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Abstract— The objective of this paper is to develop an
onboard nonlinear filter for cislunar relative navigation. An ef-
fective onboard filter must be accurate, consistent, efficient, and
verifiable. Recent work has shown that the Ensemble Gaussian
Mixture Filter (EnGMF) is an accurate and consistent nonlinear
filter capable of handling non-Gaussian probability distribu-
tions. However, its fixed number of Gaussian components
restricts efficiency, and its random resampling step prevents
verifiability. To address these issues, the EnGMF is refined such
that it adaptively reduces the number of Gaussian components,
and it deterministically resamples using Fibonacci grids with
optimal reduction. The presented cislunar scenario relies solely
on noisy azimuth and elevation angle measurements obtained
from vision-based sensors (e.g., cameras), demonstrating both
the need for nonlinear filtering and its potential for deep-
space operations. Simulation results indicate that the refined
EnGMF approaches maintain the accuracy and consistency of
the traditional EnGMF, and also improve its efficiency and
ensure verifiability.

I. INTRODUCTION

To be an effective onboard filter, it must be accurate,
consistent, efficient, and verifiable. To date, most filters
onboard spacecraft orbiting the Earth are linear filters which
assume Gaussian probability distributions like the Extended
Kalman Filter (EKF) [1] and the Unscented Kalman Filter
(UKF) [2], [3]—linear filters being ones that incorporate
measurement information linearly in their update step. They
are extensively used because of their tried-and-true lineage.
However, as missions shift to the cislunar environment,
nonlinear filters will need to be used to account for non-
Gaussian probability distributions.

The Ensemble Gaussian Mixture Filter (EnGMF) [4], [5]
has been shown to be an accurate and consistent nonlinear
filter for Low Earth Orbit (LEO) [6]–[8], Geostationary Orbit
(GEO) [9], and cislunar orbit determination problems [10],
[11]. However, its intended usefulness is limited to ground
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tracking. This is because the EnGMF traditionally requires a
fixed number of Gaussian components, which restricts its
efficiency, and it randomly samples components after its
update step, meaning it is not suitable as a verifiable filter
either. Therefore, in its current form, the EnGMF will never
be used as an onboard filter for spacecraft because it is
neither efficient nor verifiable.

It is the purpose of this work to make the EnGMF both
efficient and verifiable by adaptively reducing the number
of Gaussian components needed, and deterministically re-
sampling using Fibonacci grids with optimal reduction. This
work tests the filters against a simulated cislunar relative
navigation scenario, relying solely on noisy azimuth and
elevation angle measurements obtained from a vision-based
sensor (e.g., camera), demonstrating both the need for nonlin-
ear filters, like the EnGMF, and their potential for deep-space
operations. The simulation results indicate that the proposed
EnGMF refinements maintain the accuracy and consistency
of the traditional EnGMF, and also improve its efficiency and
ensure verifiability.

In Section II, this work gives background to what makes
a filter accurate, consistent, efficient, and verifiable. Then,
in Section III, this work presents the methodology for
the EnGMF, including its efficient and verifiable versions.
Section IV compares the results of the different EnGMFs
in a simulated cislunar relative navigation scenario, and also
compares them against the EKF and UKF for completeness.
Finally, Section V gives a brief discussion with concluding
remarks.

II. BACKGROUND

A. Notation

This work models the state dynamics and measurements
as

xk “ fpxk´1q ` υk, (1)
yk “ hpxkq ` ηk, (2)

where x P Rnx is the true state, f : Rnx Ñ Rnx is the known
discrete dynamics propagation function that propagates the
state from time step k ´ 1 to time step k, and υk P Rnx is
zero-mean Gaussian white process noise with covariance Q.
Additionally, y P Rny is the measurement, h : Rnx Ñ Rny

is the known measurement function, and ηk P Rny is zero-
mean Gaussian white measurement noise with covariance R,
uncorrelated to υk.

