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Abstract—This paper proposes modifications of the Ensemble
Gaussian Mixture Filter (EnGMF). The EnGMF is a combination
of a particle filter and a Gaussian sum filter. It switches between
two density representations: Samples or particles are used for the
prediction step (time update) while Gaussian Mixtures (GMs) are
used for the filter step (measurement update). The challenge is the
continual conversion between GMs and samples. The quality loss
during conversion should be minimal, while conversion should
also be fast. Here, we discuss a systematic deterministic sampling
technique for converting a GM into a set of particles. It is
based on Projected Cumulative Distributions (PCDs) that are
compared with a Cramér-von Mises distance. This allows a direct
approximation of GMs without intermediate sampling and an
adjustable tradeoff between quality and computational complexity.

I. INTRODUCTION

This paper is in the area of state estimation for nonlinear
discrete-time dynamic systems, where we consider recursively
estimating the state based on sequentially arriving observa-
tions by an appropriate filtering mechanism. Depending on
the complexity of the system (degree of nonlinearity and
noise structure), various filtering techniques are available in
literature. These range from Kalman filter-like techniques using
a Gaussian density representation for (almost) linear systems
to particle filters using a sample representation for strongly
nonlinear systems.

In this paper, we consider the often encountered type of
systems with a strongly nonlinear system equation describing
the evolution of the state over time and a weakly nonlinear
measurement equation relating the state and the observations.
We will argue that in this case, a single density representation
is not well suited for both the prediction step (using the system
model) and the filtering step (using the measurement model).
Instead, we use a hybrid density representation where samples
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Fig. 1: Sample approximation (in red) of a Gaussian Mixture (GM)
density (in blue) based on the proposed deterministic sampling
technique using 100 samples.

are used in the prediction step as in the particle filter and
GMs are used in the filter step. The reasons for doing so are
as follows (with more details in the paper): (i) Propagating
uncertainty through the system model is straightforward for
particle representations, while particle degeneracy in the particle
filter step for including the measurement information is rather
difficult to avoid. (ii) The filter step for a GM representation
can be implemented efficiently, while propagating GMs through



the system model is complex, unless linearization is employed,
which limits the estimation quality.

When the GM components are processed individually in
the filter step by means of local filters such as the Extended
Kalman Filter (EKF) or the Unscented Kalman Filter (UKF),
the resulting filter structure is called the Ensemble Gaussian
Mixture Filter (EnGMF) [1, 22, 17].

An obvious challenge for the EnGMF is the need for
conversion between the two representations: (i) The first
conversion is from particles to GMs after prediction. Kernel
density estimation (KDE) methods can be used here, see [20]
and its use in [22, p. 4184]. Alternatively, in the additive noise
case, convolution of the noise density with the propagated
samples can be used as the desired mixture representation.
(i) The second conversion requires sampling from the GM
resulting from the filter step. This is significantly more
complicated than the first conversion when high-quality results
are desired and various options have been proposed in literature.

The simplest option would be to randomly sample from the
GM, resulting in inhomogeneous samples with poor coverage.
High-quality deterministic sampling based on systematically
minimizing a distance measure between the given GM and
the particle set has been proposed in [5]. However, it is rather
computationally complex. In order to speed up the sampling,
two-step techniques have been proposed [6, 7] that first sample
from the individual GM components and then perform a
sample reduction of the union of samples. In [6], deterministic
Fibonacci grids [4] are used for sampling from the individual
GM components and reduction is performed with the technique
from [9]. [7] uses a transport-based reduction technique. These
two-step procedures share some disadvantages: Computational
complexity is still high and the intermediate sampling from
individual components introduces unwanted artifacts (plus, the
number of intermediate samples is another parameter that has
to be fixed).

In this paper, we propose to directly sample from the GM
based on Projected Cumulative Distributions (PCDs) [8]. The
key idea is to simplify the distance measure between the given
GM and the particle set by considering a finite number of one-
dimensional density projections. The cumulative distribution
functions of these projections are compared, leading to a type
of Cramér-von Mises distance that can be efficiently computed
and optimized. An example is shown in Fig. 1.

