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A B S T R A C T

Background: Stiff-Knee gait affects 25–75 % of individuals with post-stroke gait impairment and is typically 
defined as reduced swing phase knee flexion. Different studies use various measures to identify Stiff-Knee gait, 
such as peak swing knee flexion angle, timing of peak knee flexion, knee range of motion, and ankle push-off 
acceleration, leading to inconsistent results.
Methods: This study used univariate cluster analysis to examine the independence, consistency, validity, and 
accuracy of different definitions in 50 post-stroke individuals (24 with and 26 without Stiff-Knee gait), as 
determined by a physiatrist. Spearman’s rank correlation was used for correlation analysis, and five clustering 
techniques along with clinician evaluations were used for validity analysis.
Findings: Correlation analysis showed that peak knee flexion timing and knee hyperextension are poorly corre
lated with reduced swing-phase knee flexion angle (ρ = − 0.09 and ρ = − 0.26 respectively). Validity analysis 
indicated that the between-limb difference in peak swing knee flexion angle and peak swing knee flexion angle at 
self-selected gait speeds were the most valid differentiators. At the fastest comfortable gait speed, the between- 
limb difference of peak knee flexion angle had the highest sensitivity, lowest specificity, and highest F1 scores.
Interpretation: We determined thresholds of less than 44.3◦ for peak swing knee flexion angle and greater than 
17.0◦ for the between-limb difference of peak knee flexion angle identify Stiff-Knee gait during self-selected 
walking. We recommend using the difference in peak swing knee flexion angle between limbs to diagnose 
post-stroke Stiff-Knee gait due to its robustness to changes in gait speed.

1. Introduction

Stiff-Knee gait (SKG) is defined as reduced knee flexion during the 
swing phase of walking (Kerrigan et al., 1991). The term has been in use 
since the 1800s in reference to how knee flexion appeared in children 
with cerebral palsy (Abercrombie, 1887), and was then later applied to 
adults, primarily those post-stroke. People with post-stroke SKG have 
difficulty with foot clearance and often walk with frontal plane com
pensations such as limb circumduction (some combination of pelvic 
obliquity and hip abduction). The additional frontal plane motion of the 
limb is energetically costly (Doke et al., 2005; Royer and Martin, 2005; 
Shorter et al., 2017), and it is not surprising that people with SKG are 

hypothesized to have low endurance, be more susceptible to joint pain 
(Hsu et al., 2003), and have greater risk of falls (Burpee and Lewek, 
2015).

SKG has most often been identified by knee flexion kinematics. The 
knee undergoes the largest range of motion during gait, so knee motion 
may be most sensitive to detection of gait abnormalities. Previous efforts 
at defining SKG have suggested a peak knee flexion angle of 45◦

(Kerrigan et al., 1991) of the paretic limb. However, knee flexion angle is 
highly dependent on gait speed (Campanini et al., 2013), using the same 
threshold at different walking speeds may confound accurate classifi
cation. To address this concern researchers have defined SKG by the 
difference in peak knee flexion angle with the non-paretic limb, either at 
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16◦ (Sulzer et al., 2010) or 20◦ (Akbas et al., 2020) difference, or based 
on combinations of peak knee flexion during the swing phase, knee 
range of motion during the early swing phase, total knee range of mo
tion, and timing of peak knee flexion during the swing phase (Böhm 
et al., 2014; Fujita et al., 2020; Goldberg et al., 2003; Goldberg et al., 
2006; Jonkers et al., 2006; Lewerenz et al., 2019; Reinbolt et al., 2008) 
compared to healthy individuals. While there may be overlap between 
these definitions, it is plausible that the variance in definition of SKG 
between studies produces heterogeneity in results, which is what is 
commonly observed in interventional studies such as the effect of che
modenervation (Tenniglo et al., 2023). With so many different charac
terizations of SKG, it is difficult to compare results between studies, let 
alone obtain a standard threshold value for diagnosis.

The goal of this study was to determine the best single parameter 
biomechanical definition of post-stroke SKG. We conducted a univariate 
analysis approach to examine the independence, consistency, validity, 
and accuracy of the most common biomechanical metrics of SKG based 
on clinical judgement at two different gait speeds. We then created 
threshold values of the best performing parameters for suggested clinical 
diagnosis.