In this work, the hat notation p̂¨q is used to indicate
variables estimated by the filter. For example, x̂ and P̂
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represent the filter-estimated state and covariance, respec-
tively. Additionally, the subscript notation p¨qk|k´1 denotes a
predicted estimate from k ´ 1 to k. For example, x̂k|k´1

and P̂k|k´1 represent the predicted state and covariance.
Similarly, the notation p¨qk|k is used to indicate an updated
estimate at time step k, such as x̂k|k and P̂k|k.

B. Accuracy

The following is the general definition of estimation error:

x̃k|k
def
“ xk ´ x̂k|k, (3)

where a filter is considered accurate if this error is suffi-
ciently small.

For multi-dimensional problems, the Root Mean Square
Error (RMSE) is typically used, and is computed by

RMSE “

c

1

nx
px̃k|kqJx̃k|k, (4)

where p¨qJ is notation for the transpose of a vector or matrix.
A lower RMSE indicates a more accurate filter, i.e., the
estimate more closely aligns with the truth.

C. Consistency

A filter is considered consistent if its estimation errors are
unbiased and their covariance matches the filter-calculated
covariance. A more in-depth review of this topic can be found
in Ref. [12]. However, in brief, under multi-dimensional
linear Gaussian assumptions, the expectation of the squared
norm of the estimation error is equal to its dimension:

Erpx̃k|kqJpP̂k|kq´1x̃k|ks “ nx. (5)

This results in the Scaled Normalized (state) Estimation Error
Squared (SNEES):

SNEES “
1

nx
px̃k|kqJpP̂k|kq´1x̃k|k. (6)

The SNEES is an nx-scaled version of the NEES from
Ref. [12], which sets the optimal filter consistency to a value
of 1 for linear Gaussian systems. Therefore, a value less than
1 indicates that the filter is conservative, while a value greater
than 1 suggests that the filter is overly confident. Although
real-world systems are typically not linear or Gaussian, the
SNEES remains a valid measure of relative consistency
between filters, i.e., how consistent one filter is compared
to another.

D. Efficiency

The concept of filter efficiency considered in this work
differs from the “efficiency check” described in Ref. [12].
Instead, this work focuses on computational filter efficiency,
i.e., the time required for the filter to process data and
generate estimates.

Efficiency is measured using wall-clock time, which rep-
resents the total elapsed time for a simulation to run from
start to finish, as if it were observed by an external observer.
This differs from CPU time, which only accounts for the time
the processor was actively working. Wall-clock time includes

both active computation and any waiting periods, making it
a more comprehensive measure of real-world performance.

Achieving a filter that is accurate, consistent, and compu-
tationally efficient is highly desirable.

E. Verifiability

Verifiable filters avoid (pseudo) random subroutines, en-
suring consistent behavior across multiple runs. Common
particle and ensemble-based filters rely on stochastic re-
sampling procedures to avoid particle or ensemble collapse.
The stochasticity of these strategies makes these filters not
verifiable, and therefore, not a very realistic choice for
mission-critical applications. [13]

In hybrid filters, where the state probability density func-
tion (pdf) is parametrized by Gaussian mixtures and point
masses, optimally sampling particles from a Gaussian mix-
ture is a crucial step. This step can be performed deter-
ministically by using optimal transport strategies [13], or
by minimizing a distance metric known as the modified
Cramér-von Mises distance [14]–[16]. These strategies make
ensemble-based filters deterministic and thus verifiable.

III. METHODOLOGY

A. The Ensemble Gaussian Mixture Filter

The following is a brief introduction to the EnGMF, with
detailed algorithmic descriptions available in Ref. [5]. Recent
studies have demonstrated its effectiveness in tracking targets
even under sparse observation conditions [5]–[11], [17]–[19].