Besides introducing the new sampling method, the contri-
butions of this paper include (i) a detailed derivation of the
EnGME, (ii) arguments for its usefulness in estimating the state
in certain classes of dynamic systems, and (iii) a thorough
comparison between several techniques for sampling from the
posterior GM.

The paper is structured as follows. In the next section, we
characterize the type of nonlinear dynamic system we assume
for filtering. We then derive a general form of the EnGMF
in Sec. IIT along with some simpler variants. Techniques for
converting GMs to sample sets will be discussed in Sec. IV.
Numerical evaluations for comparing the proposed techniques
to the state-of-the-art will be conducted in Sec. V.

II. PROBLEM FORMULATION

In this paper, we develop a filter method for estimating
the state of nonlinear discrete-time dynamic systems from
observations. Our specific focus is on systems with strong
nonlinearities and potentially non-Gaussian noise in the system
model. However, the measurement equation relating states and
measurements is assumed to be weakly nonlinear, i.e., easy to
linearize, and additive Gaussian measurement noise is preferred.

We consider the following discrete-time nonlinear dynamic
system
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with random state vector x; € RYN at time step k, known
input u,,, and process noise vector w;, ~ fi’(w;). Vectors are
underlined, random quantities are in boldface.

We will see that processing becomes simpler for systems
with additive noise of the form

Lri1 = ay (T, uy,, wy)

@

The system state is not directly available and is observed
through measurements y, related to the states according to the
general measurement equation

Ty = ap Ty, ) +wy

3

with measurement noise v, ~ fr(v,). The filter to be
developed becomes much simpler when the noise structure in
the measurement equation is additive noise according to

Y, = hy(zy, vy)

“

where v, is assumed to be Gaussian distributed measurement
noise. Measurements are obtained sequentially over time and
processed recursively.

In the next section, we will derive an appropriate filter for
the type of system introduced. The filter will be best suited for
strong system nonlinearities and weakly nonlinear measurement
equations.

y, = hy(zp) + v

III. OVERVIEW ENGMF

In this section, we will briefly introduce a general version
of the EnGMF. We will start the derivation from the general
Bayesian filtering equations and derive specific formulations
for the appropriate density representation. A block diagram of
the EnGMF and its components is shown in Fig. 2.

A. General Bayesian Filtering Equations

Bayesian filtering assumes the system and measurement
models to be given in probabilistic form as distributions. A
transition density f; (z,, 41 | zy) is used to represent the system
model (1) and its uncertainty. For the special case of additive
noise as in (2), the transition density is simply given by

&)

In the case of general noise structures as in (1), derivation of
FT (2p41|2),) is far more complex.

fZ(£k+1 |zy) = £ (£k+1 —Qk@kvﬂk))



system noise

samples _blcomponent ! local filter I—P
U1 ‘ component 2 ]
" ~ ‘ -ocal filter |==
|—. f;b fp

=
g
=
prediction k KDE k 5 % b i f IS
— step - filter step e f_i B N2
O <
_ )
component L7 local filter | 'qg
unit
delay : conversion : conversion
f discrete (D) D C continuous (C) C D

Fig. 2: Block diagram of the EnGMF and its components. It is important note that we have two different density representations for both the
prediction and the filter step: A discrete particle representation and a continuous GM representation.

We define the estimated state density from the filtering step
at time step k preceding the prediction step as

fie(ae) = f@ely, v (6)

with y = {y . ¥y Y b U = {ug, 8, .}, and
the prediction result from applying the system equation at time
step k as

f;fﬂ@ml) = f(Zps |y1:k,@1;k+1) . )

The general prediction step is then given by applying the
Chapman-Kolmogorov equation

flalwe) = [ e |20 f@)dz, . ©®
IRN
The probabilistic form of the measurement equation (3) is
the likelihood function f;(y . | ). The likelihood is typically
difficult to obtain from (3). The additive noise case again is
the exception, and the likelihood is explicitly given by

FE ) = (v, — hlzy)) - ©
The general filtering step is given by Bayes’ law as
. 1
Jizy) = c*kflf@k) fi(ylz) (10)

where ¢ is a normalization constant obtained by integration
over the numerator.

