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ABSTRACT
Musculoskeletal models and forward dynamics simulations of human movement often include foot–
ground interactions, with the foot–ground contact forces often determined using a constitutive 
model that depends on material properties and contact kinematics. When using soft constraints to 
model the foot–ground interactions, the kinematics of the minimum distance between the foot and 
planar ground needs to be computed. Due to their geometric simplicity, a considerable number of 
studies have used point–plane elements to represent these interacting bodies, but few studies have 
provided comparisons between point contact elements and other geometrically based analytical 
solutions. The objective of this work was to develop a more general-purpose superellipsoid–plane 
contact model that can be used to determine the three-dimensional foot–ground contact forces. As 
an example application, the model was used in a forward dynamics simulation of human walking. 
Simulation results and execution times were compared with a point-like viscoelastic contact model. 
Both models produced realistic ground reaction forces and kinematics with similar computational 
efficiency. However, solving the equations of motion with the surface contact model was found 
to be more efficient (~18% faster), and on average numerically ~37% less stiff. The superellipsoid–
plane elements are also more versatile than point-like elements in that they allow for volumetric 
contact during three-dimensional motions (e.g. rotating, rolling, and sliding). In addition, the 
superellipsoid–plane element is geometrically accurate and easily integrated within multibody 
simulation code. These advantages make the use of superellipsoid–plane contact models in 
musculoskeletal simulations an appealing alternative to point-like elements.
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1. Introduction

During human movement, the musculoskeletal system is 
influenced by a number of internal and external contact 
forces that determine the dynamic response of the system. 
In order to quantify these forces, contact models are often 
needed to represent the dynamic interactions between the 
body segments of interest and the environment. Contact 
models have been used in applications such as iden-
tifying load transfer mechanisms (García-Aznar et al. 
 2009), muscle contributions to ground reaction forces 
(Lin et al. 2011; Hamner et al. 2013) and injury mecha-
nisms in car accidents (MADYMO® 2012), and modeling 
ground contact in walking machines (Koop & Wu 2013) 
and human–machine interactions (Pasciuto et al. 2014). 
Musculoskeletal models with ground contact models can 
even complement experimental analyses that are unable 
to directly measure ground reaction forces (Lugrís et al. 
2013).

Of particular importance for human movement studies 
is the representation of the foot–ground contact. For stud-
ies that do not require complex body segment geometries, 
a common approach for modeling foot–ground contact is 
to use kinematic constraints or point-like elements. Kin-
ematic constraints restrict the motion of discrete points 
along on the sole of the foot (Anderson & Pandy 2003; Lin 
et al. 2011; Dorn et al. 2012), while point-like elements 
use a set of discrete viscoelastic elements with Coulomb 
friction attached to the bottom of each foot segment  
(Neptune et al. 2000; Peasgood et al. 2007; Mahboobin 
et al. 2010; Fey et al. 2012). Penalty-based contact force 
models can have simple representations via point-like 
elements, or they can have more complex continuous 
contact force models based on the use of unilateral con-
straints (Brogliato 2014). However, due to their compu-
tational cost and difficulty in handling realistic foot or 
shoe contact geometries, such unilateral contact models 
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to identify the muscle excitations that reproduce group- 
averaged walking kinematics and ground reaction forces. 
In order to perform the contact model comparison, two 
different ground contact geometries were implemented: 
(1) point-like elements (Neptune et al. 2000) and (2) 
superellipsoid–plane contact elements. The complete 
minimum distance formulation is based on the common  
normal concept (Johnson 1985) and on the angle-center 
parametric representation of a superellipsoid (Barr 1981). 
A detailed description of the minimum distance for-
mulism is found in the Appendix. Below we discuss the 
model components in detail.