2. Methods

2.1. Participants

Retrospective data for 50 individuals post-stroke (31 left hemi
paresis, 31 males, 57 ± 13.46 years) were extracted from a research 
database maintained by the NIH Center of Biomedical Research Excel
lence (COBRE) in Stroke Recovery at the Medical University of South 
Carolina (MUSC). The database is approved by the MUSC Institutional 
Review Board. All persons provided informed written consent for their 
data to be included in the database. Participants were included if motion 
capture and electromyography was collected during one or more trials of 
self-selected walking on a split-belt treadmill. Data collected during 
fastest-comfortable walking on a split-belt treadmill was extracted when 
available. Only data collected on start date of the individual study a 
participant was enrolled in was used to minimize the effect of subse
quent study sessions and study protocol variability. All data were 
collected using the same equipment and deidentified to meet the defi
nition of secondary research per the NIH Common Rule.

2.2. Data collection

Participants walked on a split-belt instrumented treadmill (Bertec, 
Columbus, Ohio, USA) at their self-selected speed. Of those, 41 in
dividuals post-stroke also walked at their fastest possible gait speed. 
Prior to data collection, participants practiced treadmill walking to get 
comfortable with the experimental setup. Participants walked for at 
least 10 s to reach a steady-state walking pattern before each 30-s trial. 
Motion capture marker data were collected at 120 Hz using a 12-camera 
motion capture system (PhaseSpace, San Leandro, CA, USA) with a 
modified Helen Hayes marker set using 65 active markers. Ground re
action force (GRF) data were measured by an embedded force plate in a 
split-belt treadmill and low-pass filtered at 15 Hz. Using the kinematics 
and dynamics solver within OpenSim 4.3 (Delp et al., 2007), joint ki
nematics, body kinematics, and joint kinetics were obtained. All syn
chronized time-series biomechanical gait data were divided into strides 
by a paretic limb heel-strike event using vertical GRFs and expressed as a 
percentage of the gait cycle time. Eight strides per participant were 
randomly selected from 30-s treadmill walking trials since it was the 
highest number of strides shared by all participants. The 8 strides were 
averaged into one mean trajectory per feature and individual for use in 
cluster analysis.

2.3. Data analysis

Cluster analysis is a statistical method that objectively and quanti
tatively classifies individuals by grouping them into homogeneous 
clusters based on specific input parameters. This statistical method has 
been applied to aid in classifying patients based on clinical and labo
ratory observations for tailored medical treatment (McLachlan, 1992). 
In this study, we performed a clustering technique to assess the gait 
features commonly employed in distinguishing between those with and 
without SKG.

2.4. Gait parameters associated with post-stroke SKG

SKG in persons post-stroke has previously been differentiated by the 
most visible disability-specific kinematics in the sagittal plane. We 
selected biomechanical gait variables which are used as common in
clusion criteria from previous literature, including: the peak knee flexion 
angle during the swing phase, the difference in peak knee flexion angle 
between limbs during the swing phase, the peak knee flexion velocity in 
the pre-swing phase, the knee range of motion in the initial swing phase 
measured from toe-off to the first half of the swing, and the total knee 
range of motion during gait (Goldberg et al., 2006; Kerrigan et al., 1998; 
Sulzer et al., 2010). In addition to these characteristics, we included the 
peak knee extension during the stance phase, assuming a potential 
causal relationship between hyperextension and SKG, given the possible 
presence of knee hyperextension during the stance phase (Perry and 
Burnfield, 2010; Riley and Kerrigan, 1999). Regarding the spatiotem
poral characteristics of SKG, we assessed the timing of peak knee flexion 
during the swing phase to discern any indications of delayed knee 
flexion (Sutherland et al., 1990). Lastly, we examined the peak vertical 
acceleration of the lateral malleolus during the pre-swing phase, pro
posed as a means to distinguish insufficient push-off linked with post- 
stroke SKG (Campanini et al., 2013). In summary, we initially chose 
eight gait parameters related to post-stroke SKG, as outlined in Fig. 1.

