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a b s t r a c t 

Monitoring and analyzing physical activity is becoming an important task in both clinical and non-clinical 

settings. To accomplish this desideratum, stick figures are often used as abstractions of human poses 

and movements by representing body segments as straight lines (sticks). Despite their straightforward- 

ness, this minimalist representation is incomplete as it lacks the segments’ longitudinal rotations, and 

therefore, is insufficient for applications requiring full 3D kinematic data. We introduce STONES, an ad- 

vanced machine learning approach for estimating longitudinal body segment rotations of based on stick 

figures defined from a minimal set of body points. Our approach relies on a recurrent deep neural net- 

work, which takes 3D joint positions from a minimalist stick figure representation, such as those acquired 

by conventional depth camera sensors, and completes it with accurate longitudinal segment rotations. We 

validated our approach via a test scenario based on exergaming activities (e.g., lunges, squats, and kicks), 

which are becoming an emerging trend in several healthcare sectors, and our estimations show a fit 

above 98% and mean errors of approximately 1 ◦. Our deep learning approach effectively surpasses other 

machine learning-based strategies and closely matches the accuracy of state-of-the-art motion capture 

systems while running at real-time speeds. 

© 2022 Published by Elsevier B.V. 
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. Introduction 

Kinematic analysis based on stick figure representations 

1] plays an important role in the quantitative evaluation of hu- 

an movement, being fundamental in areas such as biomechanics, 

port science, clinical movement, and video games. As a minimalist 

bstraction, the stick figure represents the human form as a kine- 

atic chain composed of body segments (i.e., line segments) de- 

ned by joints and endpoints. Stick figures require tracking and 

rocessing spatio-temporal information about body segments to 

erform kinematic analyses. This often results in an animated stick 

gure representation consisting of joint positions connecting rigid 

ody segments. This representation can describe the key articu- 
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ated body points and possible motion ranges, thus providing a 

uccinct and accurate human pose and movement model. 

Marker-based systems provide the best approach for precise 

nd accurate motion capture of stick figures, as several cameras 

re used to track active/reflective markers, which are placed on the 

erson’s body, being considered the gold standard system in hu- 

an motion analysis [2] . However, marker-based systems have sev- 

ral drawbacks such as high cost, long setup times, lack of porta- 

ility, introduction of systemic experimental errors due to incor- 

ect marker placement [3] or to unwanted marker displacements 

aused by soft tissue artifacts [4] . 

In contrast, markerless optical systems, such as single video, 

ime-of-flight or stereoscopic cameras, resort to color and/or depth 

mages that, once processed through advanced computer vision 

echniques, estimate joint positions in real-time. Systems, such as 

https://doi.org/10.1016/j.patrec.2022.12.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2022.12.012&domain=pdf
mailto:francisco.fernandes@ist.utl.pt
mailto:ivo.roupa@tecnico.ulisboa.pt
mailto:sergio.goncalves@tecnico.ulisboa.pt
mailto:miguelsilva@tecnico.ulisboa.pt
mailto:jap@inesc-id.pt
mailto:jaj@inesc-id.pt
mailto:rneptune@mail.utexas.edu
mailto:daniel.lopes@inesc-id.pt
https://doi.org/10.1016/j.patrec.2022.12.012


F. Fernandes, I. Roupa, S.B. Gonçalves et al. Pattern Recognition Letters 165 (2023) 138–145 

t

s

H

a

s

r

d

m

t

r

g

l

i

b

q

t

p

p

d

f

s

i

i

e

a

s

2

(

h

s

r

o

t

h

n

o

m

d

D

p

v

r

b

t

m

q

o

p

(

t

2

n

h  

w

u

d

d

n

e

a

i

e

t

d

o

q

d

a

t

w

f

H

D

v

u

o

[

d

[

u

w

a

e

p

g

r

t

i

m

a

m

s

d

r

i

l

d

t

e

t

t

z

r

l

s

t

c

p

t

b

f

s

c

a

d

p

d

he Kinect One sensor [5] , allow for easy and quick motion acqui- 

ition protocols, which provides lower costs and higher portability. 

owever, these systems present several disadvantages, namely low 

ccuracy in the estimation of the joint positions, occlusions of the 

egments with respect to the cameras and low acquisition frame 

ate. Some of these drawbacks can be handled by resorting to fault 

etection approaches and studying the influence of disturbances, 

odeling errors and other various uncertainties in these real sys- 

ems [6–8] . 

Another significant shortcoming of these sensors is the inaccu- 

ate determination of segment orientations, in particular their lon- 

itudinal rotations [9,10] . This issue is a major drawback, since the 

ongitudinal rotations of the upper and lower limbs play a key role 

n various human activities, such as grooming, feeding, dressing, 

athing, toileting, walking, or running [11] . Moreover, the precise 

uantification of the longitudinal rotations is essential not only in 

he areas of the analysis of pathological human movement and 

hysical rehabilitation [12,13] but also in the evaluation of sports 

erformance [14] , ergonomics [15] , and digital animation [16] . 

To overcome these limitations and to augment motion capture 

ata, this work proposes to use machine learning (ML) algorithms 

or reconstructing the missing longitudinal rotations of the body 

egments by using minimal marker sets that rely on the most basic 

nformation about stick figures. The proposed framework takes as 

nput the 3D coordinates of each major body joint and extremity at 

ach time frame (a total of 24 joints for common depth cameras), 

nd outputs the corresponding longitudinal rotations of limb body 

egments (a total of 8 body segments: 2 forearms, 2 arms, 2 thighs, 

 legs). 

