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COMPUTER MODELING AND
SIMULATION OF HUMAN
MOVEMENT

Applications in Sport and Rehabilitation

Richard R. Neptune, PhD

Computer modeling and simulation of human movement is playing
an increasing role in sport and rehabilitation. Two of the more prominent
applications in sport include optimizing technique® > 1% and design-
ing equipment to improve performance.* > % 77 Sport technique is a
motor skill that is learned and often requires complex muscle coordina-
tion patterns. The complexity stems from the ability of muscles to
accelerate joints and segments they do not span, and is complicated
further by biarticular muscles that can accelerate joints in opposite
directions from their anatomic classification.®® Understanding the interac-
tions within the complex musculoskeletal system and the causal relation-
ships between these interactions is necessary to effectively optimize
sport technique. Modeling and simulation allows for the systematic
examination of specific parameters (e.g., equipment) on performance
without the confounding effect of adaptation® and identification of those
parameters most influential on performance.

Applications of modeling and simulation in rehabilitation include
examining injury mechanisms,®  joint loading,' * 7 functional electri-
cal stimulation,i* 2 % 7 surgical planning techniques,' * muscle func-
tion, ¥ % 5.5 and normal and pathologic gait.! %% ¢ Muscle coordination
can be altered within limits during a given movement task to help
reduce musculoskeletal loading. But it is not clear a priori how these
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changes affect the loading because of the highly nonlinear dynamics
and complex interactions between the musculoskeletal system and the
environment. Changes in the movement caused by altered muscle coor-
dination result in changes in the muscle kinematics, and therefore in the
muscle and ground reaction forces. These circular dynamic interactions
within the musculoskeletal system make these responses difficult to
predict and interpret, and the effects are often counterintuitive. Experi-
mental data and analytical techniques based on inverse dynamics are
not sufficient to identify these interactions between system inputs (e.g.,
technique, equipment) and outputs (e.g., task performance, joint load-
ing).®2

8 Forward dynamics simulations can identify how individual muscles
contribute to task performance, which is the foundation for understand-
ing and treating pathological gait, designing functional electrical stimu-
lation strategies, and providing valuable information for surgical plan-
ning. These examples highlight some of the many applications of
forward dynamics simulation in the fields of sport and rehabilitation.
The purpose of this article is to provide an overview of the forward
dynamics simulation approach and present an example application in
the field of rehabilitation.

FORWARD DYNAMICS SIMULATIONS

The forward dynamics approach uses a mathematical model that is
analogous to how the human neuromuscular system functions to per-
form a given motor task. A neuromuscular control signal is sent to the
muscles to generate a force that is applied to the body segments, and a
movement trajectory results (Fig. 1). The movement trajectory is depen-
dent on the system dynamics and the time history of the muscle forces,
unlike the inverse dynamics approach which cannot identify how the
muscle forces affect the movement of the segments and joints. The
forward dynamics approach provides a direct mapping between the
control inputs and the resulting movement trajectories that allow for the
identification of causal relationships between various neuromuscular
and biomechanical parameters and the task performance. Because the
forward dynamics approach includes the system dynamics, there is
assurance that the results are consistent with the dynamic properties of
the musculoskeletal system. In addition, the forward dynamics approach
includes a biomechanical model of the system that allows the joint
reaction forces to be determined during different movement tasks and
coordination strategies.

Forward dynamics simulations consist of a biomechanical model of
the musculoskeletal system, joint moment or muscle force actuators,
neuromuscular control model, and a framework to identify the control
patterns necessary to produce realistic well-coordinated movements.
Each of these components is discussed in detail later. Once the model is
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Figure 1. Forward dynamics representation of the musculoskeletal system. The nervous
system generates a movement by sending a conirol signal to produce an actuator force.
The force interacts with the external forces applied to the musculoskeletal system to
produce corresponding body segment kinematics (i.e., segment orientations, velocities, and
accelerations). These kinematics determine the state of the system that, in tum, affects the
actuator and musculoskeletal dynamics.

formulated and a simulation is produced, two important steps are the
validation of the model and the interpretation of the results.

