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Abstract— Accurate uncertainty propagation is key for ef-
fective space domain awareness, especially for sparse data
problems where longer periods of uncertainty propagation are
required. When the dynamical system is nonlinear, guarantees
of Gaussianity cannot be made, leading to non-Gaussian uncer-
tainties. This work develops a bifidelity approach to uncertainty
propagation in which Gaussian mixture representations of
uncertainty are adapted online using directional splitting. Full-
fidelity models are used for state propagation, and reduced-
fidelity models are used for error propagation. It is found that
the proposed combination of directional splitting and bifidelity
dynamics is successful in propagating the uncertainty in a
cislunar test case.

I. INTRODUCTION

Uncertainty propagation is the process of determining
the temporal evolution of the probability density function
(pdf)—or some approximation thereof—of the state of a dy-
namical system. For problems in space domain awareness,
the state of the system is usually taken to be Cartesian
coordinates (i.e., position and velocity vectors) or some set
of orbital elements (e.g., Keplerian elements). The space
domain carries several complexities that make uncertainty
propagation challenging. First, and foremost, the dynamics
that represent the governing equations of motion for the
states are generally nonlinear, implying that assumptions
of Gaussianity cannot be guaranteed. Secondly, the faithful
representation of orbital motion is characterized by complex
models that represent the gravitational attraction of multiple
celestial bodies, solar radiation pressure, atmospheric drag,
etc., such that computational complexity is not always trivial.
Finally, data with which to perform inference for space
objects can be sparse, meaning that there can be long periods
of time during which it is necessary to propagate uncertainty.

The earliest methods for quantifying uncertainty when
dealing with orbital motion began with applying techniques
like the Kalman filter [1] to the problem of estimating the
trajectories of satellites [2] and to the circumlunar navigation
problem [3], [4]. A Bayesian connection to the Kalman
filter was established shortly thereafter [5], paving the way
for key advancements in tractable, non-Gaussian uncertainty
representations through the introduction and development of
Gaussian mixture (GM) pdfs [6], [7]. Several recent methods
that leverage GM representations have been developed and
applied to the space object uncertainty propagation problem
[8]-[10]. Mixture-based approaches facilitate approximations
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that address both the lack of Gaussian guarantees and the
need for long propagation arcs for space object tracking.

Multifidelity methods, such as [11]-[13], provide methods
by which the computational burden of high-fidelity dynami-
cal system modeling can be addressed. These methods tend
to use a set of selected high-fidelity state propagations to then
identify corrections that can be made (e.g., using stochastic
collocation, differential algebra, etc.) to correct low-fidelity
state propagations. In doing so, multifidelity methods reduce
the computational burden by making judicious use of a
reduced-fidelity model of the dynamics. A different approach
that is used in onboard spacecraft navigation is a bifidelity
method in which the state estimate is propagated at a high
rate, while the covariance is propagated at a lower rate [14].
This method naturally lends itself to treating the propagation
equations separately and using different levels of fidelity. As
an example, high-rate inertial measurement unit data can
be used to propagate the state estimate, and a simplified
accumulation of the data can be used to propagate the
covariance.

In this paper, adaptive GM uncertainty propagation is
combined with a bifidelity dynamics model. Adaptation
of the GM representation of uncertainty is performed by
splitting a Gaussian into multiple Gaussians after the effects
of nonlinearity have been detected. The means of the mixture
are propagated using a full-fidelity dynamical model, and the
covariances of the mixture are propagated using a reduced-
fidelity dynamical model.

In this work, scalar quantities are represented by lower-
and uppercase Latin and Greek characters, vector quantities
are represented by lowercase, bold Latin and Greek charac-
ters, and matrix quantities are represented by uppercase, bold
Latin and Greek characters. The trace of a matrix is denoted
by trace { . }, the determinant of a matrix is denoted by ’ -1,
the matrix inverse is denoted by (-)~!, and the vector/matrix
transpose is denoted by (-)7.