While other studies have addressed similar Inverse Kinematics 

IK) problems, our problem statement is different: previous work 

as considered extra data (image, video, point cloud, etc.) to recon- 

truct rotations, while we do not and show how the longitudinal 

otations can be derived from a small sparse set of 3D points with- 

ut any extra (image or video) data. The same way that a properly 

rained deep neural network is able to reconstruct, for instance, a 

eavily corrupted or noisy image even in the absence of the origi- 

al color data [17] , our work aims to develop an approach capable 

f learning how to reconstruct accurate longitudinal rotations from 

inimal data. 

Our approach relies on supervised learning techniques to ad- 

ress this reconstruction problem. Specifically, we use a Recurrent 

eep Neural Network (RNN) in an approach we call STONES - Su- 

ervised Training for Orientable Neurally-Estimated body Segments . To 

alidate our STONES methodology, we compare the reconstructed 

otations to the real data provided by a high-resolution marker- 

ased system. Our results exhibit a close match between predic- 

ions and known rotations. Additionally, this culminated in a new 

otion capture database of physical exercises that feature high- 

uality orientation data, which is suitable for rehabilitation and 

ther health related activities. Furthermore, our results were com- 

ared with and performed better than standard ML algorithms 

OLS and SVR) and state-of-the-art video-based Deep Learning (DL) 

echniques, such as VIBE [18] and PARE [19] . 

. Background 

Methods for human pose estimation: Marker-based tech- 

iques were the first to be used for human pose estimation and 

ave been evolving ever since [20] . One such example is MoSh [21] ,

here both body shape and motion are estimated simultaneously 

sing a motion-capture setup consisting of a sparse set of a few 

ozen markers. More recently, marker-less approaches have been 

eveloped for the reconstruction of human poses, based solely on 

on-intrusive video or depth data. 
139 
Depth sensors: Another powerful tool used in 3D human pose 

stimation are depth or stereoscopic sensors, with many different 

pproaches able to extract 3D pose and shape from a single depth 

mage, such as DoubleFusion [22] and SimulCap [23] , which are 

ven able to incorporate non-rigid deformations from clothing. Al- 

hough widely used for skeletal tracking, the most frequently used 

epth-camera models lack the ability to provide limb orientations, 

r their joint angle estimations in general do not provide the re- 

uired accuracy for many practical applications [24] , and thus this 

ata needs to be further post-processed by other methods to yield 

ccurate segment orientations. 

Deep learning: For human skeletal tracking and pose estima- 

ion from static or dynamic image data, convolutional neural net- 

ork (CNN) based approaches have been the most popular and ef- 

ective. This includes notable examples such as DeepPose [25] and 

RNet [26] for the 2D pose from still images, or A-NeRF [27] and 

eepCap [28] for 3D poses from single monocular RGB-camera 

ideos. More advanced methods rely on attention mechanisms and 

se temporal information, such as VIBE [18] or PARE [19] . Many 

f these techniques are based on the 3D body model format SMPL 

29] , whose 3D mesh is parameterized by joint angles and a low- 

imensional linear shape space. 

Angles from minimal marker sets: VNect [30] and XNect 

31] produce similar results to RGB-D cameras such as Kinect, but 

sing a single RGB camera. They rely on an IK implementation 

here a CNN regresses 2D and 3D joint positions simultaneously, 

nd produce temporally stable joint angles for a 3D skeleton. How- 

ver, they require that both 2D and 3D predictions be combined to 

erform the kinematic skeleton fitting step containing the joint an- 

les, which cannot be decoupled. 

MotioNet [32] is a data-driven IK approach using a DNN that di- 

ectly outputs a kinematic skeleton from a monocular video, where 

he network learns to infer 3D joint rotations directly from train- 

ng data from real human motions. However, the input of this 

ethod are 2D positions, with the 3D positions only appearing 

t the end of the procedure, and therefore is not suitable for 3D 

arker data. In other work, Yiannakides et al. [33] use again a 

ingle monocular RGB camera but resort to searching on a large 

atabase of 2D multi-view joint projections to match 2D to 3D cor- 

espondences. But similarly, this model does not handle 3D data as 

nput. 

In Adult2Child [34] , Dong et al. presented a method to trans- 

ate adult motion into child-like motion from adult motion capture 

ata and proposed an algorithm for transforming positional to ro- 

ational data by computing joint angles from joint positions. How- 

ver, they noted the ambiguity in the reconstructed motion since 

he roll axis information, corresponding to the longitudinal rota- 

ions, cannot be fully recovered, and thus they specifically set it to 

ero. 

Recently, Roupa et al. [35] also presented an efficient geomet- 

ic method based on the motion envelopes feature to estimate the 

ongitudinal rotations of stick figure models, which considered the 

hape of the surface traced by each model segment in space over 

ime.However, this method presents several limitations, namely it 

annot depict pure axial rotations or compute the initial angular 

osition of the segments. 

