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Movement Analyses

The objective of this study was to evaluate the performance of different multivariate
optimization algorithms by solving a ‘‘tracking’’ problem using a forward dynamic

model of pedaling. The tracking problem was defined as solving for the muscle
controls (muscle stimulation onset, offset, and magnitude ) that minimized the error
between experimentally collected kinetic and kinematic data and the simulation results
of pedaling at 90 rpm and 250 W. Three different algorithms were evaluated: a
downhill simplex method, a gradient-based sequential quadratic programming algo-
rithm, and a simulated annealing global optimization routine. The results showed
that the simulated annealing algorithm performed far superior to the conventional
routines by converging more rapidly and avoiding local minima.

Intreduction

The use of optimal control theory in computer simulations
of human movement has increased tremendously in recent years.
Applications have ranged from gait (e.g., Davy and Audu,
1987) and cycling (e.g., Raasch et al., 1997) to head (e.g.,
Hannaford and Stark, 1987) and arm movements (e.g., Gonza-
lez et al., 1993). One advantage of this type of analysis is the
direct access to the muscle forces required to accomplish the
desired motor task or performance criteria. These results com-
bined with experimental data can provide increased understand-
ing of muscle function and movement control principles.

Fundamental to the success of solving the optimal control prob-
lem is the algorithm used to solve for the controls. Most studies
have converted the optimal control problem into a parameter opti-
mization problem (e.g., Pandy et al., 1992) and used various
algorithms to solve for the parameters. These algorithms have
ranged from a simple downhill simplex method (e.g., Bogert and
Soest, 1993) to more sophisticated gradient-based methods (e.g.,
Pandy et al., 1992). These algorithms are computationally efficient
for functions that are smooth and continuous with very few local
minima. But large dimensional functions in human mqQvement
analyses are often plagued by many nonlinear ridges, valleys, and
local minima, which can result in slow convergence or conver-
gence to local minima. Global optimization routines have been
developed to overcome these difficulties and have been applied to
other problems ranging from computer and circuit design (Kirkpat-
rick et al., 1983) to finance (Ingber et al., 1991). To date, these
methods have not been applied to human movement problems,
primarily because these algorithms can be computationally inten-
sive since they search the entire solution space. But as computer
speeds increase, the utility of these algorithms looks more promis-
ing and may improve the current methods used in movement
analyses.

Therefore, the objective of this study was to evaluate the
performance of different optimization algorithms including a
global optimization routine by solving a ‘‘tracking’’ problem
in cycling using a forward dynamic model. The tracking prob-
lem was defined as solving for the control parameters that mini-
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mized the error between experimentally collected kinetic and
kinematic data and the simulation results of pedaling at 90
rpm and 250 W. Three different algorithms were evaluated: a
downhill simplex method, a gradient-based sequential quadratic
programming algorithm, and a simulated annealing global opti-
mization routine.

Methods

Bicycle-Rider Model. A two-legged forward dynamic
musculoskeletal model was developed in a previous study (Nep-
tune and Hull, 1998) using SIMM (MusculoGraphics, Inc.,
Evanston, IL) and will be reviewed briefly here. Each leg con-
sisted of three rigid-body segments (thigh, shank, and foot)
with the hip joint center fixed and the foot rigidly attached to the
pedal. The model was driven by 14 individual musculotendon
actuators with first-order activation dynamics and musculoskel-
etal geometry and parameters based on the work of Delp et al.
(1990). The 14 muscles were further combined into nine muscle
sets, with muscles within each set receiving the same stimula-
tion level. The muscle stimulations were modeled as block pat-
terns defined by a duration and magnitude. The stimulation
patterns for the right and left leg were considered symmetric
and 180 deg out-of-phase. The force-generating capacity of each
muscle was based on a Hill-type model governed by the mus-
cles’ force—length—velocity characteristics (Zajac, 1989). The
crank-load dynamics were modeled by an equivalent inertial
and resistive torque applied about the center of the crank arm
(Fregly, 1993) to yield an average power output of 250 W at
90 rpm.