II. UNCERTAINTY PROPAGATION

Consider a continuous-time dynamical system of the form
@(t) = f(z(t),1), (D

where f : R™ x R — R” is a deterministic nonlinear
function describing the dynamics of the problem. Uncertainty
is introduced via the initial conditions, oy = x(to) ~ p(xo),
where p(xg) is taken to be a known pdf. The objective of
uncertainty propagation is to find p(x(t)), given some t > t.
This problem has a well-known solution that is given by
Liouville’s equation (which is equivalently the Fokker—Plank



equation or the forward Kolmogorov equation in the absence
of process noise) [15]. These solutions, however, do not, in
general, admit a finite parameterization of the pdf. Instead,
approximations are often required.

A. Fixed-Component Approaches

In this work, GM models are leveraged to represent the
state pdf; as such, the pdf is given by an L,-component
mixture of the form

Ly
p(a) =Y wpy(x;m, P{Y), 2)
(=1
where wa(f), mg(f), and ngﬁ) represent the weights, means,

and covariances of each component within the mixture. The
weights are constrained to be non-negative, and the covari-
ance matrices are required to be symmetric and positive
definite.

If the dynamical system is linear and the state distribution
is a GM (of which the Gaussian pdf is a special case), then
it is well-established that the propagation of uncertainty can
be carried out exactly, where the weights are constant and
the means and covariances evolve in a similar manner to
the Kalman filter [6]. The dynamical system of (1) can be
expressed as

@(t) = F(t)a(t),

and the governing equations of motion for the GM parame-
ters are

W (t) =0
m)(t) = F(tym{) (t)
P{)(t) = F()P)(t) + P ()FT(t),

which are applied for each component. Given linear dynam-
ics (and no process noise or exactly Gaussian process noise),
the number of components in the GM remains constant.
While the approach developed in [6] is formulated for
discrete dynamical systems, it is straightforward to extend the
approach to the continuous dynamical system representation
that is used in this work via an analogous approach used
for the continuous-discrete Kalman filter [16]. Additionally,
it is worth noting that process noise is not considered in the
dynamical system model in this work.

In the more general case where the dynamical system is
nonlinear, as in (1), it is common to employ some type of
approximation, such as [7]

Wl (t) =0
) (t) = f(m
P{)(t)=F(m
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which is a first-order Taylor series expansion about the mean
of each component of the GM. Other approximations, such as
a per-component application of the unscented transform (UT)
[17]-[19] or Gauss—Hermite (GH) quadrature [20], [21], can
also be leveraged. Importantly, all of the aforementioned

methods are approximate; the evolution of the GM parame-
ters is no longer guaranteed to exactly represent the forward
evolution of the pdf. As part of the approximation, it is
assumed that the number of components in the GM remains
fixed, but this also cannot be guaranteed. When using the UT
or GH methods, the transformation of the sigma/quadrature
points is performed through numerical integration of the
continuous-time nonlinear dynamical system, similar to [22].

B. Adaptive Approaches

One method to reduce approximation error is to employ
an adaptive GM approach, wherein the number of mixands
and/or the parameters of the mixands are adapted online
[8], [10]. Adaptive approaches are still approximations, but
they seek to lessen the restrictions of the fixed-component
methods presented previously. In this work, an adaptive
approach is presented where adaptation is triggered by mon-
itoring agreement between different approximations of the
uncertainty propagation. The adaptation is then to “split” a
component of the GM into several smaller components in
order to reduce the approximation error.

C. Splitting Criterion

The Kullback-Leibler (KL) divergence, which is defined
as [23], [24]

Dxwlp1|lps) = / p1(x) log (pl(w)/pg(sc)>d.’1:, 3)

quantifies the information lost in representing one pdf, p; (x),
by another pdf, ps(x). The KL divergence satisfies two key
properties: 1) it is self-identifying (Dxi[p|lp] = 0), and
2) it is non-negative (Dkvr[p1||p2] > 0). Unfortunately, the
KL divergence is not symmetric (in general, Dkr,[p1]||p2] #
Dxr[p2||p1]), and it does not satisfy the triangle inequality.
As such, the KL divergence does not satisfy the properties
to be a metric; nevertheless, self-identification and non-
negativity are powerful properties of the KL divergence.

In this work, the KL divergence is used to detect de-
partures of one method of uncertainty propagation from
another method of uncertainty propagation. That is, letting
p1 denote a reference density that is governed by a higher-
order propagation a GM pdf, ps represents a lower-order
propagation of the same pdf, and the KL divergence is used
to quantify the discrepancy between each component of p;
and po.