Fig. 1 provides an illustrative diagram of the EnGMF
steps. Before step 1 , the EnGMF assumes a Dirac delta em-
pirical measure, approximating the prior distribution ppxk´1q

using N independent and identically distributed (i.i.d.) par-
ticles tX piq

k´1uNi“1:

ppxk´1q «

N
ÿ

i“1

1

N
δpxk´1 ´ X piq

k´1q, (7)

where δp¨q represents the Dirac delta distribution, which
can be interpreted as a normal distribution with covariance
approaching the zero matrix in the limit.

In step 1 of Fig. 1, the particles are propagated to time
step k, and in step 2 , they are converted into a Gaussian
mixture using the Kernel Density Estimation (KDE) method
from Ref. [20]. This KDE method transforms each particle
into a Gaussian component with nonzero covariance and
equal weight:

ppxkq «
řN

i“1
1
NN

`

xk; x̂
piq
k|k´1, βSilv.Covptx̂

piq
k|k´1uNi“1q

˘

, (8)

where x̂
piq
k|k´1“fpX piq

k´1q is the predicted mean of the i-th

particle, Covptx̂
piq
k|k´1uNi“1q is the sample covariance matrix

of all the propagated particles, and βSilv. is the bandwidth
parameter. To reduce computational costs, Silverman’s Rule
of Thumb [20] is used to determine the bandwidth parameter
for each component:

βSilv. “

ˆ

4

nx ` 2

˙
2

nx`4

N´ 2
nx`4 . (9)
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Fig. 1: Diagram of the Ensemble Gaussian Mixture Filter (EnGMF) steps.

Next, measurements are incorporated, and in step 3
of Fig. 1, the posterior distribution is approximated as a
weighted Gaussian mixture:

ppxk|ykq «

N
ÿ

i“1

w
piq
k N pxk; x̂

piq
k|k, P̂

piq
k|kq, (10)

where each Gaussian component’s mean and covariance are
updated individually using a linear filter, such as the EKF or
UKF. The mixture weights are computed as

w
piq
k “

1
N N

`

yk;hpx̂
piq

k|k´1
q,H

piq

k P̂
piq

k|k´1
pH

piq

k q
J

`R
˘

řN
j“1

1
N N

`

yk;hpx̂
pjq

k|k´1
q,H

pjq

k P̂
pjq

k|k´1
pH

pjq

k qJ`R
˘ , (11)

where all weights are strictly positive and sum to 1. Here,
H

piq
k “

Bhpxq

Bx |
x“x̂

piq

k|k´1

is the Jacobian of the measurement
mapping function evaluated at the prior estimate.

For analysis purposes (not affecting the filter), the ex-
tracted mean and covariance are:

¯̂xk “

N
ÿ

i“1

w
piq
k x̂

piq
k|k, (12)

¯̂
Pk “

N
ÿ

i“1

w
piq
k

“

P̂
piq
k|k ` px̂

piq
k|k ´ ¯̂xkqpx̂

piq
k|k ´ ¯̂xkqJ

‰

. (13)

Finally, in step 4 of Fig. 1, the EnGMF generates N i.i.d.
new samples from the Gaussian mixture approximation of the
posterior distribution using the resampling method described
in Ref. [21]. These newly drawn samples then serve as the
initial particles for the next iteration of the filter.

B. Adaptively Changing the Number of EnGMF Components

The goal here is to decrease the number of Gaussian
components carried by the EnGMF, and in turn increase its
computational efficiency. In its current form, the EnGMF
has a fixed number of components, and to that regard it is
different from other nonlinear filters like the Gaussian Sum
Filter (GSF) [22], whose number of Gaussian components
continue to increase combinatorially. The GSF mitigates its
ever growing number of components by often using a prun-
ing, merging, and capping scheme. Although the EnGMF
retains the same number of Gaussian components at every

time step, this same GSF pruning, merging, and capping
scheme can be used to prune (discard) components with
small weights, merge (combine) components that are similar,
and cap (limit) the total number of components altogether.