2.2. Musculoskeletal model

The forward dynamics simulations were generated using a 
musculoskeletal model developed with SIMM/Dynamics 
Pipeline (MusculoGraphics Inc., Santa Rosa, CA) and has 
previously been described in detail (Neptune et al. 2000; 
Sasaki et al. 2008; McGowan et al. 2009). The model con-
sisted of rigid segments representing the trunk (a single 
body representing the pelvis, torso, head, and arms) and 
two legs (each composed of a thigh, shank, patella, calca-
neus, mid-foot, and toes) (Figure 1). The body segments 
were kinematically constrained using idealized joints 
with thirteen degrees of freedom in the sagittal plane: two 
translations and one rotation of the trunk and five flexion–
extensions rotations per leg. The hip, ankle, mid-foot, and 
toe were modeled as frictionless revolute joints, and a pla-
nar joint was used at the knee (two translations and flex-
ion–extension rotation, with the translations prescribed as 
a function of the knee flexion angle (Delp et al. 1990). To 
model the forces exerted by ligaments and joint structures, 
passive torques were applied at each joint (Davy & Audu 
1987; Anderson & Pandy 1999). The skeletal system was 
driven by 25 individual Hill-type musculotendon actua-
tors per leg, which were combined into 14 muscle groups 
based on functional and anatomical classification, with 
muscles within each group receiving the same excitation 
pattern (Figure 1). The activation–deactivation dynam-
ics were governed by a first-order differential equation  
(Winters & Stark 1988; Raasch et al. 1997), and the excita-
tion patterns were parameterized using a bimodal pattern 
(Hall et al. 2011).

2.3. Continuous contact force model

Both the point-like and ellipsoid–plane contact models 
utilize a continuous contact force model that considers 
the minimum distance and relative velocities between two 
potential contacting geometries, which allows the vertical 
and horizontal ground reaction force components to be 
determined. Each contact element permits deformation 

are often difficult to implement. To a lesser degree, analyti-
cal surface contact models have been used to simulate and 
analyze foot–ground contact. Spheres, ellipsoids, circular 
cylinders, and planes have been used to model the shoe 
sole and underlying tissues of the foot (Güler et al. 1998; 
Kecskeméthy 2011; MADYMO® 2012; Koop & Wu 2013). 
In particular, ellipsoid contact models have been used in 
gait analyses to include the double support phase which 
is an important element in biped walking (Koop & Wu 
2013). Other studies have even used the same analytical 
surfaces to model the articulating surfaces of the knee 
joint (Wilson & O’Connor 1997; Abdel-Rahman & Hefzy 
1998). However, these studies have been limited to specific 
surfaces and do not explore the potential of more gener-
al-purpose shape models such as superellipsoids which are 
general enough to encompass spherical, ellipsoidal, and 
cylindrical shapes into a single mathematical expression 
(Barr 1981). For these methods, a technique to calculate 
the minimum distances between any convex implicit 
surfaces has been previously proposed (Lopes et al.  
2010), but the mathematical formulation to calculate the 
closest surface points relies on numerical procedures to 
solve a non-linear system of equations. Thus, it is a more 
computationally expensive compared to purely analytical 
solutions.

Although different geometries have been used to sim-
ulate the foot–ground interaction, there are very few 
studies that have compared the performance of point-
like elements with analytical surface models under the 
same test conditions (Millard et al. 2009; Boos & McPhee 
2013). Such a comparison would provide insight into the 
suitability of analytical surface contact models in human 
movement analyses. Thus, the objective of this study was 
to present a general-purpose superellipsoid–plane element 
model for the simulation of contact interactions during 
human movement. To illustrate the applicability of the 
model, we used it in a forward dynamics simulation of 
walking to represent the foot–ground contact forces. 
Simulation results and execution times were compared 
to a similar musculoskeletal model that used point-like  
elements to model the foot–ground contact to assess 
whether the more general-purpose surface contact model 
can provide the same level of efficiency and accuracy as 
the commonly used point-like contact elements.

2. Methods

2.1. Overview

A three-dimensional musculoskeletal model and forward 
dynamics simulation of human walking constrained to the 
sagittal plane were used to compare the contact models.  
The musculoskeletal model was driven by individual 
muscle actuators, and dynamic optimization was used 
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956  D. S. LopeS eT AL.

perpendicular to the floor and the normal force model 
includes the mechanical properties of the shoe sole and 
underlying soft tissue. The vertical or normal component 
of the ground reaction force for each element was calcu-
lated as:

where fn(i) is the vertical force of element i (units in N); 
�
n
(i) and �̇�

n
(i) are the vertical deformation (units in m) 

and vertical deformation velocity (units in m/s) of ele-
ment i, respectively; c1, …, c5 are shoe-specific parameters 
determined for a soft running shoe; and area(i), the rela-
tive element area scaling factor (dimensionless) (Neptune  
et al. 2000). Shoe-specific parameters and relative areas 
(i.e. ratios of the contact area during ground contact to the 