The dynamic equations-of-motion for the bicycle—rider sys-
tem were derived using SD/FAST (Symbolic Dynamics, Inc.,
Mountain View, CA), and a forward dynamic simulation was
produced using the Dynamics Pipeline (MusculoGraphics, Inc.,
Evanston, IL).

The objective function was formulated to solve the tracking
problem by minimizing the differences between experimentai
and simulation pedaling data in the general form of:
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where Y; are the experimentally measured data, P, are the

model data, SD; are the intersubject standard deviations, n is
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Fig. 1 Algorithm performance. Each algorithm was set up identically
with the same initial conditions and executed for a maximum of 5000
function calls. Both the CFSQP and SIMPLEX routines converged on a
local minimum before the maximum number of function calls.

number of data points, and m is number of variables evaluated.
The specific variables tracked were the horizontal and vertical
pedal force components, pedal angle, crank torque, and hip,
knee, and ankle intersegmental joint moments. This criterion
was shown in a previous study to produce steady-state pedaling
simulations replicating experimental kinetic and kinematic data
(Neptune and Hull, 1998). Simulations were performed over
four revolutions to assure that initial start-up transients had
decayed. The objective function was not evaluated until the
fourth revolution when the simulation had reached steady state
and was considered to be independent of the initial conditions.
A final time constraint was enforced to assure the simulation
pedaled at an average pedaling rate of 90 + 2 rpm.

Experimental Data. To provide data for the tracking prob-
lem, both kinetic and kinematic data were collected from ten
male competitive cyclists (height ¥ = 1.81 % 0.04 m; mass X
= 76.5 * 3.4 kg; age ¥ = 29.6 = 4.1 yr). Informed consent
was obtained before the experiment. The subjects rode a con-
ventional racing bicycle adjusted to match their own bicycle’s
geometry at 90 rpm and work rate of 250 W. Pedal force,
crank, and pedal angular displacement and video data were all
collected simultaneously. Intersegmental joint moments were
computed using a standard inverse dynamics approach.

Optimization Algorithms. The optimization algorithms

 were formulated:identically to find the muscle stimulation pat-

terns that minimized the objective function (Eq. (1)), subject
to the system state vector, state variable constraints, pedaling
rate constraint, and control bounds over the time interval [0,
tsna]. The muscle controls were allowed to vary between the
bounds of 0 and 1, which are defined as zero and maximum
stimulation, respectively. The optimal control problem was
solved by converting the optimal control formulation into a
parameter optimization problem (Pandy et al., 1992). The pa-
rameters optimized were the stimulation onset, offset, and mag-
nitude of the nine muscle groups yielding 27 variables. The
stimulation patterns were optimized using three different algo-
rithms, a sequential quadratic programming method (CFSQP,
Lawrence et al., 1997), a downhill simplex method (Nelder
and Mead, 1965), and a simulated annealing algorithm (Goffe
et al., 1994). Briefly, the CFSQP algorithm determines the
optimal direction and step length to decrease the objective func-
tion using a gradient-based line search. Since the gradients were
not known analytically, they were computed by finite differ-
ences. The simplex method (SIMPLEX) seeks to find the mini-
mum objective function by moving from high to low function
values without the computation of gradients by evaluating the
function at N + 1 vertices of an N-dimensional volume (defined
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by the N parameters being optimized) at each step. The vertex
with the worst (highest) function value is replaced by a new
guess based on the other vertices. The set of vertices thus ex-
pands, contracts, and moves until it has converged on a local
minimum. An implementation of this algorithm can be found
in Press et al. (1992).

The simulated annealing algorithm (SA) is based upon
Monte Carlo methods in statistical analyses. The algorithm per-
forms a random global search and avoids local optima by proba-
bilistically accepting nonoptimal steps within the solution space.
The probability of accepting nonoptimal steps depends on a
‘‘temperature,”” which decreases as the algorithm converges
on the most promising region with a user-defined temperature
schedule. In this study, a rapid temperature reduction schedule
or ‘‘quenching’’ technique was utilized.

The algorithms were all started with the same initial guess
and executed for a maximum of 5000 function evaluations. The
initial guess was generated from a previous optimization that
minimized the variations in the crank angular velocity to pro-
duce a smooth pedaling simulation.