Musculoskeletal Model

The musculoskeletal system is most commonly modeled as a rigid-
segment, muitilink system with articulating joints. Such biomechanical
models can be studied analytically by deriving the equations of motion
that describe how the motion of the system varies when forces are
applied to the system (e.g., muscle forces), and how it interacts with the
environment. For simple systems with few degrees of freedom, the
equations of motion can be derived using standard Newton-Euler, La-
grange, or Kane's equations. But for more complex multibody systems,
automated derivations are possible through commercial packages (e.g
Symbolic Dynamics, Inc, Mountain View, CA; DADS, CADSI, Cor-
alville, IA).

Biomechanical models represent a complex musculoskeletal system,
and therefore, care must be taken to ensure that the model formulation
is detailed enough to address the questions of interest. Simple models
may omit important system characteristics and provide false insights.
For example, modeling the knee joint flexion / extension kinematics with
a purely revolute joint may provide inaccurate estimates of the knee
joint moment arms, and therefore the joint moments, because the instan-
taneous center of rotation translates with knee flexion.®® 7 But overly
complex models can generate too marny independent variables, making
interpretation of the results difficult. The number and type of segments,
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dimensionality, and types of joints should be considered carefully. For
example, some degrees of freedom may not contribute to the motion of
interest (e.g., frontal plane motion in cycling) and may be disregarded.
Models should be simple enough to capture the essential behavior of
the system for the questions of interest, and complexity should only be
added when the model does not capture this behavior. Simple models
can provide important insight into a variety of biomechanical
problems.> * Commercial software packages with graphic user-interfaces
are available to help develop musculoskeletal models and visualize the
results of simulations (e.g., SIMM, MusculoGraphics, Inc., Evanston, IL;
DADS, CADSI, Coralville, 1A).

An important aspect of the model development is the parameter
identification. Musculoskeletal anthropometrics, segment inertial charac-
teristics, and passive structural properties all need to be estimated and
can provide a large source of error.® © Many of these parameters are
based on cadaver measurements and generalized to the normal popula-
tion. But recent developments in methods to identify subject specific
model parameters using imaging techniques have the potential to greatly
improve musculoskeletal models (see below).

Actuator Model

Simulations of human movement usually are driven by either joint
moment* * or individual muscle* % actuators. Joint moment actuated
simulations have the advantage that the muscle origin and insertion
points, lines of action, and muscle specific parameters (e.g., maximum
isometric force, tendon and fiber rest lengths, pennation angles) do not
need to be specified. But these simulations have similar limitations as
the inverse dynamics approach when attempting to address questions
related to muscle function and coordination. The joint moment trajector-
ies do not provide individual muscle contributions to the task perfor-
mance, and the joint moment values can be unrealistic because they do
not consider the force-length-velocity relationships of skeletal muscle.
Further, co-contraction between antagonistic muscles and the effect of
biarticular muscles between joints cannot be identified. The remainder
of the article is limited to simulations driven by individual muscle
actuators.

Muscle Actuators

There are two important components to consider when modeling
muscle force actuators: the activation dynamics and musculotendon
contraction dynamics (Fig. 2). The muscle activation dynamics (or excita-
tion-contraction coupling) usually is represented by a first-order differen-
tial equation that converts the neural excitation into muscular activa-
tion.*?2 The model for the musculotendon contraction dynamics is almost
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Figure 2. Musculotendin actuator dynamics. Neural excitation is low pass filtered to produce
muscle activation. Process models time course of chemical reactions during muscle force
development.

exclusively modeled as a lumped parameter Hill-type model in human
movement analyses.”> #2 Although more sophisticated models have been
developed to describe the biophysical contraction mechanisms,*" % Hill-
type muscle models are computationally efficient, perform well during
a variety of movement and contractile conditions, and are sufficient to
understand muscle function in dynamic movement simulations.® 77

The Hill-type muscle model consists of three elements: a contractile
element, series elastic element, and parallel elastic element. The force
generated in the contractile element is governed by the force-length and
force-velocity properties of skeletal muscle. Implicit with this model are
the assumptions that all muscle fiber sarcomeres are homogeneous,
muscle fibers are parallel and insert into the muscle tendon at the same
orientation, and muscle volume and physiologic cross-sectional area
(PCSA) are constant throughout the muscle. Most muscle models do not
consider individual fiber types or history effects such as fatigue, stretch-
shortening, and force depression.