(1)

f
n
(i) = f

n

(

𝛿
n
(i), �̇�

n
(i)
)

(1)

= max
({

0.0, area(i)
(

c1𝛿n(i)
c2 + c3𝛿n(i)

c4 �̇�
n
(i)c5

)})

(2)
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Figure 1.  the 3d musculoskeletal model consisted of a trunk 
segment (a single body representing the pelvis, torso, head, and 
arms) and two legs (thigh, shank, patella, calcaneus, mid-foot, 
and toes).
notes: the model was actuated by 25 hill-type musculotendon 
actuators per leg, combined into 14 muscle groups. the 
muscle groups were defined as gmed (anterior and posterior 
compartments of the gluteus medius), gmaX (gluteus maximus, 
adductor magnus), ham (biceps femoris long head, medial 
hamstrings), BFsh (biceps femoris short head), il (psoas, iliacus), 
rF (rectus femoris), Vasl (vastus lateralis, vastus intermedius), 
Vasm (vastus medialis), gas (medial and lateral gastrocnemius), 
sol (soleus, tibialis posterior), ta (tibialis anterior, peroneus 
tertius), pr (peroneus longus, peroneus brevis), FlXdg (flexor 
digitorum longus, flexor hallucis longus), and eXtdg (extensor 
digitorum longus, extensor hallucis longus).

contact area between foot and impact pendulum) derived 
from experimentally collected pendulum impact force–
deformation curves by Aerts and Clercq 1993.

Each element also prevents the foot from slipping by 
applying a Coulomb friction force (Cole et al. 1996). The 
horizontal or tangential contact force component at each 
element was calculated as:

where ft(i) is the horizontal frictional force of element i 
(units in N); �̇�

t
(i) the horizontal velocity of element i (units 

in m/s); c6, viscous damping coefficient for low sliding 
velocities; and c7, friction coefficient of the shoe.

2.4. Point-like and ellipsoid–plane contact models

The point-like foot–ground contact model was repre-
sented using 31 independent viscoelastic elements with 
Coulomb friction (Neptune et al. 2000). These contact 
elements were attached beneath each foot and distributed 
over the three foot segments in locations that describe the 
shoe’s profile (Figure 2(a)).

The ellipsoid–plane contact model was represented by 
a set of 6 independent ellipsoid–plane surface pairs, which 
were rigidly attached to each foot segment and placed 
within the shoe’s boundary (Figure 2(b)). The formulas 
to calculate the minimum distance between superellipsoi-
dal and planar surfaces are similar as an ellipsoid–plane 
surface pair, with the difference that ellipsoids are quadric 
surfaces. These elements are the smoothest and most 
computationally efficient type of superellipsoids for clos-
est distance computations (see Appendix) and share the 
same contact force characteristics as their point-like coun-
terpart (i.e. vertical viscoelastic deformation, Coloumb 
friction, anterior–posterior and vertical contact force 
model, and shoe parameters), although they differ in how 
the distance between the foot and ground is calculated. 
Note that the distribution of either point–plane or ellip-
soid–plane elements does not act as a distributed force, 
rather as a discrete set of concentrated loads where each 
contact element produces a single force. The calculation 
of the minimum distance, or amount of deformation, is 
described in the Appendix and is valid for both ellipsoids 
and superellipsoids. As for the minimum distance velocity, 
once the minimum distance points are calculated for each 
time step, the velocities can be calculated using a forward 
difference scheme. As for the vertical deformation velocity 
(Equations (1)–(2)), it is determined by projecting the rel-
ative velocity vector over the ground normal vector. Both 

(2)

f
t
(i) = f

t

(

�̇�
t
(i), f

n
(i)
)

=

{

area(i)c6�̇�t(i),
|
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f
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(i)|
|
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at time step i. The quantities evaluated in (Equation (3)) 
were the trunk translation and tilt, all joint angles, and 
the anterior–posterior and vertical ground reaction forces.