Results

The SA algorithm was the most successful in minimizing the
total tracking error between the simulation and subjects’ data
(Table 1). The objective function was reduced from 6631 to
522 while the SIMPLEX and CFSQP algorithms only reduced
the error to 950 and 2126, respectively (Fig. 1). These errors
were apparent in both the root-mean-square errors (Table 1) and
the pedal reaction force plots (Fig. 2). The pedaling simulation
produced by the SA algorithm reproduced the subjects’ data
usually within +1 SD in all of the measured or computed kinetic
and kinematic quantities.

The SA algorithm continued to reduce the objective function
up to the maximum number of function calls, while both the
SIMPLEX method and CFSQP algorithm converged on local
optima well before the maximum number of function calls (Fig.
1). In addition, the SA algorithm initially reduced the value of
the objective function more rapidly than the other two routines.

Discussion

Theoretical analyses of human movement using musculoskel-
etal models and simulations have become a fundamental part
of biomechanics and motor control research. But the controls
required to accomplish the desired motor task are usually diffi-
cult to measure experimentally or solve analytically. Therefore,
researchers have applied optimization techniques to solve such
problems and the algorithms employed have varied throughout
the literature. Although the specific algorithms have varied, they
have been primarily gradient-based or downhill-type routines.
To improve optimization performance, studies have examined
various optimization routines (e.g., Audu and Davy, 1988),
objective functions (e.g., Buchanan and Shreeve, 1996), and
computer architectures (Anderson et al.,, 1995), but to date,

Table 1 The individual kinetic and kinematic quantities root-mean-
square errors between the experimental and simulation results.

Optimization Method
Quantity CFSQP | Simplex SA
Pedal Angle 13.01 10.94 8.45
lPedal Force (Fx 18.11 10.47 5.51
Pedal Force (Fy| 28.48 15.58 8.62 |
[Crank Torque 17.36 11.65 7.37
[Hip Moment 11.04 8.32 5.72 |
lKnee Moment 12.22 7.20 6.14
Ankie Moment 15.65 14.88 14.85
Total RMS Error] __ 115.87 79.04 56.64
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Fig. 2 Horizontal and vertical pedal force components. The error bars
represent =1 SD of the subjects’ average data.

‘no study has directly examined the performance of different
optimization algorithms including global routines to solve these
types of problems. Therefore, the objective of this study was
t0 evaluate the performance of three different algorithms and
to assess the potential advantages and disadvantages of each.

In most human movement optimal control analyses, the ob-
jective function of interest can have many nonlinear valleys,
ridges, and plateau regions that the optimization algorithm will
have to overcome to find the global minimum. The objective
function used in this study (Eq. (1)) is quadratic in nature,

.but the problem constraints make the function surface highly
nonlinear with nonconvex regions. An example of the type of
nonlinear function surfaces that may be expected in these type
of analyses is illustrated in Fig. 3. Figure 3 was generated by
systematically varying the stimulation onset and offset timing
of one muscle while keeping its magnitude constant and com-
puting the corresponding objective function value (Eq. (1)).
The other muscle stimulation patterns were the optimized con-
trols generated by the SA algorithm. Substantially more com-
plex surfaces can be expected when the other control variables
are varied simultaneously or the initial guess is far from the
optimal solution.

The results of this study showed that the SA algorithm was
more robust than the other two routines in overcoming such
complex surfaces. Not only did the SA algorithm converge more
rapidly, but it avoided the local minima that the conventional
algorithms converged on (Fig. 1). Although the SA results
were not presented beyond the specified maximum number of
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function calls, the SA algorithm continued to reduce the objec-
tive function to improve the pedaling simulation further.