In particular, the components of p; are propagated forward
in time using the unscented transform (UT) [17]-[19], and
the components of py are propagated forward in time using
a first-order Taylor series expansion approximation, yielding

pg) (.’13) = pg (:I?; mm?msv quf"),um) (4)
and
py>(“’) = py(@; m:(p?im Pl(-i),lin) : (&)

The difference between the different methods of propagating
the mean and covariance is quantified using the KL diver-
gence. Substituting the Gaussian pdfs of Egs. (4) and (5) into



the KL divergence of (3), it follows that
1p§7] = (©6)
5 1108 {1 Pl /| P |} + trace { PY,u(PS)10) )

Tx uns zm lm
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When the KL divergence between the two methods exceeds
a threshold, i.e., when [25], [26]

D] > 7, )

action should be taken, as the effects of nonlinearity are
causing departures in the propagation of the mean and
covariance. The action taken is that the /" component of the
GM is split into a set of smaller Gaussians. This criterion
is applied to all of the components of the GM on a per-
component basis.

The threshold 7 is chosen to limit the maximum allow-
able divergence between the two distributions. Consider two
Gaussian pdfs of the form

¢1(x)
a2 ()

where v is some unit vector, ¢ > 0, and k& > 1. The first dis-
tribution, ¢;, represents the higher-order approximation of the
true distribution, and the second distribution, g, represents
the lower-order approximation of the true distribution. Given
q1 and ¢s, the KL divergence for this comparison reduces to

= py(z; p, X)
= py(a; p+ S0, 2/k),

1
7= Dxuaillgz] = §(n(k —logk —1)+ck). (8

The value of k, which is constant, is chosen as the maximum
divergence that is permitted between the two covariances,
while the constant c¢ is set as the number of standard
deviations by which the means are allowed to diverge. Once
these parameters are set, (7), in conjunction with (6), is used
to detect when splitting is required. As the threshold does
not depend on the specific solutions at each step, it can be
precomputed and stored.

D. Splitting Direction

After determining that linearized uncertainty propagation
is no longer acceptable and that a component split is needed,
the next step is to determine the direction of the split, i.e.,
the direction of maximum nonlinearity. The approach used
in this work follows the approach of [27], which expands
upon the method of [25] to split nonlinear vector functions
of the state.

Let z € R™ be a nonlinear function of the state x € R",
ie.,

z=g(z).

The m x n Jacobian is denoted by G, which is comprised
of row vectors, G;, i.e., G; is the Jacobian of the ™
scalar component of the nonlinear function. A linear system
possesses constant first-order derivatives; the rate of change

of the Jacobian at Z in direction u is therefore a reasonable
quantification of nonlinearity. The directional derivative is
given by

VUGi(w)‘m*i = lirrb Gi(@ +au) - Gi(Z) )]
- oa—r «

Taking a first-order Taylor series of the Jacobian, it can be
shown that [27]

quz(w) ‘w:i = 'U,THZ' (QE)T

where H;(x) € R™™" is the Hessian of the i component
of g(x). Assembling the components of the directional
derivative, it can be shown that the squared Frobenius norm
is [27]

IVuG ()| _.|[2 = u"E@)u, (10)
where
E(z) = ZHT z)H; (). (11)

Equation (10) pr0V1des a measure of the nonlinearity
in a particular direction, u. The objective of splitting a
Gaussian into smaller Gaussians is to mitigate the effects
of nonlinearity. It is also important to take into account
the amount of uncertainty in a given direction. As such, an
appropriate cost function is

T g/ =
N AT 21

ul'Pou
which weights (10) by the uncertainty represented by the
covariance matrix P,, in the direction u.