Within the gait characteristics depicted in Fig. 1, we subsequently 
screened out associated features of post-stroke SKG by using a correla
tion analysis. This process primarily centered on the reduced paretic 
knee flexion kinematics, a prominent symptom of post-stroke SKG. 
Specifically, features exhibiting a poor correlation (< 0.75) with the 
paretic pre-swing phase peak knee flexion angle were excluded in 
further validity analysis. Since body parameters, such as a participant’s 
height, can affect gait kinematics, we conducted the additional corre
lation analysis using parameters normalized by height.

2.5. Univariate clustering

We employed four clustering methods to avoid method-specific re
sults. We choose a bisecting K-means (Banerjee et al., 2015), a ward 
hierarchical clustering (Ward Jr., 1963), a spectral clustering (Ng et al., 
2001), and a Gaussian mixture model (Bishop, 2006). Each algorithm 
tackles the clustering problem using a distinct approach. The bisecting 
K-means clustering algorithm combines aspects of K-means clustering 
with divisive hierarchical clustering, resulting in reduced sensitivity to 
random initializations. Hierarchical clustering arranges data points into 
a hierarchy of clusters by iteratively merging or splitting based on their 
similarity or distance, providing interpretable results that unveil the 
data’s hierarchical structure. We specifically used Ward’s linkage 
method to form hierarchical clustering. Spectral clustering is a graph- 
based clustering method that leverages the eigenvectors of a similarity 
matrix to partition data into clusters. A Gaussian mixture model is a 
probabilistic model that posits that data points arise from a blend of a 
finite number of Gaussian distributions with unspecified parameters. In 
a clustering problem, a Gaussian mixture model represents the data as a 
mixture of several Gaussian distributions, each associated with a 
particular cluster. In this study, we utilized scikit-learn (version 1.3.0) in 
conjunction with Python 3.8.10 to implement the clustering methods 
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described above.

2.6. Cluster validity analysis

The univariate clustering was used to separate the sample into two 
groups (SKG and non-SKG) based on each parameter. We used external 
cluster validation (Jain and Dubes, 1988), which employs a priori 
knowledge of dataset information, such as gold standard labels. It en
ables evaluation of the goodness of clusters (Wu et al., 2009). In this 
study, our baseline labels were clinical diagnosis by an expert physiatrist 
(RKL). The expert viewed 3D animations of the data from four different 
camera view angles based on the motion capture data using OpenSim 
software (Delp et al., 2007). The expert clinician then reviewed these de- 
identified animated videos to diagnose whether participants exhibited 
post-stroke SKG.

Next, we computed external measures to determine the optimal 
univariate input feature resulting in the best clusters with the clinical 
diagnosis labels. These included F1 score (Wu et al., 2009), Purity (Wu 
et al., 2009), Adjusted Rand Index (Steinley, 2004), Adjusted Mutual 
Information (Vinh et al., 2010), V-measure (Rosenberg and Hirschberg, 
2007), and Jaccard index (Jaccard, 1901). The F1 score measures ac
curacy as the harmonic mean of precision and recall. Purity measures 
how many objects belong to the majority class in a cluster. The Adjusted 
Rand Index is based on how often two different clusters agree or disagree 
on pairs of objects. Adjusted Mutual Information measures the shared 
information between two clusters. The V-measure is the harmonic mean 
of homogeneity and completeness, where homogeneity indicates how 
much each cluster contains elements from only one class, and 
completeness indicates how much each class’s elements are assigned to 
the same cluster. The Jaccard Index shows how much two sets of data 
overlap, calculated by dividing the number of shared items by the total 
number of items in both sets. Higher values for all these measures 
indicate better cluster quality. In addition to the external validity mea
sures, we also evaluated the sensitivity and specificity for each clus
tering method using a confusion matrix. Sensitivity, the probability of 
accurate positive diagnosis, is the number of true positives compared to 
the sum of true positives and false negatives. In contrast, specificity, the 
probability of an accurate negative diagnosis, is the number of true 
negatives compared to the sum of true negatives and false positives. 
Since gait parameters vary with gait speed (Fukuchi et al., 2019), we 
performed sensitivity and specificity analyses at both the comfortable 
self-selected and the fastest comfortable gait speed.