The superior performance of the SA algorithm is the result
of several advantages it has over the other two routines. First,
SA starts by exploring the entire solution space and then con-
verges on the most promising region while moving in both
uphill and downhill directions, thus allowing it to overcome
local optima. SA algorithms have been shown to be robust in
effectively handling such regions (Ingber, 1993) and are well
suited to solve these types of nonlinear optimization problems.
Second, by initially exploring the entire solution space, the
algorithm is insensitive to the initial guess of the control param-

. eters. The results of both the SIMPLEX and CFSQP algorithms

are very sensitive to the initial guess in nonconvex optimization
problems. Therefore, these algorithms require multiple restarts
with different initial guesses. Although not presented in this
study, restarts were performed by systematically perturbing the
initial guess and performing the optimizations again. The results
were conceptually the same, the SIMPLEX and CFSQP algo-
rithms both converged on local minima while SA continued to
reduce the objective function until the maximum number of
function calls. Third, SA does not require the function to be
smooth or even continuous, which is a fundamental requirement
for gradient-based algorithms and thus allows the user to include
constraint violation penalties in the objective function such as
the pedaling rate constraint enforced in this study. Therefore,
the SA algorithm can effectively handle cost functions with
severe nonlinearities, discontinuities, and arbitrary boundary
conditions and constraints (Desai and Patil, 1996). These ad-
vantages have allowed SA algorithms to repeatedly outperform
many conventional gradient-based and other global optimiza-
tion routines across a variety of standard test problems (Corana
et al., 1987; Goffe et al., 1994; Ingber, 1993).

One of the most important features of the SA algorithm is
the statistical guarantee to find the global minimum if an appro-
priate temperature schedule is used (Goffe et al., 1994). But
from a practical point of view, this is computationally exhaus-
tive with large-dimension control vectors and extensive simula-
tion times. For the pedaling simulations in this study, typical
execution time for one simulation or function call required 46
seconds CPU time on a Silicon Graphics R10000 workstation
(Silicon Graphics, Inc., Mountain View, CA). Because of this
inherent limitation, the SA algorithm is most effective using a
quenching schedule. But the faster reduction of the temperature
schedule nullifies the guarantee to find the global optimum,
which also cannot be guaranteed using the other methods exam-
ined in this study. The SA algorithm has been used in-other
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Fig.3 Objective function surface. The surface was generated by varying
the stimulation onset and offset timing of one muscle. The other muscle
controls were those found by the SA algorithm and were held constant.
The stimulation onset was varied between 180 and 360 deg while the
offset was varied between 0 and 180 deg.
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studies (e.g., Neptune and Hull, 1998) with restarts using a
different initial seed in the random number generator to fine-
tune the solution and give confidence in the results.

A well-known disadvantage of global optimization routines
that search the entire solution space is that there is often an
increased execution time. But the results of this study showed
that not only was the SA algorithm more robust in decreasing
the objective function, but it also reduced it more rapidly. Other
studies have shown for a variety of test problems that the SA
execution time is often comparable to conventional algorithms
when multiple restarts are employed to test different initial
guesses (e.g., Goffe et al., 1994). These results may be different
for other optimization problems. As available computer speeds
increase, the feasibility of employing global optimization rou-
tines to solve widespread problems will also increase.

The simplex method has previously been shown to be very
effective in handling discontinuous and nonlinear functions
(Nelder and Mead, 1965), but the robustness of the algorithm
comes with the expense of slow convergence. Although the
SIMPLEX method initially converged at the same rate as the
CFSQP algorithm, it still converged more slowly than the SA
algorithm (Fig. 1) and eventually suffered from the same inabil-
ity of the gradient-based method to escape from local optima
(Fig. 1).

In the situation where the objective function is known in
advance to be smooth with few local optima, then a gradient-
based method may be most effective. The advantage of gradient-
based methods is that they are very efficient at converging
quickly on local optima. This characteristic combined with the
robustness of the SA algorithm and its ability to get out of local
optima has recently led to the development of an algorithm that
combines the best characteristics of each method (Desai and
Patil, 1996). Although this algorithm was not applied in this
study, the method was shown to compare well with other more
sophisticated simulated annealing algorithms.

In conclusion, it must be clearly stated that no one algorithm
is likely to be the most effective method for solving all optimal
control problems in movement analyses. The results presented
here for finding the controls during pedaling may not be repre-
sentative of algorithm performance in other problems, but
clearly illustrate the utility of the SA algorithm to solve complex
problems and the potential errors that may occur using conven-
tional methods. It is desired that this paper illustrate alternative
methods available and inspire careful consideration before a
particular algorithm is selected.
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