As previously described, many recent approaches in the litera- 

ure focus on 3D pose estimation and reconstruction of movement 

ased on still images, video, or depth data. However, although a 

ew deal with minimal marker sets or joint rotation reconstruction, 

uch studies consider other data sources (e.g., image, video, point 

loud) or were not created to accept existing 3D joint coordinates 

s input. In addition, to our knowledge, no other work has ad- 

ressed this problem with such sparse input data (i.e. from two 3D 

oints per body segment, and with no other additional supporting 

ata) and can reconstruct all six segment degrees of freedom. 
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Fig. 1. (a) Representation of the biomechanical model composed of 20 segments 

(black lines) and 24 points (joints and extremity points - purple dots); (b) Detailed 

representation of the left upper arm and forearm segments. Solid vectors represent 

the local reference frame of each segment; dashed vectors depict the local reference 

frame of each segment orientated according to the projection of the medial-lateral 

vector of the parent body in the plane normal to the segment. 
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. Data acquisition and representation 

In this section we describe how data were acquired and repre- 

ented in order to be processed by our approach. 

.1. Problem formulation 

Under a rigid body assumption, stick figures with a minimal 

et of joints (i.e., that represent each body segment as a straight 

ine connecting two contiguous joints) hold a challenging prob- 

em since, with only two non-overlapping points per rigid body 

egment, it is possible to determine only five degrees-of-freedom 

three translations, two rotations). That is, as body segments con- 

ist of one-dimensional line objects in a three-dimensional space, 

he rotation around their own longitudinal axis (i.e., its longitudi- 

al rotation , represented as θz in Fig. 1 (b)) cannot be determined 

y its two defining joint points alone. And thus, this presents an 

ll-posed problem that does not have a unique solution. 

However, the ill-posedness of the regression problem can be 

ircumvented by exploring ML techniques that take advantage of 

he remaining joints’ positional data to infer these missing longi- 

udinal rotations, for instance by internally exploiting correlations 

etween segments, identifying indirect micro-displacements in ad- 

acent joints, or detecting other compensatory movements in other 

ody parts. The advantage of deep neural networks over other tra- 

itional ML approaches is that none of these concealed features 

eeds to be manually identified or engineered since they can be 

utomatically learned by the network with enough training data. 

.2. Acquisition of kinematic data 

Experimental data acquisition for the training and testing of the 

eural networks consisted of two major steps. The first step in- 

luded a method for the selection of movements to be acquired, 

hile the second step considered the acquisition and processing 

f the kinematic data to be used as input to the neural network 

lgorithm. This culminated in a database that we named the LBL 

ollingSticks Database . 
140 
A procedure to select the most relevant movements performed 

uring fitness and gym workouts from an initial set of 100 dif- 

erent movements was performed by 10 fitness professionals. 

his identified ten different uniplanar movements, namely lunges, 

quats and their variants, in addition to two multiplanar move- 

ents, namely cross-jab-hook and cross-jab-kick, in order to as- 

ess the robustness of the neural network in less patterned move- 

ents. A detailed description of the selection methodology and the 

dopted criteria can be found in Supplementary Materials (SM1 

nd SM2). 

The study was approved by the ethics committee of Instituto Su- 

erior Técnico in January 2020 (Ref. nr. 1/2020 (CE-IST)), consisting 

f a group of 16 volunteers with different levels of physical activity 

erforming at least seven valid repetitions of each of the selected 

ovements. The data was acquired using an optical MOCAP sys- 

em composed by 14 Infrared ProReflex 10 0 0 cameras (Qualisys©, 

öteborg, Sweden) with an acquisition frequency of 100 Hz, result- 

ng in a total of 761,234 frames to be used as inputs for the neural

etwork. 

A biomechanical model with 20 segments, seven extremities 

oints (e.g., tip of the head, hands and feet) and 17 joints was de- 

eloped in MATLAB (MathWorks©, Natick, USA) (see Fig. 2 e), based 

n the Kinect One human model. A system of 70 reflective mark- 

rs used for calibration and tracking was implemented to allow for 

he rigorous estimation of all the segments orientations (see Fig. 2 a 

o c). A detailed description of the adopted marker set protocol 

nd biomechanical model can be found in Supplementary Mate- 

ials (SM3 and SM4). 

.3. Input and output 

The goal of our approach was to predict the longitudinal ro- 

ations of the limbs segments (i.e., upper arms, forearms, thighs 

nd legs for both sides) based solely on the location data from the 

ody joints. Thus, the STONE model’s input is the set of X, Y and Z

oating point coordinates (in meters) of the 24 tracked body joints 

seen in Fig. 2 (e) as purple circles), represented as a vector � v of 

ize 72 for each tracked frame. The output consists of a vector 
�
 ˆ θ

f size eight corresponding to the floating point values for the Z

omponent of the relative longitudinal rotation angles (in radians) 

f the stick figure’s eight limb segments. 

.4. Data normalization 

Before being input into the network, the input joints’ spatial 

oordinates were normalized by translating and rotating all the 

oints so that the coronal plane is parallel to the camera and its 

enter is at the origin of the global reference frame. These pre- 

rocessing measures were useful to acquire a higher data robust- 

ess from people with different heights and body sizes, as well as 

o help the algorithm be insensitive to camera distance and orien- 

ation. 