B. General Thoughts

In general density function spaces for the state densities
fP(z),) and ff (), the general Bayesian filtering equations
(8) and (10) are only of theoretical value. The derivation of
concrete expressions for computer implementation requires
selecting appropriate density representations. Many different
density representations have been proposed that all have their

pros and cons. We will now discuss the major representations.

Simple parametric densities: This includes (i) the often
used Gaussian representation on Euclidean domains, which is
especially useful for linear or linearized systems in conjunction
with linear estimators such as the Kalman filter, (ii) von
Mises distributions on circular domains [14], and (iii) Bingham
distributions on SO(3) [15]. For these densities, representation
capabilities are typically too limited to cope with significant

nonlinearities and the associated multimodality of the state
densities.

Non-parametric densities: This includes mixture densities
such as GMs that are known to be universal approximators,
i.e., capable of approximating any density. The prediction step
(8) is difficult to perform with mixture densities: For general
transition densities, the (parameter) integral is hard to solve
(especially in higher dimensions). For transition densities that
are themselves GMs (with the additional difficulty that the
given transition density has to be approximated by a GM),
the number of components explodes and requires subsequent
component reduction, unless the transition mixture components
are axis-aligned [12]. However, for the filter step with mixture
densities, various optimal [10] and suboptimal techniques for
finding a posterior mixture density are available that are easy
to implement.

Farticles: Particles or samples can be used to represent
arbitrary densities and can be viewed as a very general
non-parametric representation. The employed particles are
typically randomly selected, which introduces randomness
into the Bayesian filtering equation that would otherwise be
deterministic for a given measurement. However, deterministic
particle representations have been proposed [11], which not
only keep the deterministic nature of the general Bayesian
filtering equations, but also have distinct advantages in terms
of better coverage and higher homogeneity [3]. A deterministic
version of particle resampling has been proposed in [16].
The prediction step (8) with particles is straightforward to
perform, as every single particle can be viewed as a single
realization to be propagated. At first glance, the filter step with
particles seems to be very simple as well as it just entails
multiplying the particle weights with the likelihood function at
the particle locations. However, weight degeneration [21] that
quickly occurs already in moderate dimensional spaces requires
sophisticated update procedures [19] that are usually difficult to
implement. In addition, particle-based filters typically require
explicit likelihood functions, which may be difficult to obtain
(for non-additive noise).

Summary: As we noticed that there is no single density
representation for both the prediction and the filter step that



allows for a simple and efficient implementation in high-
dimensional space, we propose to employ a hybrid represen-
tation, where we change representations between prediction
and filter step. This combines the advantages of the selected
representations.

C. Prediction Step (Time Update)

In the prediction step, we employ particles for representing
the state density as we saw that these are well suited for strongly
nonlinear forward mappings. The density of the estimate from
the previous filter step (before the prediction step is performed)
will be denoted by f{(z,) to stress that this is a discrete
representation by particles. It is given by

Ly
. e
Ty) = § wk,i(S
i=1

with 4(.) the Dirac delta distribution. The density is comprised
of Le particles at locations 'y, ; with weights wj, ;. Thanks to
the sifting property of the Dirac delta dlstrlbutlon plugging
f¢(z,.) into (8) removes the integral, and we obtain

(1)

Zwszk (Zpoqr |25 5) (12)

i=1

fk+1 lk+1

which is a continuous mixture (and thus denoted by ~).
There are two different options for using this expression for
f,f +1(2)41). The first option is to keep this representation for
further processing during the filter step. The usefulness of
this option becomes especially apparent for additive Gaussian
system noise, i.e., fi’(w;) = N(wy,0, C}) is Gaussian with

zero mean and covariance matrix Cj/. With (5) and L} = Lf,
we obtain
fP(z wy (Tpyr, T4 Cy) (13)
jr1(Zrg1) kt1,i NV Zrg1 Ty 50 Ck

with GM component locations %, 1
weights warl ;= Wy

The second option is to draw samples from each component
in (12), thus obtaining another Dirac mixture density (DMD).
When drawing a single sample per component, the number of
samples is maintained, and we have LI,; = L" The final DMD
resulting from the prediction step is then given by

= Qk@z,ivﬂk) and

i
)= szﬂ,i 0(Zpyr — i) -

=1

flf—rl@kﬂ (14)

Instead of sampling from (12), the new samples &, , ; can be
equivalently and more intuitively directly obtained by drawing
system noise samples w,, ;, @ =1,2,... ,LZ and mapping the
samples though the original system function from (1) as

iiﬂ,i = Qk@i,m@kvwk,i) (15)

fori=1,2,..., LZ Only the locations of the new samples
change due to the nonlinear mapping and the noise influence.
However, the weights do not change, so we have wy, , ; ;

e
= wk,i.