Pruning and capping are computationally cheap, whereas
merging is more expensive, requiring a comminatory search
of all components to find the merging pairs. It is common
to merge pairs based on a distance criteria, which is typi-
cally the Mahalanobis distance and is used in the merging
schemes of [23]–[25]. This work uses the pruning, merging,
and capping algorithm from Ref. [24] and is provided in
Algorithm I.

This pruning, merging, and capping algorithm is well and
good, but it presents a new problem for the EnGMF—
degeneracy. By using the algorithm, there could come a

TABLE I: Pruning, merging, and capping steps.

Given: tw
piq

k , x̂
piq

k|k
, P̂

piq

k|k
uNi“1, pruning threshold T , merging threshold

U , and capping limit Nmax.

Step 1: Pruning
set n “ 0, and I “ ti “ 1, . . . , N |w

piq

k ě T u

renormalize weights
Step 2: Merging

repeat
n Ð n ` 1
j “ argiPImax w

piq

k

L “ ti P I|px̂
piq

k|k
´ x̂

pjq

k|k
qJpP̂

piq

k|k
q´1px̂

piq

k|k
´ x̂

pjq

k|k
q ď Uu

w̄
pnq

k “
ř

iPL w
piq

k

x̄
pnq

k|k
“ 1

w̄
pnq

k

ř

iPL w
piq

k x̂
piq

k|k

P̄
pnq

k|k
“ 1

w̄
pnq

k

ř

iPL w
piq

k

`

P̂
piq

k|k
` px̂

piq

k|k
´ x̄

pnq

k|k
qpx̂

piq

k|k
´ x̄

pnq

k|k
qJ

˘

I Ð IzL
until I “ H

renormalize weights
Step 3: Capping

if n ą Nmax, then keep Nmax with largest weights in
tw̄

piq

k , x̄
piq

k|k
, P̄

piq

k|k
uni“1

renormalize weights
Output: tw̄

piq

k , x̄
piq

k|k
, P̄

piq

k|k
uni“1
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point in which the number of components collapses to a
single Gaussian component and never recovers. To prevent
this, there needs to be injected some diversity. This work
does this by requesting a minimum number of particles,
Nmin, to be added onto the resampling step. Fig. 2 shows
the same process of the EnGMF from Fig. 1, except now
with a pruning, merging, and capping procedure occurring at
step 4 , after which there are N components, and in step 5
it resamples N ` Nmin particles to prevent degeneracy.

C. Deterministic Resampling of the EnGMF Using Fi-
bonacci Grids and Optimal Reduction

As seen in Fig. 1, in the EnGMF, particles must be
resampled from the posterior GMM. In order to make the
filter verifiable, this work uses the deterministic resampling
technique presented in Refs. [15], [16]. This technique opti-
mally samples the posterior GMM in two steps, summarized
as follows.

The first step is to samples deterministic points from each
Gaussian component of the GMM,

N pxk; x̂
piq
k|k, P̂

piq
k|kq «

1

D

D
ÿ

j“1

δ
´

xk ´ Dpjq

k|k,i

¯

, (14)

where D are the total number of points to be sampled
from each component and tDpjq

k|k,iu
D
j“1 are the deterministic

samples. For this work, Fibonacci grids [26] are used to
sample the deterministic points. With this first step, the
posterior GMM is approximated as a Dirac mixture with
N ¨ D points,

ppxk|ykq «

N
ÿ

i“1

w
piq
k

D

D
ÿ

j“1

δ
´

xk ´ Dpjq

k|k,i

¯

. (15)

The second step is to reduce the Dirac mixture back to N
equally weighted points, such that

řN
i“1

w
piq

k

D

řD
j“1 δ

´

xk ´ Dpjq

k|k,i

¯

« 1
N

řN
i“1 δ

´

xk ´ X piq
k

¯

, (16)

where tX piq
k uNi“1 are the newly sampled particles. That is,

this step finds the optimal location of the new particles by
minimizing the modified Cramér-von Mises distance [14]
between the two Dirac mixtures.