We additionally assessed the effect size of the cluster output, 

quantifying the degree of separation or differentiation between clusters 
using Cohen’s d (Cohen, 1992). Cohen’s d values between 0.2 and 0.3 
are considered small, 0.5 is considered medium, and values of 0.8 or 
higher are considered large (Sullivan and Feinn, 2012).

2.7. Cutoff value

The cutoff value to distinguish between individuals with SKG and 
without SKG was determined by the average of the means of two clus
tered groups by each clustering method. The receiver operating char
acteristic (ROC) curve analysis was performed based on each clustering 
method and each biomechanical variable. The cutoff value from the 
method with the highest area under the curve (AUC) was reported.

2.8. Statistics

Statistical analyses were performed using scipy (version 1.14.0) in 
conjunction with Python 3.8.10. Shapiro-Wilk normality test confirmed 
the normality of gait parameters, and accordingly, Spearman’s rank 
correlation coefficient used in correlation analysis. 95 % Confidence 
intervals for cutoff value and AUC were estimated by bootstrapping 
since clustering methods do not inherently provide confidence intervals 
on outcomes. We sampled 10,000 times in bootstrapping.

3. Results

Participant demographics, walking speed and their classification 
with respect to SKG are included in supplementary materials (Table S1). 
There were 24 participants with SKG and 26 without SKG. Gait features 
had various levels of agreement with each other and did not have a 
normal distribution (p < 0.05 in Shapiro-Wilk test). Fig. 2 shows 
Spearman’s rank correlation coefficient (ρ) across gait features depicted 
in Fig. 1 and gait speed. Five knee joint kinematic gait features 
demonstrated a statistically significant correlation with the swing-phase 
peak knee flexion: the pre-swing peak knee flexion velocity (ρ = 0.80, p 
< 0.001), the between-limb difference of peak knee flexion angle during 
swing (ρ = 0.85, p < 0.001), the initial-swing knee flexion range of 
motion (ρ = 0.60, p < 0.001), the full gait cycle knee flexion range of 
motion (ρ = 0.78, p < 0.001), and the pre-swing peak push-off accel
eration (ρ = 0.81, p < 0.001). Except for the initial-swing knee flexion 
range of motion, the other four parameters exhibited a strong correla
tion (ρ > 0.75). In contrast, the peak knee extension in the stance phase, 
representing hyperextension (genu recurvatum), and the peak knee 

Fig. 1. Gait phases and features associated with post-stroke SKGs. Gait phases (top left) are divided into a) Loading response (LRsp), b) Single-limb support stance 
(SSt), c) Pre-swing (PSw), d) Initial Swing - 50 % of swing, (ISw), e) Stance (St), and f) Swing (Sw). Gait features from paretic side relevant to post-stroke SKG are 1) 
peak knee flexion in swing, 2) peak knee flexion velocity in pre-swing, 3) between-limb difference of peak knee flexion in swing), 4) knee range of motion in initial 
swing, 5) knee range of motion in full cycle, 6) peak push off acceleration in pre-swing, 7) timing of peak knee flexion in swing, and 8) peak knee extension in stance.
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flexion timing, accounting for a temporal characteristic, exhibited poor 
correlation coefficients: ρ = − 0.09, p = 0.96, and ρ = − 0.26, p = 0.86, 
respectively. The height normalized gait parameters showed the same 
correlations across each other (Fig. S1).