D. Filter Step (Measurement Update)

Independent of the option selected for performing the
prediction step, at time step k we assume the predicted density
to be a continuous mixture, specifically a Gaussian mixture of
the general form

fk ) (16)

Zwlm

with component weights @y}, ; ;, component means Z;,; ;, and

~P P
xk’ L i» Ck,i)

component covariance matrices Ck+1,z’ for:=1,2,. Lp .
(16) is either directly given by (13) or by performing Kernel
Density Estimation (KDE) on the DMD (14). With KDE we
have to be careful in with its limitations in higher dimensions.

We want to perform the filter step (10) with a focus on
mildly nonlinear measurement equations with additive noise,
see (4). When the likelihood is available, we can select from
a larger variety of filters including ones providing high-quality
updates such as [10]. Here, we prefer to directly work with
the original measurement equation (4). In addition, we want
to apply a bank of local filters (see third box from the left
in Fig. 2), each taking care of a single Gaussian component
of (16). This definitely provides only suboptimal results, but
is simple to implement and robust, and is usually sufficient
for mild nonlinearities. (Optimal results are obtained when the
measurement equation is linear and the noise Gaussian.)

The updates generate new Gaussian components at locations
L§ with

mk ; Wwith covariance matrices ;,fori=1,2,...,
Lp that are assembled 1nto a new GM
Ly
=D Wi Nz 3t Crl) - A7)
i=1

For calculating the posterior weights wy, ;, various options of
different complexity are available, see [2].

As can be seen in Fig. 2, we have to convert the continuous
density fk(a:k) resulting from the filter step into a discrete
particle set representation f¢(z;, ). Methods for achieving this
conversion with high-quality results will be discussed in the
next section.

IV. HIGH-QUALITY SAMPLING FROM GM

In this section, we will discuss several techniques for
sampling from a given GM. First, we will discuss what we
expect of the resulting samples. We will then discuss some
techniques from literature. Finally, we will introduce a new
technique for generating samples from GMs based on PCDs.

A. Desired Properties of Samples

The number of particles drawn from the posterior GM f,‘;
should be as small as possible as it directly influences the
computational complexity of each processing step. The particles
(i) should represent the f; well and (ii) should be well-spaced in
terms of coverage and homogeneity, In addition, we desire (iii) a
graceful degradation when the number of samples decreases,
e.g., we want still want a good approximation for a very small



number of particles Lz on the order of the number of GM
components L.

B. State-of-the-Art

We will now take a look at the state-of-the-art of generating
samples from GMs. We will start with the simplest technique,
random sampling. Then, we will review an optimal GM
sampling technique. Finally, we will discuss two techniques
that start with samples from the individual GM components
and perform a reduction to the desired number of components.

1) Random Sampling: Sampling i.i.d. from a GM is very
simple to perform. In the first step, we randomly select a certain
component by sampling from a categorical random variable
with the GM weights as probabilities. In the second step, a
sample is produced from the selected Gaussian component. As
the samples are independently drawn, coverage is poor and
samples may cluster together. Random sampling is very fast
per sample, but a large number of samples is typically required
to achieved the desired quality.

2) Deterministic Sampling based on Localized Cumulative
Distribution (LCD): A method for deterministically sampling
from a GM has been proposed [5]. It uses the LCDs of the
GM and the particle set to define a closed-form differentiable
distance measure. Minimizing this distance measure provides
the desired particle set. However, this minimization is rather
computationally complex. This sampling method is rather slow,
but provides high-quality samples.