. Network architecture 

Our STONES approach relies on a Recurrent Deep Neural Net- 

ork (RNN) to perform supervised regression by learning how to 

econstruct angles from spatial coordinates. A graphical representa- 

ion of its general layout can be found in Fig. 3 . The RNN is able to

andle a data sequence by processing multiple steps consecutively 

hile maintaining information about the steps seen so far. Since 

otion-tracking data is a type of spatio-temporal data, an RNN was 

sed to exploit the temporal aspect of multiple time steps. 
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Fig. 2. Marker Set Protocol composed of 70 markers: (a) anterior view; (b) foot markers; (c) posterior view; (d) Experimental Acquisition Model; (e) Biomechanical Model. 

Fig. 3. (a) General layout of the RNN used in the STONES implementation, taking as input the 24 joint coordinates and estimating the rotations for the 8 body segments 

by going through several layers inside the neural network. (b) Known values and predictions of the left and right forearm rotations by the 3 different tested ML approaches 

across the first 150 frames of one of the captured actions. 
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.1. Network parameters 

We carried out a thorough exploration using cross-validation to 

etermine an adequate network layout to our particular problem 

f performing regression of 8 angle values from multiple coordi- 

ate values. We chose the optimal STONES network attributes by 

yper-parameter search over the number of hidden layers, neurons 

er hidden layer, activation functions, training optimizers and the 

umber of frames to process simultaneously. 

We arranged the layers in a funnel/pyramid layout, as depicted 

n Fig. 3 , analogous to the encoder section of a regular Autoen- 

oder DNN [36] , with the search performed over several numbers 

nd sizes of hidden layers. The final network layout was settled as 

 fully-connected recurrent neural network with five layers with 

izes 72, 64, 32, 16, and 8, with a total of 12,792 wt variables. 

We evaluated the length of the data sequence to input into 

he network, ranging from 2 to 10 time steps, and concluded 

hat 2 frames were enough to accurately capture the limbs’ ro- 

ation, with the increase in the number of input frames gener- 

ting at most a 0.6% improvement in the scores. After evaluat- 

ng 11 distinct activations and 8 optimizer alternatives, we se- 

ected the Softplus [37] activation function, while adopting AdaMax 

38] as the optimizer algorithm to train the network, together with 

arly-stopping. 
T

141 
.2. Objective function and metrics 

Since angle estimation corresponds to a numerical regression 

roblem, the loss function used was a combined version of the 

ean Squared Error (MSE), defined by: 

SE = 

1 

8 

8 ∑ 

i =1 

( 

1 

n 

n ∑ 

j=1 

(θ i 
j − ˆ θ i 

j ) 
2 

) 

(1) 

his meant that while training our network, for each rotation i and 

or each frame j, we aimed to minimize the squared difference be- 

ween the true angle θ i 
j 

and our predicted angle ˆ θ i 
j 
, averaged over 

ll n frames and the 8 rotations. 

Another commonly used metric for regression problems is the 

oefficient of Determination , which returns the proportion of the 

bserved variation in the data that can be explained by the model, 

nd in our case was computed as: 

 

2 = 

1 

8 

8 ∑ 

i =1 

( ∑ n 
j=1 ( ̂

 θ i 
j 
− θ̄ i ) 2 ∑ n 

j=1 (θ
i 
j 
− θ̄ i ) 2 

) 

(2) 

here θ̄ i is the average of the i th rotation over all n true values.

his provides a measure of how well our dependent variable (an- 
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Table 1 

R 2 , MSE and RMSE scores of the method’s predictions, for each one of the eight individual ro- 

tations. 

Right Left 

Forearm Arm Leg Thigh Forearm Arm Leg Thigh 

R 2 0.979 0.997 0.957 0.997 0.981 0.997 0.968 0.998 

MSE 2.32 0.32 1.38 0.33 2.22 0.34 1.63 0.25 

RMSE 1.52 0.56 1.17 0.57 1.49 0.58 1.28 0.50 

ROM 180 135 90 90 180 135 90 90 

Captured 92.4 99.5 51.3 81.1 98.1 100.9 57.7 84.9 

Estimated 92.4 99.5 47.9 81.1 97.8 98.8 57.3 84.2 
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Table 2 

R 2 , MSE and RMSE scores and frame processing times for each ML method. 

OLS SVR STONES 

Evaluation subset R 2 0.766 0.859 0.984 

MSE 19.315 11.082 1.097 

RMSE 4.395 3.329 1.047 

Time 0.001 2.135 0.033 

New action data R 2 0.725 0.702 0.945 

MSE 10.191 9.860 1.983 

RMSE 3.192 3.140 1.408 

New subjects data R 2 0.621 0.743 0.866 

MSE 37.944 25.173 12.568 

RMSE 6.160 5.017 3.545 
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les) and its variability are being predicted by the independent 

ariables (coordinates). 

Due to the specific domain of our problem which revolves 

round limb orientations, in order to assess and compare our re- 

ults, we also introduced a simple yet informative metric similar 

o the mean absolute error, the Mean Per Limb Angle Error (MPLAE) 

efined by: 

P LAE = 

1 

n 

n ∑ 

j=1 

8 ∑ 

i =1 

∣∣∣∣∣
ˆ θ i 

j 
− θ i 

j 

8 

∣∣∣∣∣ (3) 

hich is a straightforward way to indicate the difference between 

he angle estimations and their true values for each of the 8 limbs 

cross all considered test frames. 

. Results and discussion 

In this section we present our results on accuracy for all eight 

imb segments, and compare the performance against other ap- 

roaches. 