The direction w* that maximizes (12) can be easily com-
puted after a change of variables. Let S, be a square-root
factor of P,,, such that P,, = S,,SL. Let v = S, lu,
such that (12) can be equivalently written as
Flo) = v ST E(%)S,.v

(’U) - ’UT v .
The Rayleigh—Ritz inequality provides an upper bound for
(13) that is the maximum eigenvalue of matrix ST E(%)S,.,
with the associated eigenvector, v*, being the maximizing
argument. Changing variables back to the original problem,
the chosen direction for splitting is u* = S, v*.

u) = ||VuG(z)|

13)

E. Splitting Library

Once it is determined that the uncertainty requires refine-
ment through splitting, and once the direction in which the
splitting is to be performed is found, a splitting library is used
to replace a single Gaussian component with several smaller
Gaussian components. This work leverages the variance-
preserving splitting library of [27], which is found by min-
imizing the KL divergence between a GM and a standard
Gaussian, subject to the constraints that 1) the weights are
all positive, 2) the weights sum to one, 3) the overall mean
of the GM is zero, and 4) the overall variance of the GM
is one. The result of this optimization problem for a three-
component mixture is summarized in Table I, which is taken
from [27].



TABLE I: Variance-preserving splitting library

Comp. # Weight Mean Std. Dev.
-1 0.1616701997  —1.0908000117  0.78439476713
0 0.6766596007 0 0.78439476713

1 0.1616701997 1.0908000117  0.78439476713

F. Model Fidelity

Many dynamical systems admit lower-fidelity approxima-
tions of the true dynamics. For real-world systems, even the
modeled “true” dynamics are approximations of reality. In
situations where high-fidelity dynamics are computationally
expensive, leveraging lower-fidelity models can ameliorate
computational requirements without deleterious effects to
algorithm performance.

Consider the dynamical system given by (1). Let f(-,-) be
a reduced-fidelity approximation of f(-,-). In this work, the
full-fidelity model is used for the propagation of the means of
the GM in both linearized and unscented implementations.
The reduced-fidelity model is used in the computation of
the Jacobian, Hessian, combined Hessian of (11), and the
solution to the optimization problem of (13).

It is worth noting that the model fidelity is different than
the specific method of uncertainty propagation. In Section
II-C, the terms “higher-order” and “lower-order” are used to
refer to the method of propagating means and covariances.
The use of “higher-fidelity” and “lower-fidelity” refers to the
specific dynamics function that governs the system equations
of motion. That is, a higher-order propagation method can
be used with a low-fidelity model, and vice versa.

III. ADAPTIVE SPLITTING DEMONSTRATION

To demonstrate the proposed approach for adaptive split-
ting during uncertainty propagation, consider a bivariate
system in which the state is comprised of the semi-major axis
(SMA), a, and the mean longitude, ¢, representing the orbital
parameters of an object in orbit about Earth. For unperturbed
Keplerian motion, the corresponding dynamics of this system
are given by

&= f(z)= L//?/?] ., where == m . (14

and p is the gravitational parameter of Earth. Note, in partic-
ular, that the semi-major axis is constant. In this example, the
full model fidelity is used throughout the uncertainty propa-
gation process. The Jacobian associated with the dynamical
system of (14) is
of (x) 0 0
ae) = = Ly o]

The Hessians corresponding to the first and second rows
of the Jacobian, i.e., Hy(x) and Hs(x), respectively, can

be found in a rather straightforward manner such that, with
E(x) as defined in (11),

Five propagation methods are implemented and com-
pared: the extended Kalman filter (EKF), polynomial chaos
(PC) [28], AEGIS [10], the adaptive Gaussian sum filter
(AGSF) [8], and the proposed method of this work. The EKF
and PC are used to approximate the first and second central
moments of the distribution, and AEGIS, the AGSF, and
the proposed method are used to approximate distribution
itself via Gaussian mixture representations. Additionally, a
Monte Carlo (MC) simulation with 1 x 10° samples is used
to represent the true distribution. Each method is applied
to propagate either the moments or the distribution for a
period of one day, starting from an initial distribution that is
Gaussian with mean and covariance given, respectively, by

e — 42164.172 km nd
0= 0 deg a

P _ [(5000 km?> 0
0= 0 (5 deg)?| -

Hermite polynomials are utilized for both random vari-
ables in PC, with a total expansion order of three. AEGIS
is implemented using the three-component splitting library
detailed in [10], whereas the proposed method leverages
the splitting library of Table I. When using the UT within
AEGIS, the “2n” cubature rule is used [18]. The AGSF
approach uses a fixed number of Gaussian components in
its mixture. There are a variety of ways in which these
components can be chosen, but to maintain similar com-
putational cost to AEGIS and the proposed approach, 25
components are used for the AGSF method. The initial
mixture is determined by applying the 5-component splitting
library of [10] to each marginal univariate distribution of the
initial Gaussian distribution. At the final time (one day after
the specified initial condition), AEGIS uses 27 components
in its Gaussian mixture representation, while the proposed
method uses only 11 components.

