Pars)” (@ —2uig) . (70)
S m j:1

SNEES(k) =

where Py, ; is the posterior estimated covariance. If the SNEES is close to one, the esti-
mator is consistent. A SNEES lower than one suggests a conservative estimator, while
a SNEES higher than one indicates an overconfident estimator [1]. For this section,
any SNEES value greater than 1 x 10% was disregarded as a numerical instability.

Figure 9 shows the RMSE as a function of time for the three strategies presented.
As seen in the figure, the standard SMF yields the highest RMSE, indicating the
lowest accuracy in the estimates. The SMF-DBS increases accuracy compared to the
standard SMF, approaching the SIR — oo line. Regardless, by not considering the
probability mass of the GSF-updated points, accuracy is lost as the new grids are not
directly sampling the GM represented by the updated points. In this sense, since the
SMF-OPS is optimally sampling the GM, it achieves the best accuracy among the
three strategies, closely following the best achievable performance line converging to
Bayesian inference.

In Fig. 10, the SNEES is shown as a function of time steps for the three strategies.
In this case, it can be observed that the standard SMF has high SNEES values,
suggesting overconfidence in its estimates. This is mainly due to the low number of
grid points used in this problem setting. With an increasing number of grid points, the
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standard SMF has been shown to produce an accurate and consistent estimator [4].
However, both the SMF-DBS and SMF-OPS outperform the standard SMF in low
grid point settings. The SMF-DBS achieves a SNEES value closer to one compared
to the standard SMF. The SMF-OPS obtains a SNEES very close to one at all time
steps, indicating both an accurate and consistent filter. It is important to mention
that the factor a can be increased to obtain better consistency with both the SMF
and the SMF-DBS, but this can affect the accuracy of the filter [4].

0.8 T T T T
— SMF
—— SMF-DBS
0.7F — SMF-OPS|]
\Q
S
@ 0.6 ]
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~ A
0.5k A\
SIR— oo R
==
0.4F 3
L L L L
0 10 20 30 40 50

Time step (k)
Fig. 9: RMSE as a function of time steps for the three strategies presented. The green
dashed line shows the results obtained with a regularized particle filter with 10,000
particles and serves as a reference.
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Fig. 10: SNEES as a function of time steps for the three strategies presented. The
green dashed line shows an SNEES of one and serves as a reference.

From these results, it is important to mention that each strategy has a different
level of implementation complexity. The grid design in the standard SMF is by far the
simplest, as its implementation is straightforward and only requires the tuning two
parameters, specifically the extent of the grid and the bandwidth parameter «. The
SMF-DBS is more complex to tune, as the clustering algorithm is highly sensitive to
the two tuning parameters, epsilon and minPts. The SMF-OPS is less complicated
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in terms of tuning, as the only parameters that need adjustment are those in the
optimization scheme used to minimize the MCVMD and reduce the set of deterministic
points. These are additional factors that must be taken into account when comparing
the three strategies.

6.3 Cislunar Orbit Determination

As seen from the previous two examples, the SMF-OPS is a more accurate and con-
sistent estimator than the standard SMF and the SMF-DBS. In order to evaluate the
performance of the SMF-OPS against other state-of-the-art filters used for aerospace
applications, a cislunar orbit determination problem is considered. In this scenario, a
spacecraft is assumed to orbit the Earth-Moon system. The dynamics of the space-
craft are expressed in the rotating synodic reference frame using the circular restricted
three-body problem (CR3BP). These dynamics are derived by expressing the motion
of the spacecraft relative to the barycenter of the Earth-Moon system. In this prob-
lem, the x axis is aligned from the center of the Earth to the center of the Moon, the
z axis is aligned with the orbital plane of the Moon relative to the Earth, and the y
axis completes the coordinate system [41].

To improve numerical stability, the variables are normalized to be unitless. In this
specific setup, the location of the barycenter is defined by the mass ratio between the
Earth and the Moon, such that

I
o= q

=" 71
Mg Tt B ()

making the distance between Earth and the Moon, 1 LU = 389703 x 10 meters, and
1 TU = 382981 seconds [42]. Under these conditions, the dynamics of the spacecraft,

parametrized by the vector & = [r(l) r@ G O 52 7'“(3)]T, can be written
as [41]

) A=m (W) p(r —1+p)

2(1) — (1) ~(2
P = 4+ 27 ’ (72)
g rQ
2 2
7@ = p(2) _9p(1) _ (1- 'l;)r( : — ,uv"g( ), (73)
g G
_ (3) (3)
s ;;) e (74)
Te e

where r(®) represents the corresponding scaled Cartesian positions of the spacecraft
relative to the barycenter, 7; represents its corresponding velocities, g is the distance
from Earth to the spacecraft, and r¢ is the distance from the Moon to the spacecraft.
Both rg and r¢ are defined as

re =\ (r® + )% + (1@)? + (r®)?, (75)
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re = /(P 14 ) + (1) + (r9)” (76)