For this step, the modified Cramér-von Mises distance
between the two Dirac mixtures is minimized using Matlab’s
fminunc function, as in Refs. [15], [16]. For the minimiza-
tion, the reduced points are initialized with the means of the
posterior GMM.

IV. NUMERICAL EXPERIMENT

The following scenario involves a Target and a Chaser
in a similar Near Rectilinear Halo Orbit (NRHO). The
Target is being tracked by the Chaser using a vision-based
sensor (e.g. camera), which produces noisy azimuth and
elevation measurements. Assuming knowledge of its own
inertial position and velocity perfectly, the goal of the Chaser
is to estimate its relative position and velocity with respect
to the Target.

Cislunar NRHOs are a class of trajectories that exist
in the vicinity of the Moon and are typically positioned
close to Lagrange points associated with the Earth-Moon
system. NRHOs offer a degree of long-term stability and
remain relatively stable over extended periods. This stability
is valuable for missions requiring long-duration observations
or operations.

However, they are also known for their chaotic be-
havior and sensitivity to initial conditions, as reported
by [27] and [28]. Minor errors in the initial state or measure-
ments can lead to significant divergence in estimated states,
making accurate estimation challenging.

A. Dynamics

This work uses a 9:2 synodic resonant NRHO, which
means the Target and Chaser make nine revolutions around
the Moon for every two lunar synodic months. This specific
type of NRHO has a 6.5-day period, a perilune radius of
about 3,250 km, and an apolune radius of approximately
71,000 km. It is the lowest-altitude NRHO with a useful
resonance, and serves as the baseline orbit for NASA’s Lunar
Gateway mission [29].

This work models cislunar NRHO dynamics using the Cir-
cular Restricted Three Body Problem (CR3BP) for the Earth-
Moon system with a 6-dimensional state space represented
by x “ rrp1q, rp2q, rp3q,vp1q,vp2q,vp3qsJ:

9rp1q “ vp1q, 9rp2q “ vp2q, 9rp3q “ vp3q,

9vp1q “ rp1q ` 2vp2q ´
p1 ´ µqprp1q ` µq

r3C
´

µprp1q ´ 1 ` µq

r3K
,

9vp2q “ rp2q ´ 2vp1q ´
p1 ´ µqrp2q

r3C
´

µrp2q

r3K
,

9vp3q “ ´
p1 ´ µqrp3q

r3C
´

µrp3q

r3K
,

(17)

where rp1q, rp2q, rp3q and vp1q,vp2q,vp3q represent the
scaled Cartesian positions and velocities of the space objects
with respect to the Barycenter origin, µ is the scaled Moon
geocentric gravitational constant, and rC and rK are the
distances of the space objects with respect to the Earth and
Moon in the Barycenter reference frame:

µ “
µK

µC ` µK

, (18)

rC “
a

prp1q ` µq2 ` rp2q2 ` rp3q2, (19)

rK “
a

prp1q ´ 1 ` µq2 ` rp2q2 ` rp3q2. (20)

In this work, µC“G ¨ mC and µK“G ¨ mK. The gravita-
tional constant is G“6.6743 ˆ 10´11 m3 s´2 kg´1, the mass
of the Earth is mC“5.972 ˆ 1024 kg, and the mass of the
Moon is mK“7.342 ˆ 1022 kg.

The units for distance and time are normalized
by length units LU“384 400 ˆ 103 m and time units
TU“

b

LU3
{pµC`µKq s. The system dynamic equations are

numerically integrated with an embedded Runge-Kutta 8(7)
method [30].
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Fig. 2: Diagram of the Adaptive Ensemble Gaussian Mixture Filter (AEnGMF) steps.