2.6. Experimental tracking data

The experimental data were collected from 10 healthy 
subjects (seven males, three females; 33 ± 12 years) dur-
ing normal walking (Silverman et al. 2008). All subjects 
provided informed consent approved by the University 
of Texas at Austin prior to the study. The data defined 
the initial conditions for the simulations (positions and 
orientations of the body segments at left heel-strike) and 
the experimental tracking quantities in (Equation 3). The 
data were averaged across trials for each subject and then 
averaged across subjects to provide the group average 
kinematic and kinetic data. More details regarding the 
experimental apparatus, protocol and data processing are 
provided in (Silverman et al. 2008).

2.7. Contact model performance evaluation

Performance evaluation of the contact models consisted 
of comparing the execution times over the simulation of a 
complete gait cycle and accuracy of the experimental data 
tracking. Numerical integration stiffness was also com-
pared using the temporal evolution of the integration time 
step sizes (∆t) over the gait cycle. If ∆t decreased, then the 
system equations were considered to have become stiffer. 
Simulations ran on a PC with an Intel® Core™ i7–3770 CPU 
@ 3.40 GHz and 8 GB of RAM.

3. Results

Both contact models produced movements that simu-
lated the group average experimental data over the gait 
cycle, with the sagittal plane joint kinematics and ground 
reaction forces being near ±2 standard deviations of the 
experimental data (Figure 3). Root-mean-square errors 
between experimental and simulated data are provided 
in Table 1. These results indicate that the ellipsoid–plane 
surface model is able to attain the same level of tracking 
accuracy as the point-like contact model. However, there 
were significant differences in the simulation execution 
times (Table 2) and integration stiffness of the equations 
of motion (Figure 4). The average execution time was 
~18% faster for the ellipsoid–plane model compared to 
the point-like model. In spite of the ∆t values having the 
same order of magnitude (10−4 s), the numerical resolution 
of the equations of motion became on average ~37% less 
stiff when using the ellipsoid–plane contact model.

the point-like and surface contact models were developed 
in C and integrated into SIMM/Dynamics Pipeline via 
user-defined modules.

2.5. Forward dynamics simulations of walking

The equations of motion for the musculoskeletal model 
were derived using SD/FAST (Parametric Technology 
Corp.), and the forward dynamics walking simulation code 
was produced using Dynamics Pipeline (MusculoGraphics  
Inc., Santa Rosa, CA). These equations were solved 
using a variable step integrator (Runge–Kutta–Merson  
4th order explicit integration formula with Baumgarte 
stabilization). Simulations of the entire gait cycle (from 
left heel-strike to the following left heel-strike) were gen-
erated using a simulated annealing optimization algorithm 
(Goffe et al. 1994), which identified the optimal muscle 
excitations parameters and initial generalized velocities 
that minimized the difference between the experimental 
and group average experimental data (Neptune & Hull 
1998). Specifically, the cost function was formulated to 
minimize the squared differences in joint kinematics and 
ground reaction forces as:

where wi,m is the weighting factor for variable m (m = 1, 
…, 17), Yi,m is the experimental measurement of variable 
m, Ŷi,m is the simulation data corresponding to Yi,m and 
SDi,m is the standard deviation of experimental variable m 

(3)J =
∑

i

17
∑

m=1

Wi,m

(

Yi,m − Ŷi,m

)2

SD2
i,m

,

(a) (b)

Figure 2. geometric models of the shod foot in a neutral position 
with (a) point-like contact elements and (b) ellipsoid–plane 
contact elements (2d view).
notes: the foot is considered as a set of three articulated 
rigid bodies (rear-foot, mid-foot and forefoot) kinematically 
constrained with revolute joints.
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958  D. S. LopeS eT AL.

reaction forces. However, the superellipsoid–plane contact 
elements were computationally more efficient (measured 
in CPU time) than the point-like contact elements and 
were on average numerically less stiff.