For this work, the spacecraft is propagated from an initial distribution, in
normalized units, given by

:cONN([1.15568217 0000 o]T,1><10—616X6). (77)

The mean of this initial distribution corresponds to the second Lagrange point (L2)
in the Earth-Moon system [42]. This point is known to be unstable, meaning that
the selected initial condition can lead to a bimodal distribution [43]. Based on the
initial condition for x(, as sampled from the initial PDF, the trajectory can integrate
into two different families of orbits, one orbiting the Moon and the other escaping the
system. The two possible trajectories make this a challenging problem for particle-
based filters, as some particles may follow one trajectory, while others may follow
the second, causing the filter to diverge in the initial steps [43]. Figure 11 shows the
two different families of orbits that result from the propagation of different initial
conditions close to the L2 point.

Earth
o Moon
o Ly

-4 -2 0 2

L1
Fig. 11: Different orbits resulting from propagating different initial conditions close
to the L2 point.

In addition, the dynamics are propagated with discrete process noise. Let F; rep-
resent the flow of dynamics of the system, obtained by propagating the trajectory
numerically. Therefore, process noise is added by

Tine = Fi () + qu, (78)
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where g; represents white Gaussian process noise with covariance matrix [43]

N Trag
Qt = o)) TI3><3 At[3><3:| |:213><3 At I3xs |, (79)

with og =1 x 107°.
The measurement setup in this problem simulates observations from a single sensor
on Earth’s surface, providing range, azimuth, and elevation data, as given by

y) =re + ), (80)
(2)
(2) _ r (2)
Yy = arctan (r(l) T /J) + M (81)
(3)
y,(:’) = arcsin (r) + n,ig), (82)
Te

T
where 1, = [n,(cl) n,(f) 771(@3)} represents the white Gaussian measurement noise

with covariance matrix [44],
R =diag ([1?m*® 29%arcsec® 29°arcsec?]). (83)

Measurements are assumed to be sparse, with one set of measurements every 4 days.

In this problem, the SMF-OPS is tested and evaluated in 1,000 distinct trajectories,
each propagated for 40 days. The standard SMF and the SMF-DBS are not included
since both strategies diverge within the first few steps of the problem. The Fibonacci
grids used in the SMF-OPS consist of 25 points for this example (D = 25), Silverman’s
rule of thumb is not scaled, a = 1, and X is initialized with a Fibonacci grid centered
at the mean and covariance of the GSF-updated points'. Additionally, the UKF and
the standard EnGMF with stochastic resampling are included as reference points
to compare the proposed solution with well-established linear and nonlinear filters.
Recall that the SMF-OPS is equivalent to a deterministic EnGMF. Therefore, both
the SMF-OPS and the EnGMF are implemented with 100 points/ensemble members
to be directly comparable (N = 100). Instead of using a rectangular grid, the SMF-
OPS starts with a Fibonacci grid matching the initial distribution due to the high
dimensionality of the problem.

For all filters, the state is propagated at a rate of 1 day (At = 1 day), with an
update to the estimate once a measurement is obtained every 4 days. This is meant to
simulate a tracking scenario where the state and its uncertainty are needed at a higher
frequency than the measurements. Since the SMF-OPS points are propagated without
process noise, the accumulated process noise covariance, calculated using the state
transition matrix, is used when a measurement is obtained. For the EnGMF, process
noise samples are added to the propagated ensemble members after each propagation.
For the UKF, the sigma points are propagated, then re-Gaussianized.

LFor this example, this proved to behave better numerically than initializing X at the GSF-updated
points.
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To assess the accuracy and consistency of the filters tested, the standard deviation
profiles [43] for the position and velocity of the spacecraft are used as shown in Fig. 12.
In this figure, the dashed lines show the standard deviations calculated from the
Monte Carlo (MC) samples at each time step, while the solid lines show the standard
deviations calculated from the diagonal elements of the posterior covariance, where

N,
I ™ /p00 , p22) | p(3.3)
or(k) = & Z\/Pklk,ﬂrpklk,j LT (84)
mj:1
N.
I ™ /54, p(55) | p(6.6)
ou(k) = Z\/Pk|k7j+Pklk7j+Pklk,j. (85)
mj:1