.1. Estimation accuracy 

The predicted values for all eight rotation angles closely 

atched the true values for each of the limb segments consid- 

red ( Table 1 ). The predictions show a close fit with the data vari-

bility between 95% and 99%, as measured by the R 2 score, with 

he thighs being the most accurate, followed by upper arms, fore- 

rms and legs. In terms of error values, the RMSE score oscillates 

round 1 ◦, again with the thighs presenting the best behaviour 

nd the forearms being the most problematic, which is consistent 

ith their respective anatomical range of motion (ROM) [39] , but 

ever exceeding 2 degrees. 

.2. Comparison with other ML methods 

We compared our STONES solution against two standard ML 

echniques, the Ordinary Least Squares (OLS) method and Support 

ector Regression (SVR) based on libsvm [40] and featuring a non- 

inear radial basis function kernel. Comparison of these three dis- 

inct approaches using different metrics are presented in Table 2 

nd Fig. 3 . All methods has similarly low RMSE values below 5 

egrees, but the RNN values were considerably lower ( ∼1 ◦). The 

hree approaches are also clearly distinguishable when looking at 

 

2 scores. The linear OLS method was only able to predict ∼76% 

f the data variability, while the non-linear methods achieved at 

east a 10% higher rate, in the case of SVR. The RNN yielded the 

est result with a fit close to 98%, which is 12% better than SVR. 

The testing set processing speeds were also measured for each 

ethod and the times per sample (in milliseconds) are presented 

n Table 2 . Although all methods are suitable for real time move- 

ent analysis, SVR is several orders of magnitude slower. The basic 

LS approach is the fastest but shows the worst fit for the data. 
142 
he STONES approach is capable of processing more than 30,0 0 0 

rames per second, which considering the additional computational 

verhead generating the stick figure visualization, is fast enough 

or practical applications. 

.3. Temporal coherence 

We also studied the performance of all three methods from a 

ontinuous frame by frame perspective in order to examine the 

equential evolution of each prediction. For this, we analyzed dis- 

inct fragments of different actions characterized by high variance 

n their rotations. Figure 3 details an example of such a segment, 

eporting a worst case scenario of the most problematic forearm 

otations. All three approaches yield smooth approximations with- 

ut discontinuities, although the RNN line more closely matches 

he true progression of both rotations, especially noticeable in the 

xtremities of the considered frame interval. This is followed by 

VR and then OLS, which features the less accurate tracking of the 

riginal shapes. The used MSE loss function inherently ensures the 

emporal smoothness of the results, since the motion of the input 

oint coordinates are also smooth across time. 

.4. Results per action 

Different movement actions are associated with variable exper- 

mental ROMs for each segment, due to the different sets of limbs 

equired to execute each particular action. By analysing the errors 

n each action ( Fig. 4 a), one can see that none of the captured ac-

ions is associated with a noteworthy higher or lower error value, 

lthough the rotations of both forearms seem to be particularly 

ore challenging to estimate across all actions, closely followed 

y both legs. This is specially true in explosive or rapidly chang- 

ng forearm movements such as both cross-jab actions. Addition- 

lly, analysing the error distribution with the variability of the ro- 

ations’ amplitude inside each action and subject, depicted as a 

eat-map in Fig. 4 b, shows that the fluctuation of the error spreads 

re uniformly throughout the different experimental ROMs, cen- 

ered around the origin, and present no significant bias directed at 

horter or wider ROMs. 
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Fig. 4. (a) Average of all prediction errors for each action/rotation pair. Circle color matches error value while radius is proportional to the number of frames of each action 

in the evaluation subset. (b) Heat map of the errors of all estimated angles combined, according to the amplitude of the corresponding limb rotation in that particular 

action/subject event. The darker the color, the higher number of angle instances where that condition was observed (in logarithmic scale). The closer to the vertical line at 

zero, the better the performance. 

Fig. 5. Influence of each input joint in the prediction of each output rotation. The stronger the joint contribution, the larger its displayed radius. 
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.5. Evaluation on new subjects and new action 

To assess the ability of the approach to estimate the angles for 

ny subject, we carried out an additional evaluation by testing the 

TONES method on two unfamiliar subjects and one unfamiliar ac- 

ion, both outside the population we used to train the model. The 

ew data set spanned over a total of 73,811 frames for the new 

ubjects and 27,740 frames for the extra action. Table 2 presents 

he evaluation results in the bottom rows. Results for the new ac- 

ion were only reduced slightly to ∼95%, while maintaining similar 

rror profiles. The data fit for new subjects decreased to ∼87% as 

he error increased to ∼3 degrees. While these results are still suit- 

ble for most applications, they show that the model would bene- 

t from handling more training subjects with more heterogeneous 

haracteristics before being exposed to new test subjects. Never- 

heless, the STONES approach outperforms the two competing ML 

ethods by a comfortable margin in all three statistical scores for 

he new subjects. 

.6. Joint influence per angle 

Since neural networks are usually modeled as black boxes , we 

ut additional effort s into obt aining a better interpretation of the 

erived model and its inner workings by exploring how much indi- 

idual junctions contributed to estimating each angle. To this end, 

e reset the network and retrained it multiple times for a fixed 

umber of epochs, each time taking off (or ‘dropping’) one of the 

ifferent 24 input joints. By examining the decrease in the score of 

he predicted angles relative to their original base score, we could 

nfer an approximate measure about the omitted joint’s impor- 

ance inside the network to estimate each angle. Each joint’s influ- 

nce in each angle is illustrated in Fig. 5 , where the circle radius is

roportional to the observed score deterioration in each joint/angle 

ombination. The higher this observed loss, the more critical a spe- 
143 
ific joint is to predicting an angle. For instance, arm and forearm 

otations are heavily influenced by the elbow and shoulder joints, 

s expected, with the right side requiring more supportive joints 

rom all around the body, possibly due to the broader range of 

ovements attributable to the right-handedness of subjects. 