To analyze the performance, estimates for each of the
states (the semi-major axis and the mean longitude) are
determined by computing the conditional mean and covari-
ance from each method. The mean estimation errors are
determined by taking the absolute value of the difference
of each method from the MC result. These results are
illustrated in Fig. 1, from which, it is clear that the AGSF
approach performs the worst in the SMA error. All of the
other approaches, on the other hand, are clustered around
a value of 10719, This performance of the AGSF occurs
because, unlike the other GM-based approaches, the weights
in the AGSF representation are adjusted via an online so-
lution to a quadratic programming problem, which provides
no guarantee with respect to preserving the overall mean.
AEGIS and the proposed approach, however, use mean-
preserving libraries. Since the SMA is constant, AEGIS and
the proposed approach are able to retain the correct solution.
The mean longitude error, on the other hand, shows more
dynamic trends, with PC consistently performing the best
and the EKF consistently performing the worst.

Standard deviation estimation errors are determined in a
similar way to the mean estimation errors, albeit from the
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estimated covariances of each method. These results are
provided in Fig. 2. Noting again that the SMA is constant,
Fig. 2 illustrates that both AEGIS and the AGSF have
comparatively poor performance in propagating the standard
deviation of the semi-major axis. This occurs because neither
approach guarantees covariance continuity in their weight
determination (AGSF) or splitting application (AEGIS). For
the mean longitude standard deviation error, PC and the
EKF bookend the performance, with the proposed approach
consistently outperforming both AEGIS and the AGSF.

IV. RESULTS AND DISCUSSION

To highlight the effectiveness of using reduced fidelity
modeling, consider the scenario in which an object is nom-
inally in a 9:2 Near Rectilinear Halo Orbit (NRHO), which
is the orbit that serves as the current baseline for NASA’s

Gateway lunar outpost.

A. Full Fidelity Model

The “full fidelity” model of the dynamical system is
written in a form compatible with (1) as

=

UV = Qmoon + Qearth + Qsun + Asrp

where r is the inertial position of the object, v is the inertial
velocity of the object, apogy is the gravitational acceleration
acting on the object due to the Moon, Earth, or Sun, and
agyp is the acceleration due to solar radiation pressure acting
on the object. Solar radiation pressure is determined based
on the physical characteristics of NASA’s Gateway lunar
outpost, with an area of approximately 350 m? and mass
39,000 kg [29]. The coefficient of reflectivity is 1.3 [30].

Fig. 3 visualizes the motion of the object using the full-
fidelity model, with Fig. 3a illustrating the object’s trajectory
in an Earth-Moon rotating frame and Fig. 3b illustrating
the object’s trajectory in a Moon-centered inertial frame.
Propagation is initiated at apolune and terminates near
perilune, approximately 3.27 days later. All quantities are
nondimensionalized prior to propagation using the values
provided in Table II.

TABLE II: Nondimensionalizing quantities.

Characteristic Quantity Value

Length 384747.991979046
Time 375699.859037759
Mass 6.04582557449506 x 1024

B. Reduced Fidelity Model

To assess the influence of the each of the four terms
in the full-fidelity model, Fig. 3c illustrates the magnitude
of acceleration along the NRHO over the propagated time.
Due to the object’s proximity to the Moon, lunar gravity
dominates, followed by the point mass gravity of the Earth
and the Sun, respectively. Solar radiation pressure along the
orbit remains constant. Given the relatively minor effects of
solar gravity and solar radiation pressure, the reduced fidelity
model of the dynamical system is taken to include only the
effects of the gravity of the Moon and Earth.

Based on the reduced-fidelity model, the propagation of
uncertainty (including all Jacobian and Hessian calculations)
is based on the dynamical system described by

T=v
V = @moon 1 Cearth -
For brevity, the Jacobians and Hessians required to formulate

(11) and to solve the optimization problem of (13) are not
derived here.
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Fig. 3: The 9:2 NRHO propagated for 3.27 days.