For those variables exhibiting a correlation with peak knee flexion 
angle of 0.75 or above, we evaluated the validity scores using five gait 
parameters: the swing-phase peak knee flexion, the pre-swing peak knee 
flexion velocity, the between-limb peak knee flexion difference in swing, 
the full gait cycle knee flexion range of motion, and the pre-swing peak 
push-off acceleration. The between-limb peak knee flexion difference 
during the swing phase demonstrated the highest validity scores across 
all clustering methods, indicating the most accurate differentiation of 
the post-stroke SKG group (Table 1). Similarly, the peak knee flexion in 
the swing phase exhibited comparable scores. This finding was consis
tent with all clustering techniques. All effect sizes for the clusters, across 

each variable and method, indicated large effects (d > 0.8).
Both the peak swing knee flexion and the between-limb peak knee 

flexion angles exhibited the most consistent definition of SKG as 
compared with a clinical diagnosis. However, we hypothesized that gait 
speed may alter the performance of these parameters, so we examined 
the sensitivity and specificity of these parameters at both comfortable 
gait speed and the fastest comfortable gait speed conditions (Table 2). At 
comfortable gait speed, across all clustering methods the average 
sensitivity and specificity for the peak knee flexion angle parameter was 
0.88 and 0.74, respectively, about the same as the between-limb dif
ference in peak knee flexion angle (0.85 and 0.81). However, at the 
fastest comfortable speed, the sensitivity values diverged, with peak 
knee flexion angle resulting in sensitivity and specificity of 0.73 and 
0.83, respectively. The average sensitivity and specificity across 
methods of the between-limb difference in peak knee flexion angle 
values were 0.90 and 0.83, respectively. The confusion matrices can be 
found in supplemental materials (Figs. S2 and S3). Further evaluation of 
performance under the fastest comfortable gait speed shows a marked 
superiority in the external validity measures of the between-limb 

Fig. 2. Spearman’s rank correlation coefficient across input variables and gait 
speed. Coefficients above 0.75, indicating strong relationships, are in bold font.

Table 1 
External validity measures and the effect size for each univariate clustering output. Bold font values denote the outcome measure with the highest validity within each 
clustering algorithm. All external validity measures were computed based on clinical diagnosis labels. The effect size is based on Cohen’s d, where values between 0.2 
and 0.3 are considered small, 0.5 is medium, and values of 0.8 or higher are considered large.

Clustering 
Algorithms

Features F1 
score

Purity Adj. Rand 
Index

Ad. Mutual 
Information

V- 
measure

Jaccard 
Index

Effect Size (Cohen’s 
d)

Bisecting K-means Peak Swing Knee Flex 0.82 0.82 0.40 0.31 0.32 0.69 2.79
Peak Pre-Swing Knee Flex Vel 0.62 0.66 0.08 0.06 0.07 0.45 3.08
Peak Swing Knee Flex Diff b/t 
Limbs

0.83 0.84 0.45 0.36 0.37 0.71 2.80

Full Gait Knee Flex ROM 0.71 0.70 0.14 0.11 0.12 0.55 3.30
Peak Pre-Swing Push Off Acc 0.77 0.78 0.30 0.23 0.24 0.62 2.92

Hierarchical 
Clustering

Peak Swing Knee Flex 0.79 0.76 0.26 0.28 0.29 0.66 2.83
Peak Pre-Swing Knee Flex Vel 0.62 0.66 0.08 0.06 0.07 0.45 3.08
Peak Swing Knee Flex Diff b/t 
Limbs

0.83 0.82 0.40 0.34 0.35 0.71 2.75

Full Gait Knee Flex ROM 0.71 0.70 0.14 0.11 0.12 0.55 3.30
Peak Pre-Swing Push Off Acc 0.74 0.76 0.26 0.19 0.21 0.59 2.91

Spectral Clustering Peak Swing Knee Flex 0.81 0.82 0.40 0.31 0.32 0.68 2.71
Peak Pre-Swing Knee Flex Vel 0.71 0.72 0.18 0.13 0.14 0.55 3.02
Peak Swing Knee Flex Diff b/t 
Limbs

0.82 0.82 0.40 0.31 0.32 0.69 2.80

Full Gait Knee Flex ROM 0.71 0.70 0.14 0.11 0.12 0.55 3.30
Peak Pre-Swing Push Off Acc 0.74 0.76 0.26 0.19 0.21 0.59 2.91

Gaussian Mixture Peak Swing Knee Flex 0.83 0.82 0.40 0.34 0.35 0.71 2.74
Peak Pre-Swing Knee Flex Vel 0.65 0.68 0.11 0.08 0.10 0.48 3.07
Peak Swing Knee Flex Diff b/t 
Limbs