Determining the Neuromuscular Control

One of the most difficult and important components of generating
a forward dynamics simulation is finding neuromuscular controls that
produce well-coordinated movements. The two primary methods used
to find the controls either seek to replicate experimentally measured
data or optimize a performance based objective function. These methods
generate a set of open-loop controls that are usually specified as a
function of time or position without any feedback (e.g., reflex responses,
sensory afferent signals) during the movement. The feedback is consid-
ered to have occurred already and the control signal is the summation
of the central and feedback commands.

The first method that seeks to replicate experimental data is known
as the tracking solution. The method manipulates the control variables
to minimize the difference between the simulation and experimental
data in a least mean-square sense. The tracking solution is useful for
producing a baseline simulation to test movement control hypotheses,
identify joint loading and injury mechanisms, quantify muscle contribu-
tions to task performance, and perform sensitivity analyses.!> 2 4 4. 75



422 NEPTUNE

The challenge in solving the tracking solution is identifying which
quantities to include in the objective function because different formula-
tions can provide different solutions.*

The second method used to find the muscle controls optimizes a
mathematically defined performance based objective function. In this
case, the goal of the simulation needs to be clearly defined. Previous
examples include maximum height jumping,® > maximum speed pedal-
ing,% ¢ maximum power,*” minimum rate of acceleration, and mini-
mum torque change.”” These studies have clearly defined goals that seek
to minimize or maximize some quantity that defines the task perfor-
mance. But many questions in sport and rehabilitation occur at the
submaximal level when the objective function is not clearly defined and
many neuromuscular and biomechanical factors can influence the control
strategy.® In these situations, simulation provides a powerful tool for
investigating specific factors hypothesized to govern movement control,
such as metabolic energy expenditure or muscle fatigue ® If a pro-
posed factor formulated as an objective function produces a well-coordi-
nated movement, then confidence in that control principle is gained.

Another method is to combine the tracking solution with a perfor-
mance-based criterion.’® Although this method appears promising, it
introduces additional complexities that require appropriate weighting in
the cost function between the tracking error and the performance quan-
tity. Identifying appropriate weighting is difficult because little is known
about what criteria the nervous system uses to select coordination strate-
gies.

Open-loop controls, like those obtained previously, are appropriate
in many movements where stability is not a concern, steady-state trajec-
tories are easily obtained (e.g., pedaling), or the questions of interest are
not related to movement control. But when stability, system response, or
movement control questions are of interest, feedback to the control
system is necessary. This type of feedback, or closed-loop control, emu-
lates the human neuromuscular system that continually modifies the
motor patterns through sensory feedback.” % Simulations with feedback
control have been able to successfully adapt to movement perturbations,
obstacles, and changes in the environment, and provide an increased
understanding of movement control.””: 3 ¢ ¢

Once the objective function is formulated using either a tracking or
performance based criterion, an optimization algorithm is needed to find
the muscle control patterns that minimize or maximize the objective
function. Most often, the optimal control problem, where the controls
are defined as functions of time, is converted to a parameter optimization
where the controls are discretized and solved with readily available
algorithms.® The conceptual framework for performing a parameter
optimization with a forward dynamics simulation is presented in Figure
3. The optimization starts with an initial guess for the control parameters
which normally are guided by experimental data or intuition. A simula-
tion is performed with the initial guess and the appropriate data are
extracted from the simulation to be used in the objective function. The
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Figure 3. Forward dynamics optimization framework. Dotted line = optimization algorithm.

objective function then is computed and evaluated to see if it has been
optimized based on user defined criteria. If the simulation meets the
criteria, then the optimization is stopped. If the simulation does not
meet the criteria, then the control parameters are manipulated and
another iteration is performed.

Because of the highly coupled, dynamic nature of the musculoskele-
tal system, the objective function is usually highly nonlinear, and solu-
tions with conventional gradient algorithms are difficult to achieve.*?
But global optimization algorithms, increased computer speeds, and
parallel computer architectures have led to improved computational
performance and convergence. > * In addition, the solution space can
be reduced by assuming bilateral control symmetry between limbs and
applying constraints on the control patterns governed by experimental
data.