.7. Comparison with DL methods 

We emphasize that existing DL methods which output limb ro- 

ations require video data as input, which in our scenario is not 

vailable as we rely on much more simplistic kinematic data com- 

osed of only the stick figure’s 3D joints, and therefore a compari- 

on on similar grounds cannot be fairly achieved. In fact, in such a 

educed set of kinematic data, such as the sparse stick figure repre- 

entation used in this work, standard IK methods will fail as infor- 

ation to rebuild the segments’ internal rotations is missing in the 

nput data, thus preventing the successful reconstruction of these 

egrees-of-freedom. 

Nevertheless, we further compared STONES against two other 

tate-of-the-art video-based methods, VIBE [18] and PARE [19] . 

hese two methods were run on existing video footage and their 

esults are presented in Table 3 . In order to analyze longitudi- 

al rotations from the output, joint rotations were extracted from 

he SMPL format, converted to Euler angles taking into account 

he differences between T-pose and human reference position, up- 

ampled using bi-cubic interpolation to account for the different 

rame rates, centered and synchronized with the ground-truth sig- 

al using cross-correlation to find the best frame lag due to differ- 

nt time duration, and finally their RMSE and MPLAE scores cal- 

ulated. Results show that STONES always outperforms both ap- 

roaches in terms of RMSE by at least ∼2 degrees in most cases, 

ith accuracy differences reaching 15 degrees in both arms. When 

onsidering the MPLAE score, STONES results display similar be- 
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Table 3 

MPLAE and RMSE scores of all tested DL methods for each one of the eight individual rotations. 

MPLAE 

RMSE 

Right Left 

Forearm Arm Leg Thigh Forearm Arm Leg Thigh 

STONES 0.661 0.89 0.51 1.17 0.61 2.70 0.54 0.91 0.39 

VIBE 5.511 2.08 16.55 3.33 3.66 4.10 14.85 3.57 3.24 

PARE 5.046 2.61 15.16 3.57 1.98 3.72 14.51 3.87 2.04 
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aviour, with errors consistently inferior to the other two ap- 

roaches, on the order of 5 degrees. 

. Conclusion 

We have developed a new motion processing approach called 

TONES to predict the longitudinal rotation angles of body seg- 

ents represented by a stick figure. This abstraction consists of a 

inimal marker set representation of the human pose, constructed 

rom merely kinematic data of a few body joints alone, namely the 

rajectories of 2 joints per body segment. STONES showcases high 

greement with known rotations, fitting more than 95% of the data 

ariability for each of the eight considered rotations and across 

ll actions. Forearms exhibit a higher degree of error, while thigh 

redictions were the most accurate, which corresponds with their 

natomical ROMs. Nevertheless, combined mean errors fell within 

2 degrees. 

The approach proved robust to a newly seen action and new 

ubjects where the fit was reduced to 85% while still featuring a 

ean error of ∼3 degrees. These results indicate that the training 

ataset should include more subjects and movements in the fu- 

ure. Further tests revealed that our technique outperforms SVMs 

nd two other state-of-the-art DL methods by estimating variabil- 

ty and error values using a minimal fraction of their kinematic 

ata. Moreover, its predictions are temporally coherent, and its per- 

ormance is suitable for real-time human kinematic applications. 

This study demonstrated that our method could accurately esti- 

ate the stick figure’s longitudinal rotations, representing anatom- 

cally correct rotations performed by segments of the human body. 

his method can be used to reliably augment and enrich existing 

keletal tracking methods with orientation information for those 

hat lack such data. In summary, STONES enables computationally 

nexpensive, fast and accurate human pose estimation for physi- 

al exercises without the disadvantages of more complex marker- 

ased methods. 

The assembled motion capture dataset ( RollingSticks ), as well as 

he STONES trained network model including the full source code 

o generate and run the algorithm, is available at https://lbl.tecnico. 

lisboa.pt/StreackerDB.html . 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

ata availability 

Data will be made available on request. 

cknowledgment 

The work reported in this article was supported by na- 

ional funds through Fundação para a Ciência e a Tecnolo- 

ia (FCT) with references UIDB/50 021/2020, UIDB/50 022/2020 
144 
through IDMEC under LAETA), 02/SAICT/2017 and projects UTAP- 

XPL/CA/0065/2017 and PTDC/CCI-COM/30274/2017. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.patrec.2022.12.012 . 

eferences 

[1] E.-J. Marey, La méthode graphique dans les sciences expérimentales et partic- 

ulièrement en physiologie et en médecine, G. Masson, 1878 . 
[2] G. Saggio, F. Tombolini, A. Ruggiero, Technology-based complex motor tasks 

assessment: a 6-DOF inertial-based system versus a gold-standard optoelec- 
tronic-based one, IEEE Sens. J. 21 (2) (2021) 1616–1624 . 