Despite these results supporting the use of superel-
lipsoid elements, there are a few limitations related to 
the methodology and study comparisons. First, the 
simulations were two-dimensional. Thus, the poten-
tial of superellipsoid–plane elements to model 3D foot 
motions remains to be explored, in particular foot inver-
sion/eversion. Second, additional movements should be 
simulated in order to fully explore the limitations of the 
contact models. Third, further dynamic optimization is 
needed to improve the tracking results as discrepancies 
between experimental and simulated data persisted, and 
the discrepancies were not identical between methods. 
The dynamic optimization procedure relies on weighting 
factors which varied between the simulations to obtain the 
best solutions for the computational comparisons. Since 
their relative values were determined by trial and error, 
a more systematic approach may be able to improve the 
tracking results. Future work should also explore other 
foot contact model topologies by varying the number, 

4. Discussion

For musculoskeletal modeling studies that do not require 
complex body segment geometries, point-like contact ele-
ments are the most frequently used to model the foot–
ground interactions. However, performance comparisons 
with more versatile contact elements, such as analytical 
surfaces, have been few (Millard et al. 2009; Boos & 
McPhee 2013). The objective of this study was to present 
a superellipsoid–plane ground contact model and com-
pare it with a point-like counterpart using a common for-
ward dynamics simulation of walking. The results showed 
they have similar predictive capabilities for the ground  
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Figure 3. Comparison of the left leg experimental and simulated joint kinematic data and resultant ground reaction forces (normalized 
to body weight) for the point-like (dash-dot red curve) and ellipsoid–plane (solid blue curve) contact models over the gait cycle.  
notes: the shaded regions indicate ±2 standard deviations of the experimental data.

Table 1. rms errors between left leg experimental and simulated  
joint kinematic data and resultant ground reaction forces (nor-
malized to body weight) for both contact models over the gait 
cycle.

Contact 
element

Vertical 
gRF 

(%BW)

Horizontal  
gRF 

(%BW)

Hip 
joint 
angle 

(°)

Knee 
joint 
angle  

(°)

Ankle 
joint 

angle 
(°)

point-like 0.1260 0.0389 11.2241 16.6217 5.9656
ellipsoid–
plane

0.1198 0.0334 5.6988 8.8686 6.0870
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Regarding the number of point-like or superellipsoids 
elements used in the considered layouts (Figure 2), two 
specific notes must be mentioned. First, regarding the 
point-like layout, adding additional points increases the 
number of calculations needed and therefore decreases  
the computational efficiency. Similarly, decreasing the 
number of point-like elements (e.g. to 6) increases the 
stiffness of those elements which also adversely influences 
the computational efficiency. Previous work has found that 
an optimal number is ~31 point-like elements (Neptune 
et al. 2000), which is what is used for the comparison. 
Second, regarding the ellipsoid layout, it is important to 
note that the placement of at least two ellipsoids at the 
heel provides a more stable support during heel ground 
contact compared to a single heel ellipsoid or sphere 
(Kecskeméthy 2011; Koop & Wu 2013).

A major challenge in directly comparing the different 
contact models is finding a geometric contact element 
that is more computationally efficient than a simple point-
like element. Any surface model must provide not only a 
significant increase in computational efficiency, but also 
produce comparable simulated data that adequately tracks 
the experimental joint kinematics and ground reaction 
forces data. Superellipsoid–plane elements provide such a 
solution. The gain in computational efficiency and reduced 
numerical stiffness are an advantage over the point-like 
elements. The gain in efficiency is due to the usage of a 
decreased number of contact elements (six ellipsoids vs. 
31 points for each foot), since a single surface contains 
continuous points within the body compared to a set of 
the independent points. However, one should note that 
point-like elements provide a discrete spatial resolution, 
while ellipsoids provide a continuous spatial resolution. A 
single ellipsoid is capable of representing an infinite set of 
points. Hence, only a few ellipsoid elements are necessary 
to represent the foot (e.g. six elements), while a greater 
number of point-like elements are needed to discretize 
the foot silhouette (e.g. 31 elements).

Human movement simulations that include continuous 
contact with a planar surface (e.g. rolling and slipping) 
would benefit from superellipsoid–plane contact elements 
since they have several advantages compared to point-like 
contact elements: (i) geometrically, any point-like contact 
element can be generalized by a sphere or superellipsoid; 
(ii) body segment interactions require fewer contact ele-
ments when modeled with superellipsoid–plane elements 
as opposed to point-like elements; (iii) surface overlap is 
more representative of body deformation than a single 
point because it can account for contact area and volume, 
thus allowing volumetric contact; (iv) point models have 
discrete spatial resolution, while a surface model has a 
continuous spatial resolution; and (v) surface models 
allow one to calculate all contact load components (three 

dimensions, orientations, and locations of the superellip-
soids to further improve the simulation tracking. Opti-
mization techniques can be used to determine the best 
foot topology for a given motion. Accordingly, sensitivity 
studies on how foot–ground contact parameters affect 
the simulation tracking could then be carried out (Dorn 
et al. 2012). Fourth, the analytical deduction of the clos-
est points is only applicable to smooth convex surfaces 
that present an explicit relationship between the surface 
points and surface normals (Goffe et al. 1994) (refer to  
Appendix A.3).