The true states of the Chaser start at the dimensionless
coordinates x0,Chas. from Ref. [28]:

x0,Chas. “ r1.0110350588, 0, ´0.1731500000,

0, ´0.0780141199, 0sJ,
(21)

and the Chaser has a dimensionless period of roughly
1.3632096570 [28]. Whereas, the true states of the Target
start along 1{5-th of the Chaser’s orbit:

x0,Targ. “ r1.0072370971, ´0.0199527269, ´0.1523270340,

´ 0.0278278626, ´0.0630584615, 0.1565627028sJ.
(22)

For the filters, each Monte Carlo simulation starts with an
initial Gaussian distribution centered at the following dimen-
sionless relative coordinates x̂0|0, with covariance P̂0|0:

x̂0|0 “ r´0.0037979617, ´0.0199527269, 0.0208229660,

´ 0.0278278626, 0.0149556584, 0.1565627028sJ,
(23)

P̂0|0 “ diagpr1 ˆ 10´4, 1 ˆ 10´4, 1 ˆ 10´4,

1 ˆ 10´6, 1 ˆ 10´6, 1 ˆ 10´6s2q. (24)

The different filters do not assume any additive discrete
process noise: Q“0nxˆnx .

B. Measurements

The full simulation lasts for 5 orbits. Measurements are
sparse in time such that they are infrequent over long periods.
The camera on the Chaser is pointed strictly in the positive
Barycenter-inertial Y-direction. As the Target crosses the
camera’s field of view (FOV) of 90˝, measurements are
recorded. The filter operates at a rate of dt “ 100 min.

In this example, the Target is assumed trackable such that
it has sufficient size and reflectivity. This absolves any issues
related to detection for this work, while studies such as [31]
provide more details on the detectability of cislunar objects.

The measurement vector y“rα, εsJ contains azimuth α
and elevation ε of the Target mapped to the Chaser:

α “ tan´1

ˆ

rTarg.p2q ´ rChas.p2q

rTarg.p1q ´ rChas.p1q

˙

, (25)

ε “ sin´1

ˆ

rTarg.p3q ´ rChas.p3q

}rTarg. ´ rChas.}

˙

, (26)

where } ¨ } is the Euclidean 2-norm,
rTarg.“rrTarg.p1q, rTarg.p2q, rTarg.p3qsJ is the position of
the Target, and rChas.“rrChas.p1q, rChas.p2q, rChas.p3qsJ is the
position of the Chaser. The measurements are corrupted
by additive zero-mean Gaussian white noise having 1σ-
uncertainties of 0.9 arcseconds for both azimuth and
elevation angles. Light-travel time delay and measurement
biases are not considered.

C. Results

This section tests the EKF, UKF, EnGMF, AEnGMF,
and ADEnGMF in the presented cislunar relative navigation
problem. The EKF is from [1] and approximates its state
transition matrix (STM) using the matrix exponential of the
dynamics Jacobian times dt, which provides a reasonable
approximation for small time steps. The UKF is the 3-
parameter formulation from [3], which uses α“1, β“2, and
κ“3´nx and re-Gaussianizes after every prediction step.
The EnGMF is from [5] and is recalled in Section III-A. It
uses N“250 components. The AEnGMF adaptively changes
the number of Gaussian components as needed and is de-
tailed in Section III-B. It starts with N“250 components, but
also uses a T“1 ˆ 10´3 pruning threshold, U“4 merging
threshold, Nmax“N caping limit, and Nmin“10 minimum
number of resampled particles. Finally, the ADEnGMF is the
AEnGMF that deterministically resamples using Fibonacci
grids with optimal reduction and is detailed in Section III-C.
It uses the same parameters as the AEnGMF, but with the
addition of NFib.“2nx`1 deterministic Fibonacci points.