[3] U. Della Croce, A. Leardini, L. Chiari, A. Cappozzo, Human movement analy- 
sis using stereophotogrammetry: Part 4: assessment of anatomical landmark 

misplacement and its effects on joint kinematics, Gait Posture 21 (2) (2005) 
226–237 . 

[4] I. Roupa, M.R. da Silva, F. Marques, S.B. Gonçalves, P. Flores, M.T. da Silva, On

the modeling of biomechanical systems for human movement analysis: a nar- 
rative review, Arch. Comput. Methods Eng. (2022) 1–44 . 

[5] Microsoft, Kinect for windows, 2014, ( https://developer.microsoft.com/en-us/ 
windows/kinect/ ), Accessed: 2020-05-20. 

[6] Z. Xu, X. Li, V. Stojanovic, Exponential stability of nonlinear state-dependent 
delayed impulsive systems with applications, Nonlinear Anal. Hybrid Syst. 42 

(2021) 101088 . 

[7] X. Song, P. Sun, S. Song, V. Stojanovic, Event-driven NN adaptive fixed-time 
control for nonlinear systems with guaranteed performance, J. Franklin Inst. 

(2022) . 
[8] Z. Zhuang, H. Tao, Y. Chen, V. Stojanovic, W. Paszke, Iterative learning control 

for repetitive tasks with randomly varying trial lengths using successive pro- 
jection, Int. J. Adapt. Control Signal Process. 36 (5) (2022) 1196–1215 . 

[9] R.A. Clark, Y.-H. Pua, K. Fortin, C. Ritchie, K.E. Webster, L. Denehy, A.L. Bryant, 

Validity of the microsoft kinect for assessment of postural control, Gait Posture 
36 (3) (2012) 372–377 . 

[10] M. Huber, A.L. Seitz, M. Leeser, D. Sternad, Validity and reliability of kinect 
skeleton for measuring shoulder joint angles: a feasibility study, Physiotherapy 

101 (4) (2015) 389–393 . 
[11] S.M.B. Gonçalves, S.B.C. Lama, M.T. da Silva, Three decades of gait index de- 

velopment: acomparative review of clinical and research gait indices, Clin. 

Biomech. (2022) 105682 . 
12] D.S. Lopes, A. Faria, A. Barriga, S. Caneira, F. Baptista, C. Matos, A.F. Neves, 

L. Prates, A.M. Pereira, H. Nicolau, Visual biofeedback for upper limb com- 
pensatory movements: a preliminary study next to rehabilitation professionals, 

EuroVis 2019 - Posters, The Eurographics Association, 2019 . pp. –
[13] T. Alves, H. Carvalho, D. S. Lopes, Winning compensations: adaptable gaming 

approach for upper limb rehabilitation sessions based on compensatory move- 

ments, J. Biomed. Inform. 108 (2020) 103501 . 
[14] N.A. Trasolini, K.F. Nicholson, J. Mylott, G.S. Bullock, T.C. Hulburt, B.R. Water- 

man, Biomechanical analysis of the throwing athlete and its impact on return 
to sport, Arthroscopy Sports Med. Rehabil. 4 (1) (2022) e83–e91 . 

[15] A.C. McDonald, D.M. Mulla, P.J. Keir, Muscular and kinematic adaptations to 
fatiguing repetitive upper extremity work, Appl. Ergon. 75 (2019) 250–256 . 

[16] A. Aristidou, J. Lasenby, Y. Chrysanthou, A. Shamir, Inverse kinematics tech- 

niques in computer graphics: asurvey, Comput. Graphics Forum 37 (6) (2018) 
35–58 . 

[17] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, T. Aila, 
Noise2noise: learning image restoration without clean data, in: International 

Conference on Machine Learning, 2018, pp. 2965–2974 . 
[18] M. Kocabas, N. Athanasiou, M.J. Black, VIBE: video inference for human body 

pose and shape estimation, in: Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 2020, pp. 5253–5263 . 

[19] M. Kocabas, C.-H.P. Huang, O. Hilliges, M.J. Black, PARE: part attention regressor 

for 3D human body estimation, in: Proceedings of the IEEE/CVF International 
Conference on Computer Vision, 2021, pp. 11127–11137 . 

20] T.L. Munea, Y.Z. Jembre, H.T. Weldegebriel, L. Chen, C. Huang, C. Yang, The 
progress of human pose estimation: a survey and taxonomy of models applied 

in 2D human pose estimation, IEEE Access 8 (2020) 133330–133348 . 

https://lbl.tecnico.ulisboa.pt/StreackerDB.html
https://doi.org/10.1016/j.patrec.2022.12.012
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0001
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0002
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0003
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0004
https://developer.microsoft.com/en-us/windows/kinect/
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0006
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0007
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0008
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0009
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0010
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0011
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0012
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0012
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0013
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0014
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0015
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0016
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0017
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0018
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0019
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0020


F. Fernandes, I. Roupa, S.B. Gonçalves et al. Pattern Recognition Letters 165 (2023) 138–145 

[

[  

[  

[

[

[

[

[

[

[  

[  

[

[

[

[

[

[

[

 

[

[

21] M. Loper, N. Mahmood, M.J. Black, MoSh: motion and shape capture from 

sparse markers, ACM Trans. Graphics (TOG) 33 (6) (2014) 1–13 . 