Another potential limitation is the limited comparison 
between contact element layouts. In this study, only a sin-
gle layout comparison was performed which considered a 
particular configuration of six ellipsoids placed within the 
foot sole to an equivalent layout of 31 point-like elements, 
which were placed at the shoe’s profile. Other ellipsoid 
and point-like layouts should be considered and compared 
to verify that the same findings (i.e. increased computa-
tional efficiency and decreased numerical stiffness) are 
attained. Such comparisons, where the layouts vary in 
contact element number and placement, would explore 
the sensitivity of the results regarding layouts and address, 
for instance, if a layout with fewer points would lead to dif-
ferent outcomes when compared to a six ellipsoid layout.

Table 2. average execution times and stiffness measures of the 
performed simulations.

Contact element
Average execution 

time (s)
Average stiffness 

measure (s)
point-like 7.8247 2.4980 × 10−4

ellipsoid–plane 6.4205 3.4230 × 10−4

0 25 50 75 100
0

1

2

3

4

5

6

7

8
x 10-4 Stiffness of the Integrator Loop

% gait cycle

t (
s)

Figure 4.  history of integration time steps ∆t for the point-like 
(dashed red plot) and ellipsoid–plane (dashed blue plot) contact 
models.
notes: the horizontal lines indicate the average stiffness measures 
for point-like (dash-dot red) and ellipsoid–plane (solid blue) 
contact models.
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forces and three moments) as a function of the kinematic 
response. In addition, surface contact elements are easily 
integrated in any multibody dynamics code, which aids 
the implementation of these models into computational 
platforms that simulate human movement. Although it 
is easier to calculate the minimum distance between a 
point and a plane, the superellipsoid–plane element is 
equally accurate due to its analytical nature. Points can 
model complex free-form geometries when gathered as 
point clouds, which is a common practice in meshfree 
methods. Superellipsoids are not as versatile; however, 
they offer a wide variety of shapes ranging from round 
to square. This broad geometric capability could prove 
useful when modeling a hard-sole shoe as a set of several 
cuboid superellipsoids instead of dozens of point-like ele-
ments distributed throughout the shoe sole (Mahboobin 
et al. 2010). In addition, the surface contact model can 
be used in joint contact mechanics studies. For example, 
in studies analyzing knee joint contact mechanics, the 
femoral condyles can be modeled using superellipsoids 
and the tibial plateau as a plane. These advantages make 
superellipsoid–plane elements an appealing alternative 
to point-like contact models for foot–ground dynamics.
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Appendix – Closest point on a superellipsoid to 
a given plane

A.1. Coordinate transformations

The distance between surface contact elements depends on their 
rigid body transformations. For each contact surface pair of the 
foot–ground model, the coordinate systems (Nikravesh 1988)  
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which, by differential calculus, leads to surface normal 
vectors defined by:

 

where φ1 and φ2 are the angles that vary along the xjOyj 
and yjOzj plane, respectively, and where njQ is the vector 
nOQ written in the surface coordinate system.

The common normal concept states that the minimum 
distance points are such that the superellipsoid’s surface 
normal at this point, nOQ, is parallel to the plane’s normal, 
nOP. To express the normal vector of plane i in the local 
coordinate system of the superellipsoid j, this vector is 
transformed as:
 

The explicit relationship between the components of nπ 
and the angular surface parameters, φ1 and φ2, comes from 
the collinearity condition between the plane and superel-
lipsoid normal vectors. This condition can be expressed 
as the following cross product:

 

Since njQ can be expressed as an angle-center parame-
terized vector (Equation (A.4)), the explicit expression of 
the angular surface parameters can be obtained by replac-
ing the components of njQ into (Equation (A.5)) and solv-
ing in order to find these angular parameters:

 

 