0.83 0.84 0.45 0.36 0.37 0.71 2.80

Full Gait Knee Flex ROM 0.71 0.70 0.14 0.11 0.12 0.55 3.30
Peak Pre-Swing Push Off Acc 0.71 0.74 0.21 0.16 0.18 0.55 2.78

Table 2 
Sensitivity/Specificity of peak swing knee flexion and between-limb differences 
in peak knee flexion at different gait speeds. While both outcome measures 
perform similarly at a comfortable gait speed, at a fast gait speed the sensitivity 
improves while we observe a decrement in sensitivity during comfortable gait 
speed. Note that only 41 persons completed the fastest comfortable walking data 
collection.

Comfortable Speed 
(Sensitivity / Specificity)

Fast Speed (Sensitivity / 
Specificity)

Peak 
Swing 
Knee Flex

Peak Swing 
Knee Flex 
Diff 
b/t Limbs

Peak 
Swing 
Knee Flex

Peak Swing 
Knee Flex 
Diff 
b/t Limbs

Bisecting K-means 0.83/0.81 0.83/0.85 0.67/0.85 0.90/0.85
Hierarchical 

Clustering 0.96/0.58 0.92/0.73 0.86/0.75 0.90/0.80
Spectral Clustering 0.79/0.85 0.83/0.81 0.67/0.85 0.90/0.80
Gaussian Mixture 0.92/0.73 0.83/0.85 0.71/0.85 0.90/0.85
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difference in peak knee flexion angle (Table S2). Specifically, between- 
limb difference in peak knee flexion angle had an average F1 score of 
0.87 (0.81 at comfortable speed), whereas peak knee flexion was 0.77 
(0.83 at comfortable gait speed). The visualization of outcomes from 
each clustering method according to gait parameters are shown in Fig. 3.

Table 3 illustrates the cutoff values and AUC from ROC curve at 
comfortable gait speed that differentiate between SKG and non-SKG 
cohorts using both peak knee flexion angle and between-limb differ
ence in peak knee flexion angle parameters. Cutoff values were derived 
from the average of the means of two clustered groups. The cutoff value 
for identifying SKG through peak swing-phase knee flexion angle was 
determined to be 43.1◦ according to a clinical expert. The bisecting K- 
means showed the largest AUC from ROC curve analysis, such that 44.3◦

(95 % confidence interval: [37.7◦, 50.2◦]) was the best cutoff value to 
distinguish post-stroke SKG by using the peak swing-phase knee flexion 
angle. Similarly, the cutoff value for SKG identification using the 
between-limb difference in peak knee flexion angle was found to be 
17.0◦ [11.2◦, 22.5◦] with bisecting K-means clustering and 17.0◦ by a 
clinical expert.

4. Discussion

In this work, we systematically investigated different definitions of 
SKG on a sample of 50 post-stroke individuals walking at self-selected 
gait speed. We used univariate cluster analysis of these definitions to 
first quantify the level of agreement between them. We found that peak 
knee extension and peak knee flexion angle timing poorly correlated 
with other definitions of SKG. We then compared the level of agreement 
of the other definitions with a clinical expert opinion using 4 different 
clustering methods. Based on 6 different biomechanical gait variables 
illustrating validity, we found that the difference between limbs of the 
peak knee flexion angle was the most valid parameter for diagnosis of 
SKG. Thus, we recommend that future studies using univariate selection 
criteria should base selection of SKG on peak knee flexion angle differ
ences between limbs.