22] T. Yu, Z. Zheng, K. Guo, J. Zhao, Q. Dai, H. Li, G. Pons-Moll, Y. Liu, DoubleFusion:
real-time capture of human performances with inner body shapes from a sin- 

gle depth sensor, in: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, 2018, pp. 7287–7296 . 

23] T. Yu, Z. Zheng, Y. Zhong, J. Zhao, Q. Dai, G. Pons-Moll, Y. Liu, SimulCap: sin-
gle-view human performance capture with cloth simulation, in: 2019 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2019, 

pp. 5499–5509 . 
24] T.M. Guess, S. Razu, A. Jahandar, M. Skubic, Z. Huo, Comparison of 3D joint 

angles measured with the kinect 2.0 skeletal tracker versus a marker-based 
motion capture system, J. Appl. Biomech. 33 (2) (2017) 176–181 . 

25] A. Toshev, C. Szegedy, DeepPose: human pose estimation via deep neural net- 
works, in: Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, 2014, pp. 1653–1660 . 

26] K. Sun, B. Xiao, D. Liu, J. Wang, Deep high-resolution representation learning 
for human pose estimation, in: Proceedings of the IEEE Conference on Com- 

puter Vision and Pattern Recognition, 2019, pp. 5693–5703 . 
27] S.-Y. Su, F. Yu, M. Zollhoefer, H. Rhodin, A-NeRF: surface-free human 3D pose 

refinement via neural rendering, arXiv preprint arXiv:2102.06199 (2021). 
28] M. Habermann, W. Xu, M. Zollhofer, G. Pons-Moll, C. Theobalt, DeepCap: 

monocular human performance capture using weak supervision, in: Proceed- 

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 
2020, pp. 5052–5063 . 

29] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, M.J. Black, SMPL: a skinned 
multi-person linear model, ACM Trans. Graphics (TOG) 34 (6) (2015) 1–16 . 

30] D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin, M. Shafiei, H.-P. Seidel, W. Xu,
D. Casas, C. Theobalt, VNect: real-time 3D human pose estimation with a sin- 

gle RGB camera, ACM Trans. Graphics (TOG) 36 (4) (2017) 1–14 . 
145 
31] D. Mehta, O. Sotnychenko, F. Mueller, W. Xu, M. Elgharib, P. Fua, H.-P. Seidel,
H. Rhodin, G. Pons-Moll, C. Theobalt, XNect: real-time multi-person 3D motion 

capture with a single RGB camera, ACM Trans. Graphics (TOG) 39 (4) (2020) . 
82–1 

32] M. Shi, K. Aberman, A. Aristidou, T. Komura, D. Lischinski, D. Cohen-Or, 
B. Chen, MotioNet: 3D human motion reconstruction from monocular video 

with skeleton consistency, ACM Trans. Graphics (TOG) 40 (1) (2020) 1–15 . 
33] A . Yiannakides, A . Aristidou, Y. Chrysanthou, Real-time 3D human pose and 

motion reconstruction from monocular RGB videos, Comput. Animat. Virtual 

Worlds 30 (3–4) (2019) e1887 . 
34] Y. Dong, A. Aloba, S. Paryani, L. Anthony, N. Rana, E. Jain, Adult2child: dynamic 

scaling laws to create child-like motion, in: Proceedings of the Tenth Interna- 
tional Conference on Motion in Games, 2017, pp. 1–10 . 

35] I.F. Roupa, S.B. Gonçalves, M.T.d. Silva, R.R. Neptune, D.S. Lopes, Motion en- 
velopes: unfolding longitudinal rotation data from walking stick-figures, Com- 

put. Methods Biomech. Biomed. Eng. (2021) 1–12 . 

36] G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neu- 
ral networks, Science 313 (5786) (2006) 504–507 . 

37] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in: Pro- 
ceedings of the Fourteenth International Conference on Artificial Intelligence 

and Statistics, 2011, pp. 315–323 . 
38] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Y. Bengio, 

Y. LeCun (Eds.), 3rd International Conference on Learning Representations, ICLR 

2015, San Diego, CA , USA , May 7–9, 2015, Conference Track Proceedings, 2015 .
pp. –

39] M. Clark, S. Lucett, et al., NASM Essentials of Corrective Exercise Training, Lip- 
pincott Williams & Wilkins, 2010 . 

40] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, ACM 

Trans. Intell. Syst.Technol. (TIST) 2 (3) (2011) 1–27 . 

http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0021
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0022
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0023
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0024
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0025
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0026
http://arxiv.org/abs/arXiv:2102.06199
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0028
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0029
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0030
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0031
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0031
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0032
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0033
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0034
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0035
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0036
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0037
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0038
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0038
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0039
http://refhub.elsevier.com/S0167-8655(22)00380-4/sbref0040

	Sticks and STONES may build my bones: Deep learning reconstruction of limb rotations in stick figures
	1 Introduction
	2 Background
	3 Data acquisition and representation
	3.1 Problem formulation
	3.2 Acquisition of kinematic data
	3.3 Input and output
	3.4 Data normalization

	4 Network architecture
	4.1 Network parameters
	4.2 Objective function and metrics

	5 Results and discussion
	5.1 Estimation accuracy
	5.2 Comparison with other ML methods
	5.3 Temporal coherence
	5.4 Results per action
	5.5 Evaluation on new subjects and new action
	5.6 Joint influence per angle
	5.7 Comparison with DL methods

	6 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	Supplementary material
	References