Once these angles are calculated, the points on the 
superellipsoid surface are given by (Equation (A.3)). Note 
that (Equations (A.7) and (A.8)) present a 0/0 indeter-
mination when nπx = nπy = 0 which only occurs at points 
sjQ = [0, 0, ±cj]

T. It should also be noted that the common 
normal concept consists of a weak formulation of the min-
imum distance problem since it states necessary but not 
sufficient conditions that the two points form a contact 
pair. In the case of a superellipsoid–plane surface pair, 
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between 0 and 2 in order to maintain a strictly convex 
surface, where εk → 0 leads to a cuboid, εk = 1 an ellipsoid, 
and, εk = 2 an octahedron. Note that Fj is written in the 
canonical form, i.e. surface centered at the origin and the 
main axes are aligned with the local coordinate system, 
and is also called as the inside–outside function since its 
evaluation tells if a point is either inside, outside, or upon 
the surface. Hence, the equation that defines the geometric 
loci of a superellipsoid in the canonical form is:

 

Furthermore, a superellipsoid can also be represented par-
ametrically using angle-center parameters (Wellmann et al.  
2008):

 

(A.2)

Fj

�

xj, yj, zj

�

= 1 ⇔

⎛

⎜

⎜

⎝

�

�

�

�

�

xj

aj

�

�

�

�

�

2

�1

+

�

�

�

�

�

yj

bj

�

�

�

�

�

2

�1
⎞

⎟

⎟

⎠

�1

�2

+

�

�

�

�

�

zj

cj

�

�

�

�

�

2

�2

− 1 = 0

(A.3)

sjQ

�

𝜑1,𝜑2

�

=

⎡

⎢

⎢

⎢

⎣

sign
�

cos𝜑1 cos𝜑2

�

aj
�

�

cos𝜑1
�

�

𝜀1
�

�

cos𝜑2
�

�

𝜀2

sign
�

sin𝜑1 cos𝜑2

�

bj
�

�

sin𝜑1
�

�

𝜀1
�

�

cos𝜑2
�

�

𝜀2

sign
�

sin𝜑2

�

cj
�

�

sin𝜑2
�

�

𝜀2

⎤

⎥

⎥

⎥

⎦

,
−𝜋 ≤ 𝜑1 < 𝜋

−
𝜋

2
≤ 𝜑2 ≤

𝜋

2

Figure 5.  (a) Coordinate systems that describe the spatial 
configuration of a foot–ground model with superellipsoid–plane 
contact elements. (b) a zoomed-in view shows the position 
vectors, rotation matrices, and coordinates systems (global, rigid 
body, and surface) of a superellipsoidal surface j that represents 
the heel contact interaction. the model is displayed in the sagittal 
plane.
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Figure 6.  geometric relationships that define the common 
normal concept among (a) normal and tangent vectors and (b) 
the normal and distance vectors.
notes: surfaces are represented in 2d, thus, the binormal vectors 
are not shown. By convention, surface normal vectors point 
outwards.
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the associated points are determined by projecting them 
to the plane (Weisstein 2013). By evaluating the signed 
Euclidean distances of these two solutions and by choos-
ing the one with the minimum distance, the contact sta-
tus is finally determined: (i) If the surfaces intersect at a 
single point, the minimum distance is zero valued; (ii) 
for overlapping or fully penetrating surfaces, the distance 
is considered negative; and (iii) if the surfaces are not  
contacting, the distance is positive.

(A.9)rOQ = rO� + AO�r�j ± AO�A�jsjQ
there are always two possible solutions that verify the com-
mon normal conditions (Figure 6). Since the trigonomet-
ric relation tan(π ± φ) =  ± tan(φ) holds for any φ and that 
the tangent term is raised by a multiple of 2 when solving 
(Equation (A.4)) in order to find φ1 and φ2, then there 
are actually two possible angular values that satisfy the 
common normal conditions: (φ1, φ2) and (π ± φ1, π ± φ2). 
Therefore, if sjQ satisfies the common normal conditions 
then −sjQ also does. Note that the explicit expressions 
(Equations (A.7) and (A.8)) are also valid for the 2D case 
(i.e. superellipse–line) where φ2 = 0. After transforming 
the local position vectors of the superellipsoidal points to 
global coordinates,
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