Typically, peak knee flexion angle has been used to diagnose post- 
stroke SKG. The majority of modern studies utilize a peak knee flexion 
angle of 40◦ to 45◦, or knee flexion below two (or three) standard de
viations from the mean of a sample population as an inclusion criterion 
(Campanini et al., 2013; Goldberg et al., 2006; Kerrigan et al., 1991; 
Mazzoli et al., 2018). Indeed, our work found that peak knee flexion 
angle was highly correlated to other definitions and one of the most 
valid definitions of SKG. However, because knee flexion angle changes 
with gait speed (Fig. 1), we hypothesized that the between-limb sym
metry of peak knee flexion angle would be a more reliable definition. 
Our dataset was composed of post-stroke individuals walking at 
different comfortable gait speeds (0.10–0.90 m/s), yet the performances 
of peak knee flexion angle and between-limb difference of peak knee 
flexion angle parameters were similar (Table 1). This result is not 
entirely unexpected, as Kim and Eng (2004) (Kim and Eng, 2004) 
observed that compensatory motions can help improve gait speed 
without improving swing phase knee flexion. This suggests that peak 
knee flexion angle may be sufficient to determine SKG at comfortable 
walking speed.

The threshold value of peak knee flexion angle at comfortable gait 
speed we observed of 45◦ (Table 3) is consistent with other work 
(Kerrigan et al., 1991), although slightly higher than the threshold of 
40◦ reported by Chantraine et al. (2022). This discrepancy, although 
small, could be due to the heterogeneity of the datasets or differences 
between analytical methods. It is notable that 5◦ is the clinically mini
mal significant difference of a goniometer measurement typically used 
to measure joint range of motion (Hancock et al., 2018).

While paretic peak knee flexion angle may be practical and suffi
cient, it is not the most robust and accurate single-parameter indicator of 
SKG. While the differences between individuals at different gait speeds 
may not consistently result in differences in knee flexion patterns (Kim 

and Eng, 2004), within individuals we found that changes in gait speed 
did affect the diagnostic capacity. Specifically, the between-limb dif
ference in peak knee flexion angle was slightly more robust at 
comfortable gait speed than peak knee flexion (Table 1), but when 
considering walking at faster gait speeds, the between-limb difference in 
peak knee flexion angle had greater sensitivity and specificity (Table 2) 
as well as greater external validity scores across the board (Table S2) 
compared to the peak swing knee flexion angle. The between-limb dif
ference of peak knee flexion angle is the highest performing single 
parameter diagnostic of SKG. The threshold value of 17.0◦ [11.2◦, 22.5◦] 
is also consistent with inclusion criteria from previous work (e.g., 
greater than 16◦) (Akbas et al., 2020; Sulzer et al., 2010).

Given the directionality of the relationship between speed and peak 
knee flexion angle, impaired ankle plantarflexion push-off may be the 
underlying cause of post-stroke SKG (Campanini et al., 2013). For this 
reason, we included ankle plantarflexion kinematics in our list of 
possible SKG definitions. Indeed, ankle plantarflexion push-off acceler
ation was highly correlated with other definitions of SKG (Fig. 2). While 
this analysis cannot make any conclusions on causality, it does suggest a 
relationship between knee flexion angle and ankle push-off in those with 
post-stroke SKG.

A single parameter to diagnose or identify post-stroke SKG has 
several clinical implications. First, a single parameter would provide a 
means for reconciling the variety of definitions for post-stroke SKG 
(Campanini et al., 2013; Goldberg et al., 2006; Kerrigan et al., 1991; 
Sulzer et al., 2010) under a universal method for diagnosis thereby 
reducing variation across practice. Second, a universally adopted single 
parameter for post-stroke SKG provides a theoretical framework for 
testing causal hypotheses and expose theories to falsification (Popper, 
2005). For example, the relationship between knee flexion angle and 
push-off. Third, it would provide a potential biomarker for clinical use to 
inform and guide treatment planning (FDA-NIH Biomarker Working 
Group, 2016). As noted above, there are many definitions of SKG. At the 
same time, there is a large variance in outcomes from interventions 
(Tenniglo et al., 2023). We undertook this study to come up with a 
simple, single-parameter definition of post-stroke SKG that could help 
homogenize recruitment and allow comparisons between studies. In 
other words, by better defining the problem, we can find a more precise 
solution.