3) Individual Sampling and LCD Reduction: In [6], the
sampling step is performed in two steps. First, each Gaussian
component of the GM is sampled using deterministic Fibonacci
grids [4]. The first step approximates the GM as a Dirac
mixture. Note that the weights of these points may differ,
as each GM may have different weights. The second step
is the reduction of the first Dirac mixture approximation to
the desired number of points. The Dirac mixture is reduced
by minimizing the modified Cramér-von Mises distance [9]
between the first approximation and equally weighted new
points. The minimization is performed with respect to the
location of the new points. This method is faster than the direct
GM sampling from [5]. However, computational complexity
depends a lot on the number of intermediate samples selected.
This number is a hyper-parameter and its selection (and its
effect on the final quality) is not straightforward.

4) Individual Sampling and Transport Reduction: After in-
dividually sampling each GM component, the optimal coupling
matrix between the first approximation and equally weighted
points is found, see also [18]. In [7], an enhanced version
is developed, which iteratively changes the particle locations.
These methods do not require optimization and are rather fast,
when only a single iteration is used. Better quality requires more
iterations and thus leads to a higher computational complexity.

C. Deterministic Sampling Based on PCD

In this paper, we propose to use the sampling method from
[8]. It assembles the desired distance measure between the
continuous reference density and its particle approximation

from one-dimensional projections. This results in simpler
expressions than in [5].

More specifically, we calculate projections of the given
reference density and the particle density onto unit vectors. For
every one-dimensional projection, the cumulative distribution
functions for both densities (which we call Projected Cumula-
tive Distributions) are calculated and compared with a Cramér-
von Mises distance, which can be calculated analytically.
Combining the one-dimensional distance measures for a finite
set of suitable unit vectors gives an approximation of the desired
N-dimensional distance measure. A quasi-Newton method
is used to find optimal particle locations, where the particle
weights are assumed to be equal. This optimization problem
lends itself very well to parallelization as many calculations
can be carried out independently for each projection. Out-
of-the-box optimization methods such as (L-)BFGS can be
used to solve this optimization problem, but do not use this
problem specific structure, potentially making a custom parallel
implementation faster.

The PCD-based method works for general densities, but
makes most sense when the projections can be calculated
analytically. In this paper, we use the PCD-based method for
the special case of GM densities. In this case, the projections
can be efficiently calculated in closed form.

V. EVALUATION

In this section, we will provide the results of numerical
evaluations of the proposed deterministic sampling technique.
In Subsec. V-A, we start with an isolated investigation of
approximating a given GM by a set of samples. Different
techniques for sample generation will be compared in terms
of quality and computational complexity. In Subsec. V-B, a
single filter step based on a distance measurement will be
performed, visually demonstrating the high-quality estimation
results. In Subsec. V-C, recursive filtering for a nonlinear
dynamic system is performed with an EnGMF and the different
posterior sampling techniques.

A. Four-leaf Clover

We consider a GM with four components arranged based
on the Gaussian distribution

N({\/i} [1.0 0.5D
V2|7 105 1.0 ’
which was rotated around the origin in steps of 90 degrees.
The resulting GM has contour lines reminiscent of a four-leaf
clover, see Fig. 3.
We compare four different techniques for drawing samples
from this GM (different columns in Fig. 3).
« Simple random sampling as described above (“Random”).
« Random sampling with a subsequent reduction with the
technique from [9] (“Rand + Red”). Here, an up-sampling
rate of 2.5 was used, i.e., 2.5 - N samples were drawn
from each component.
o Generating samples of individual GM components based
on the LCDs with subsequent reduction with the technique

(18)
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Fig. 3: Sample approximation (in red) of a GM density with different number of samples /N and approximation methods.

from [9] (“LCD + Red”). Here, an upsampling rate of 0.5
was used.

o Generating samples with the proposed technique based
on PCDs (“PCD”). In all cases, we generated N = 20,

N =50, and N = 100 samples (different rows in Fig. 3).

The results of random sampling (“Random”, 1st column in
Fig. 3) are typical for i.i.d. sampling and exhibit poor coverage
of the given density with clusters and holes. The results of
the two reduction-based two-step sampling techniques (“Rand
+ Red” and “LCD + Red”, 2nd and 3rd column in Fig. 3)
are comparable due to the larger number of random samples
used in the first step. In both cases, coverage is good but
homogeneity can be improved. The results of the proposed
sampling technique (“PCD”, 4th column in Fig. 3) are the
most homogeneous and cover the given density very well.