Model and Simulation Validation

An important step in modeling and simulation is validating the
model to assure it is producing realistic results. One form of validation
is to compare the simulation results with experimentally measured data.
This type of validation can be difficult because the model often is
developed because similar experiments cannot be performed on human
subjects. Further, comparison with kinetic and kinematic data alone is
not sufficient to validate the model because the redundancy in the
neuromuscular system can generate similar kinetic and kinematic pat-
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terns with different muscle coordination strategies. Another form of
validation is a sensitivity analysis on the model parameters. If the results
are highly sensitive to a specific parameter, then care should be taken in
selecting that parameter. The final form of validation is achieved through
perturbation tests. For example, Wright et al” developed a simulation
model to examine the sensitivity of ankle sprain occurrence to muscle
strength and initial conditions. They compared the model’s response to
small perturbations in the floor surface orientation with the response of
human subjects to those same perturbations. They found that the re-
sponses were similar, and therefore gained confidence in their model to
investigate ankle sprains.

EXAMPLE APPLICATION OF SIMULATION IN
REHABILITATION

A validated model and simulation provides a rich environment to
address many questions in the fields of sport and rehabilitation. Many
studies can be performed with the model that cannot be performed
with human subjects, such as identifying injury mechanisms, optimal
technique and equipment to improve performance, and the influence of
muscle coordination patterns on joint loading. One such example is
taken from a recent study investigating the sensitivity of knee joint
loading to pedaling direction.* This question has important implications
for those patients using pedaling as a rehabilitation exercise to recover
from a knee injury.

Pedaling a stationary ergometer is an important component of many
lower extremity rehabilitation programs for pathologies such as patello-
femoral pain. Forward pedaling has been used to rehabilitate patellofem-
oral pain because it can strengthen the quadriceps muscle group while
reducing the compressive loading in the patellofemoral joint relative to
full weight-bearing exercises. Recently, backward gait has been shown
to provide several rehabilitative advantages over forward gait, including
greater knee extensor moments' 72 and reduced patellofemoral joint
loads.?? These results have provided the basis for prescribing backward
gait as a common component of functional knee rehabilitation.”? The
success in backward gait has led others to suggest that backward pedal-
ing might provide similar advantages over conventional forward pedal-
ing.” No study has examined the biomechanical differences, however, in
patellofemoral joint loading during forward and backward pedaling.
The task mechanics of backward pedaling require quadriceps activity
during regions of greater knee flexion compared to forward pedaling
(Fig. 4).” % But knee extensor activity during high flexion angles increases
patellofemoral loads,® and therefore backwards pedaling may not be an
effective rehabilitative exercise for patellofemoral pain. The difference in
joint loading between forward and backward pedaling has not been
examined primarily because measuring the joint loads in vivo is pres-
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Figure 4. General regions of muscle activity in forward (A) versus backward (B) pedaling
for the extensor (Ext) and flexor (Flex) muscle groups. In backward pedaling the quadriceps
muscle group (Ext) is active during crank cycle when the knee is in a more flexed position
(see Fig. 7).

ently too difficult. This provides an ideal problem to address using
forward dynamics simulations.

To investigate whether backward pedaling offers theoretic advan-
tages over forward pedaling in the rehabilitation of patellofemoral pain,
a musculoskeletal model and simulation of forward and backward ped-
aling was used to quantify the sensitivity of patellofemoral joint loads
to pedaling direction.

METHODS
Musculoskeletal Model

As previously described a planar two-legged bicycle-rider musculo-
skeletal model was used in the analysis (Fig. 5).# The model and equa-
tions of motion were derived using SIMM (MusculoGraphics, Inc., Ev-
anston, IL) and SD/ FAST (Symbolic Dynamics, Inc., Mountain View,
CA). Bach leg was modeled with three rigid-body segments (thigh,
shank, and foot), with the hip joint center fixed and foot rigidly attached
to the pedal. The joints were modeled as revolute at the hip and ankle
joints, whereas the tibiofemoral joint was modeled with three degrees of
freedom with a moving center of rotation for flexion-extension specified
as a function of knee flexion angle.” The patella served as the insertion
point for the quadriceps muscles and was constrained to move along a
prescribed trajectory relative to the femur as a function of knee flexion
angle.” The model was driven by 14 individual Hill-type musculotendon
actuators that were combined into nine muscle groups, with muscles
within each group receiving the same excitation signal (see Fig. 5). The
muscle activation dynamics were modeled by a first-order differential
equation.®
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Figure 5. Musculoskeletal model of right leg of the bicycle rider system. Fourteen muscles
used in model were combined into muscle groups, with each muscle within its group
receiving the same excitation. Muscle groups included: PSOAS = iliacus, psoas; GMAX
= gluteus maximus, adductor magnus; VAS = three-component vastus; HAMS = medial
hamstrings, biceps femoris long; SOL = soleus; BFsh = biceps femoris short; GAS =
gastrocnemius; RF = rectus femoris; TA = tibialis anterior.