For a filter to be consistent, the dashed and solid lines should align. If the dashed line
is above the solid line, the filter is overconfident in its estimate, indicating potential
divergence. If the dashed line is below the solid line, the filter is conservative [43].
For this problem set-up, both the UKF and EnGMF start to diverge after the second
measurement is obtained, as the estimated error decreases while the true error begins
to increase. This result is expected, given the low frequency of measurements and the
small ensemble size used for the EnGMEF. In contrast, the SMF-OPS, even with a
small number of points, provides a consistent and accurate solution, as indicated by
the alignment of the solid and dashed lines.
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Fig. 12: Standard deviation profiles of position (top) and velocity (bottom) as a
function of time. Measurement intervals are indicated by light gray vertical lines.
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Figure 13 shows the box-plots for the position and velocity RMSE averaged over
time for each MC trajectory. In Fig. 14 the effective grid size (Eq. (40)) for the SMF-
OPS and the EnGMF calculated after the GSF update is shown, averaged over time
for each MC trajectory as well. With these plots, it is easier to understand the behav-
ior shown in Fig. 12, as the discrepancy between the dashed and solid lines for the
EnGMF and UKF is due to outliers. For some trajectories, the EnGMF and UKF are
unable to track the spacecraft, resulting in very high errors, as seen by the outliers
plotted in red. Although the median accuracy difference between the three filters is
comparable, the SMF-OPS obtains more robust results, with a lower number of signif-
icant outliers compared to the other two filters. In addition, the effective grid size after
the GSF update of the SMF-OPS; is on average, higher than the EnGMF. Therefore,
the deterministic and optimal sampling method used in the SMF-OPS can prove to be
a more reliable strategy for nonlinear problems coupled with sparse measurements. It
is important to note that measurement rejection strategies could be used to improve
the results obtained with the EnGMF and the UKF. However, the SMF-OPS does not
need to use other techniques to be a robust strategy in such cases.

< 10° 10"
— — . 6 ] |
i H o} L L
s |+ - 1 i
150 [t}
= | | < pos 1 1
& 8,
[ 100 0.6
% ’ E E EE E E
= = 3k 04
2 ) | Z 3fo04 :
= 50 o 1
(=] b=} .
SN | L L ek 02f n
2 2
<] o 0.0
= 0 . =1 .
H H
Of  ——— —— - 0 —— .
SMF-OPS EnGMF UKF SMF-OPS EnGMF UKF
(a) Position RMSE (b) Velocity RMSE

Fig. 13: Box-plots for position and velocity. Outliers are plotted in red.

3
0.5 4
I —
T
0.4
3 =
£03 1 1
3 +
= 0.2 .
. s
0.1
0 H
SMF-OPS EnGMF

Fig. 14: Box plots for the effective grid size. Outliers are plotted in red.
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7 Conclusions

In this work, two new techniques are presented for generating a new grid in the Sil-
verman mass filter, a variation of the point mass filter. In the Silverman mass filter,
a Gaussian sum filter update is performed before generating a new grid and contin-
uing with the recursion. The standard approach places a new grid at the mean and
covariance of these updated points. In contrast, the two new techniques leverage the
additional information provided by the updated points to generate a better placement
of the new points.

The first technique uses a density-based clustering approach in which the updated
points are first clustered. Once the points have been clustered, the individual mean
and covariance of each cluster are obtained. From the mean and covariance of each
cluster, a new grid is placed, with the union of all grids considered as the new grid for
the next iteration. This technique only considers the location of the updated points to
generate the new grid, thus not using the full information provided by the Gaussian
sum filter update.

The second technique takes advantage of the full information provided by the
update. Since each updated point carries a mean, covariance, and probability mass, a
modified distance measure is used to optimally generate samples from the Gaussian
mixture. First, deterministic points are sampled from each updated point (represent-
ing a Gaussian distribution), and the union of all sampled points is then optimally
reduced by minimizing a distance measure. This technique results in better points as
it considers the full information from the Gaussian sum update.

The two techniques were evaluated in a static problem using a bimodal poste-
rior distribution. Both techniques were shown to describe the posterior distribution
better than the standard approach in the Silverman mass filter. Using the univari-
ate nonstationary growth model, the evolution of each strategy was studied at each
time step. This example showed some the limitations of the clustering-based approach,
particularly due to its density-based algorithm. In addition, the new techniques were
evaluated in a sequential filtering problem with the Ikeda map. The clustering-based
approach was shown to outperform the standard technique, while the optimal sampling
approach was shown to converge to Bayesian inference, producing the most accurate
and consistent state estimate among the three approaches considered.

Finally, the optimal sampling technique was tested on a cislunar orbit determina-
tion example. The optimal sampling technique was shown to outperform the ensemble
Gaussian mixture filter and the unscented Kalman filter in a scenario with sparse
observations, including range and angles.
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