Fig. 3 shows the accuracy and consistency of the compared
filters over the 5 orbits. The first thing to notice is that the
EKF and UKF diverge because they assume a single Gaus-
sian probability distribution. This assumption is insufficient
for this scenario because the dynamics and measurements are
nonlinear, and the state is point-wise-in-time unobservable
from the angles-only measurements. The next thing to notice
is that in Figs. 3 (a), (b), and (c), the EnGMF, AEnGMF,
and ADEnGMF each experience the same peaks and valleys.
This is because the Target is not always visible, and when
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Fig. 3: This figure compares the accuracy (RMSE) and
consistency (SNEES) of each filter vs. time. Results are
averaged over 1,000 Monte Carlo simulations.

this occurs, the uncertainty of the filter grows, causing the
peaks. When the target becomes visible, measurements are
given to the filter and it improves its estimate, causing the
valleys.

In Figs. 3 (a) and (b), the EnGMF, AEnGMF, and
ADEnGMF all overlap nicely, indicating similar accura-
cies even with the refinements made by AEnGMF and
ADEnGMF. However, in Fig. 3 (c), the consistency of the
AEnGMF is slightly more confident than the EnGMF and
ADEnGMF, likely due to having fewer Gaussian compo-
nents, but this is still acceptable performance.

Fig. 4 just reiterates what was shown in Fig. 3, except
averaging over the 5 orbits to get a single data point. The
EKF and UKF diverge, while the EnGMF, AEnGMF, and
ADEnGMF each have similar accuracies and consistencies
despite their differences.

Finally, Fig. 5 shows the efficiency of the filters broken
down into two sections. Fig. 5 (a) shows the average number
of components each filter has and Fig. 5 (b) shows their
average Monte Carlo simulation wall-clock times. Notice that
the AEnGMF improves the efficiency of the EnGMF consid-

Fig. 4: This figure compares the overall accuracy (RMSE)
and consistency (SNEES) of each filter averaged over time.
Results are further averaged over 1,000 Monte Carlo simu-
lations.

erably, almost catching up to the UKF. However, as soon as
the deterministic sampling is introduced, the ADEnGMF’s
efficiency soars, hindering its marketability as an onboard
filter. If the deterministic sampling methods can sample just
as fast as random sampling methods, then the EnGMF can
be a real contender as an effective onboard nonlinear filter.
Regardless, the presented results are promising and indicate
this work is heading in the right direction.

V. CONCLUSION

Recent work has shown that the Ensemble Gaussian
Mixture Filter (EnGMF) is an accurate and consistent non-
linear filter with applications to Low Earth Orbit (LEO),
Geostationary Orbit (GEO), and cislunar orbit determination
problems. However, it is neither efficient nor verifiable,
which limits its applicability and bars it from ever being
used as an effective onboard navigation filter.

In this work, the EnGMF is refined to be both efficient
and verifiable by adaptively reducing the number of Gaus-
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Fig. 5: This figure compares the efficiency of the filters
and how their number of components relate to their wall-
clock times. Results are averaged over 1,000 Monte Carlo
simulations. Using an Intel Core i7 9700K CPU at a base
speed of 3.00 GHz and with 16 GB of RAM.

sian components needed, and deterministically resampling
using Fibonacci grids with optimal reduction. This work
compares the proposed EnGMFs in a simulated cislunar
relative navigation scenario, and also compares their per-
formance against the Extended Kalman Filter (EKF) and
Unscented Kalman Filter (UKF) for completeness. The pre-
sented cislunar scenario relies solely on noisy azimuth and
elevation angle measurements obtained from vision-based
sensors (e.g., cameras), demonstrating both the need for
nonlinear filters, like the EnGMF, and their potential for
deep-space operations. Simulation results indicate that the
proposed EnGMFs maintain the accuracy and consistency of
the traditional EnGMF, and also improve its efficiency and
ensure verifiability.

Although the results show a lot of promise, the current
bottleneck lies in the speed of the deterministic sampling
algorithms, i.e., the Fibonacci grid sampling with optimal
reduction is too slow. If this can be improved to achieve
similar resampling times as a random sampler, then the
EnGMF will be a considerable contender as an effective
onboard filter.
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