Neuromuscular Controls

The individual muscle excitation patterns were considered symmet-
ric and 180° out-of-phase between the left and right legs, and modeled
as square waves defined by an onset, offset, and magnitude. The control
patterns necessary to produce forward and backward pedaling simula-
tions were determined by finding the tracking solution that minimized
the objective function:

. A < (Yz] - Yij)z
J= E G 1)

=1

where

Y; = experimentally measured data

; = corresponding simulation data
SD; = intersubject standard deviations
n = number of data points
m = number of variables evaluated

The objective function was formulated to minimize the difference be-
tween the simulation and experimental data. The difference was squared
to prevent positive and negative differences from canceling each other
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and normalized by the intersubject variability to give those quantities
with lower variability (i.e., more reproducible) more weight in the objec-
tive function.

Previously collected experimental data (radial and tangential pedal
force components and pedal angle)* were used in the objective function.
Data were collected during forward and backward pedaling from 16
healthy subjects (8 male, 8 female) at 60 rpm with a frictional workload
of 120]/ cycle. A simulated annealing algorithm® was used to determine
the muscie controls that minimized the objective function and an in-
equality constraint was enforced to assure the simulations pedaled at
the average experimentally measured pedaling plus or minus 2 rpm. To
quantify the sensitivity of patellofemoral joint loads to pedaling direc-
tion, the total joint reaction force was computed and the peak joint force
was quantified.

RESULTS
The optimization algorithm was able to find the muscle controls
that produced a simulation that closely matched the group averaged

experimental data (Fig. 6) with average pedaling rates of 62 and 60 rpm
for the forward and backward directions, respectively. The simulated

Forward Backward

Tangential Pedal Force

Force {N)

Force {N}

b} 90 180 270 360 4] 90 180 270 360
Crank angle {deg) Crank angle {deg)

Figure 6. Comparison between simulation and group average experimental pedal force
data. Crank angle is positive in direction of pedaling. Crank angle is 0° when crank arm is
parallel with seat tube and the limb is in flexed position. A and B, Positive tangential pedal
force accelerates crank. C and D, Positive radial force is directed towards crank center.
Solid line = experimental; dashed line = simulation.
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pedal forces and pedal angle in both pedaling directions were almost
always within 1 standard deviation (SD) of the experimental data, and
there was also close agreement between the muscle excitation and group
electromyogram (EMG) data (Fig. 7).

The patellofemoral joint loading patterns were similar in both pedal-
ing directions. But the peak total joint load was 30% greater in backward
pedaling compared with forward pedaling (Fig. 8).

DISCUSSION

A forward dynamics simulation approach was used to determine
whether backward pedaling offers theoretic advantages over forward
pedaling to rehabilitate patients with patellofemoral pain. As with any

Forward Backward

il
. i

o il et |

I I T m%total
RF {EEMG

E— 0
0 0 180 270 360 4] S0 186 -+ 270 360
Crank Angle {deg) Crank Angle (deg)

Figure 7. Comparison between simulation and group average experimental muscle excita-
tion data. Solid horizontal bars = simulation onset and offset timing found by tracking
solution; vertical bars = experimental EMG data (mean [SD} normalized iEMGs with 16
equally spaced bins) averaged over all subjects; VAS = three-component vastus muscle
group; HAMS = medial hamstrings, biceps femoris long muscle group; GAS = gastrocne-
mius; RF = rectus femoris muscle group.
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Figure 8. Total pateliofemoral joint load. Crank angle is positive in direction of pedaling.
Crank angle is 0° when crank arm is parallel with seat tube and limb is in flexed position.

simulation study, results always should be interpreted with the limita-
tions of the model in mind.