C. Uncertainty Propagation Results

Three configurations for uncertainty propagation using
directional splitting, detailed in Table III, are investigated.
Case 1 represents the baseline where the full-fidelity model
is used throughout. Case 2 is the proposed bifidelity approach
that balances computational expense against accuracy of the
uncertainty propagation. Case 3 is included to demonstrate
the need for retaining high-fidelity dynamics to some degree.

The directional splitting approach uses the the “2n” cu-
bature rule UT as the higher-order method and analytical
linearization (i.e., the propagation step of the EKF) as
the lower-order method. When the full-fidelity model is
employed according to the “mean dynamics” column of
Table III, all of the sigma points of the UT and the mean of
the EKF are propagated with the full-fidelity model. When
the reduced-fidelity model is employed, the sigma points and
EKF mean use the reduced-fidelity model. The fidelity of
the “covariance dynamics” indicated in Table III dictates the
model used for computing the Jacobian and Hessian related
to the EKF and the directional splitting process.

TABLE III: Simulation details.

Mean Dynamics  Covariance Dynamics

Case 1 Full Full
Case 2 Full Reduced
Case 3 Reduced Reduced

The initial distribution is taken to be Gaussian with lo
values of uncertainty of 10 km and 0.1 m/s in the inertial
frame. In each case, the results are compared against a
Kernel Density Estimate (KDE) computed from 100, 000 MC
samples propagated using the full-fidelity dynamical model.

The results of each case are illustrated as pair plots in
Fig. 4, where a pair plot visualizes the marginal distribution
of each univariate element of the state and all bivariate
combinations of the state elements. Each pair plot compares
the result of a KDE with the results obtained using the
proposed GM-based directional splitting approach, where the
proposed approach is illustrated using contours of uncertainty
on top of the KDE result.

The results of Case 1 and Case 2, which are shown in
Figs. 4a and 4b, respectively, demonstrate good agreement
between the GM representation of uncertainty and the KDE.
These results also demonstrate good agreement between
one another, validating the bifidelity approach to uncertainty
propagation. The results of Case 3 (shown in Fig. 4c),
where the reduced-fidelity dynamics are used in both the
propagation of the means and the covariances (including
the directional splitting process) shows that reduced-fidelity
dynamics cannot fully replace the full-fidelity dynamics.

V. CONCLUSIONS

Accurate uncertainty propagation is critical for space
domain awareness. Having reliable knowledge of the state
distribution between sparse measurements facilitates con-
junction screening and data processing, among other things.
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This work investigates the application of bifidelty dynamics
modeling for uncertainty propagation of space objects. To
facilitate non-Gaussian uncertainties, an adaptive Gaussian
mixture (GM) approach is employed that uses the Kullback—
Leibler divergence to both detect the need for splitting and
to formulating the splitting of Gaussian components into
smaller components. The splitting direction is determined
by solving a weighted optimization problem to find the
uncertainty-weighted direction of maximum nonlinearity.

The directional-splitting approach for adaptive uncertainty
propagation is applied to a representative, low-dimensional
orbital dynamics problem. It is found that the performance
of the proposed approach exceeds that of other adaptive
GM methods. The proposed method produces more accurate
predictions of the moments of the distribution and it does so
while using fewer mixture components than similar methods.
A more challenging problem of propagating the uncertainty
along a nominal Near Rectilinear Halo Orbit (NRHO) is
then considered. The bifidelity approach is applied, with the
full fidelity used to propagate the means of the GM, and
the reduced fidelity used to propagate the uncertainty. It is
found that full fidelity is needed for the mean propagation,
but that the reduced fidelity models are capable of repre-
senting the errors, i.e., the covariances. Combining multi-
fidelity modeling with directional splitting in an adaptive
GM uncertainty propagation framework is a viable method
for long-term space object uncertainty propagation.

A quantitative analysis of the computing reduction require-
ments is forthcoming after algorithm optimization is carried
out to ensure runtime predictions are meaningful. Future
work will also investigate error bounds between the multiple
fidelity levels employed in the method. Error bounds of this
type can provide theoretical guarantees on the achievable
precision, thereby informing the required level of fidelity
used in the lower fidelity models.
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