B. Double Banana Shape Induced by Distance Measurement
We examine the results of filtering the two-dimensional

Gaussian distribution

S([)-s v3))

19)

based on a distance measurement

y=h(z)+v=/z?+x5+v

with additive Gaussian noise v. This problem results in
posterior distributions reminiscent of two bananas. In this
example, the measurement was set to y = 2.0 and the standard
deviation of the measurement noise was set to 0.1. Initially,
100 samples were drawn from the prior Gaussian distribution
and processed as in the EnGMF procedure. Fig. 4 shows
the prior distribution, the estimated posterior GM and the
reapproximation by samples for the two methods “LCD + Red”
(top) and “PCD” (bottom). Similar to the example in Fig. 3 the
samples drawn with “PCD” cover the posterior density more
evenly than the sample drawn with “LCD + Red”.

(20)

C. Nonlinear Dynamic System

We now apply the proposed filter to a difficult nonlinear
filtering problem. We want to estimate the Lorenz96 system
[13], which is often used as a reference because of its chaotic
nature. To ensure that the system actually shows chaotic
behavior, the forcing constant F' has to be set accordingly. In
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Fig. 4: Prior distribution (in yellow) and GM (in blue) and sample
approximation (in red) of the posterior density for two approximation
methods. (top) “LCD + Red” and (bottom) “PCD”.

our examples it was therefore set to F' = 12. We simulated 30
time steps of the four-dimensional and of the ten-dimensional
Lorenz96 system with a time step of 0.01 and added Gaussian
system noise with variance 0.01 in each dimension. For our
experiments, 50 different initial positions were drawn from a
standard normal distribution and the according trajectory was
simulated.

The estimation itself was set up as a tracking problem based
on range measurements. A measurement station was placed
on each axis of the coordinate system at a distance of 5 units
from the origin. Each station provides a measurement of its
distance to the true target position corrupted by zero-mean

additive Gaussian noise with variance 0.09 at each time step.

The estimation was carried out for each of the 50 generated

trajectories with four different filters and the Root Mean
Square Error (RMSE) was calculated. We compared a particle
filter with 10,000 particles with three different variants of the
EnGMF employing different methods for converting posterior
GMs back to samples. These are the two methods “PCD”
and “LCD+Red”, that were already discussed in the previous
examples and the solution based on optimal transport “OT”
discussed in [18]. For all EnGMFs, 50 components were used
and a Kernel density estimation with Silverman’s rule-of-thumb
was carried out before the filter step. For “PCD”, 400 randomly
sampled directions were used as projection direction. In the
“LCD+Red” approach, 20 LCD samples were placed at each
component and then reduced back to 50 samples. In the optimal
transport based method, the calculation of the transport plan
was iterated 10 times according to [7].

The results in Fig. 5 show that in four dimensions all the
filters are able to track the target and give similar results. In
ten dimensions, the particle filter shows worse results than
the optimization-based EnGMFs. The optimal transport-based
method initially performs well, but seems to lose the target
after some time. Both optimization-based EnGMFs, i.e., “PCD”
and “LCD+Red”, successfully track the target and give very
similar results.

VI. CONCLUSIONS

We proposed a new version of the EnGMF, where sampling
from the posterior GMs is performed by systematically min-
imizing a distance measure. A new distance measure based
on PCDs from [8] is used, which allows direct sampling from
an entire GM without resorting to sampling from individual
components first. This makes the sampling process simpler to
implement and faster.

Usability of the EnGMF is strongly increased to its previous
variants employing different sampling techniques. Compared to
previous sampling techniques it shows higher quality per sample
than random sampling, is faster than individual component
sampling with subsequent reduction [6], and copes with higher
dimensions compared to transport-based reduction [7].

VII. OUTLOOK

In future work, we will conduct more complex simulations
and include more methods for comparison. We will also
systematically investigate the effect of different local filters
such as the Unscented Kalman Filter (UKF) instead of the EKF
on system performance. In addition, we will include different
schemes for calculating the posterior weights for the GMs
resulting from the locals filters.
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