A potential limitation of the present study is the mathematical
model used to describe the knee joint that has been used in a variety of
simulation studies.* % The sagittal plane model is based on experimen-
tal kinematic data and does not include axial rotation of the tibia relative
to the femur. Because the present study is focused on the knee joint
loads, the implications of using such a model should be considered
carefully. Pedaling is primarily a sagittal plane movement with the foot
rigidly attached to the pedal. Axial rotation in pedaling is limited pri-
marily to that which naturally occurs during flexion-extension move-
ments, and therefore is kinematically the same in both pedaling direc-
tions. Because the kinematics in forward and backward pedaling are
similar, the differences in the joint loading because of axial rotation is
similar in both pedaling directions, and therefore a qualitative compari-
son between forward and backward pedaling is unaffected.

An important consideration in studying human movement is the
uniqueness of the muscle coordination patterns. Because there are more
muscles than degrees of freedom in the model, the simulation muscle
coordination pattern that reproduced the experimental data is not
unique. There are many coordination patterns that could have produced
similar pedaling mechanics, and possibly with lower joint loads than
observed. In the present study, the power of the simulation approach is
not so much in identifying absolute magnitudes of the joint loading,
but insight into the relationship between pedaling mechanics and joint
loading.

To assess the sensitivity of the joint loading to the specific muscle
coordination patterns used to produce the simulations, a post-hoc sensi-
tivity analysis was performed. Because the knee joint loads are of inter-
est, the magnitudes of the hamstring and vasti muscle excitation were
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independently varied plus or minus 10%, and the difference in peak
joint loading was quantified. The results showed that the difference in
peak joint load between forward and backward pedaling averaged 65%
and was independent of the excitation magnitude variations. These
results suggest that the difference in joint loading between forward and
backward pedaling is governed primarily by the pedaling mechanics,
not the specific muscle coordination pattern used. These results give
confidence in the model to examine differences in patellofemoral joint
loading between forward and backward pedaling.

The simulation results showed that greater patellofemoral loads are
generated during backward pedaling. The vasti muscles are the primary
power producers in backward pedaling and produce peak power when
the knee is in a more flexed position than in forward pedaling.* These
pedaling mechanics produce large compressive loads in the patellofem-
oral joint (see Fig. 8). The sensitivity analysis of the quadriceps excitation
on joint loading showed that the patellofemoral joint load responded
fairly linearly with the quadriceps activity, with greater loads always
occurring in backward pedaling. These results are consistent with other
studies showing increased patellofemoral loads are associated with ex-
tensor activity at high flexion angles.®® Although backward pedaling
may be useful in developing an increased extensor moment because of
an increase in extensor activity over that in forward pedaling,” % the
results of the present study suggest that forward pedaling, rather than
backward pedaling, should be prescribed for those patients with patello-
femoral pain.

SUMMARY AND FUTURE DlRECTIONS

The preceding example highlighted one use of forward dynamics
simulations by providing insight into pedaling mechanics and joint
loading and the implications for prescribing rehabilitative exercises. For-
ward dynamics simulations emulate how the neuromuscular system
functions by mapping a control signal into a movement that assures
the resulting movement is consistent with the system dynamics. This
characteristic is important when attempting to understand the neural
and biomechanical interactions during a movement task to identify
control strategies, develop effective rehabilitation programs, or optimize
sporting technique and equipment.

Modeling and simulation also provides a powerful educational tool.
Scientists and educators can develop neuromusculoskeletal models, gen-
erate forward dynamics simulations of a desired motor task, and pro-
duce animations of the movement highlighting many of the cause and
effect relationships that exist. Increased computer speeds and intuitive
modeling and simulation software packages are making the integration
of simulation into education easily accessible.

One of the greatest challenges facing the simulation field is the
development of musculoskeletal models that include subject-specific
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anatomic and physiologic parameters, such as joint geometry and muscle
properties. Subject-specific models allow scientists and surgeons to make
subject-specific recommendations regarding rehabilitation strategies and
surgical interventions, as well as provide coaches and biomechanists the
insight needed to make recommendations regarding optimal technique
and equipment design. Recent studies have demonstrated the feasibility
of constructing subject-specific musculoskeletal models by using medical
image data to determine muscle moment arms,* 45 & calculate muscle
volumes and limb inertial parameters,® * % estimate muscle physiologic
cross-sectional areas,® ® measure muscle pennation angles and fascicle
lengths,® and describe bone geometry.™ ¢ 7 But these techniques can be
computationally intensive, and incorporating the data into subject-spe-
cific musculoskeletal models is not trivial. The future looks promising,
however, as these techniques are refined and efficient algorithms are
developed to generate these subject-specific models.
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