This study has several limitations. Data was extracted from a 
research database where the data was initially collected by separate 
research studies. There may have been variability in the study aims and 
protocols. We attempted to minimize any influences of interventions or 
treatments on participants by only using data from the initial data 
collection time point in a study. While SKG is often considered a simple 
single parameter definition, clinical diagnosis is not solely focused on 
the knee. For instance, our clinical expert examined whole body motion, 
including frontal plane compensations commonly found in SKG 
(Kerrigan et al., 2000; Stanhope et al., 2014), to provide a diagnosis. As 
such, it should be expected that a single-parameter definition would not 
fully overlap with clinical expert opinion. We acknowledge that a multi- 
parameter definition of SKG may have greater agreement with clinical 
expert opinion. It may be that such a grouping may find different phe
notypes of SKG. Another limitation of this study is the dataset. We 
examined 50 participants, which is a relatively large number, but still 
may be insufficient to generalize findings to the entire population. We 
also used a single clinical expert instead of a group of experts. While the 
SKG diagnosis may have differed using more experts, because there is no 
true gold standard, the differences in diagnosis may not significantly 
vary. Given the propensity of approaches towards crowdsourcing and 
artificial intelligence strategies of scouring multiple sources without 
credence to the quality of those sources, the benefit of including a group 
of clinicians over a single experienced one is a topic for future 
investigation.
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Fig. 3. Visualization of clustering by each method: a) bi-sectioning K-means, b) hierarchical clustering, c) spectral clustering, and d) gaussian mixture.
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5. Conclusions

Stiff-Knee gait (SKG) is one of the most common gait disabilities in 
people after stroke, but it lacks an agreed upon definition. The novel 
approach in this work was to compare commonly used diagnostic single 
parameters for SKG in terms of their accuracy and validity based on 
clinical expert diagnosis. We examined gait kinematics and kinetics in a 
group of 50 individuals post stroke (24 with SKG and 26 without SKG). 
We found that the between-limb difference in peak knee flexion angle 
was the highest performing single parameter. However, at comfortable 
gait speed, paretic peak knee flexion alone performed nearly as well. We 
found single parameter thresholds of less than 44.3◦ peak knee flexion 
angle and greater than 17.0◦ between-limb difference of peak knee 
flexion angle were appropriate thresholds for post-stroke SKG at 
comfortable walking speed. This systematic approach towards quanti
tative SKG diagnosis leads towards more clinical consistency and better 
homogeneity for future study.
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Goldberg, S.R., Õunpuu, S., Arnold, A.S., Gage, J.R., Delp, S.L., 2006. Kinematic and 
kinetic factors that correlate with improved knee flexion following treatment for 
stiff-knee gait. J. Biomech. 39, 689–698. https://doi.org/10.1016/j. 
jbiomech.2005.01.015.

Hancock, G.E., Hepworth, T., Wembridge, K., 2018. Accuracy and reliability of knee 
goniometry methods. J. Exp. Orthop. 5, 46. https://doi.org/10.1186/s40634-018- 
0161-5.

Hsu, A.-L., Tang, P.-F., Jan, M.-H., 2003. Analysis of impairments influencing gait 
velocity and asymmetry of hemiplegic patients after mild to moderate stroke1. Arch. 
Phys. Med. Rehabil. 84, 1185–1193. https://doi.org/10.1016/S0003-9993(03) 
00030-3.

Jaccard, P., 1901. Distribution de la flore alpine dans le bassin des Dranses et dans 
quelques régions voisines. Bull Soc Vaudoise Sci Nat 37, 241–272.

Jain, A.K., Dubes, R.C., 1988. Algorithms for Clustering Data. Prentice-Hall, Inc.
Jonkers, I., Stewart, C., Desloovere, K., Molenaers, G., Spaepen, A., 2006. Musculo- 

tendon length and lengthening velocity of rectus femoris in stiff knee gait. Gait 
Posture 23, 222–229. https://doi.org/10.1016/j.gaitpost.2005.02.005.

Kerrigan, D.C., Gronley, J., Perry, J., 1991. STIFF-LEGGED GAIT IN SPASTIC PARESIS a 
study of quadriceps and hamstrings muscle activity. Am. J. Phys. Med. Rehabil. 70, 
294.

Kerrigan, D.C., Roth, R.S., Riley, P.O., 1998. The modelling of adult spastic paretic stiff- 
legged gait swing period based on actual kinematic data. Gait Posture 7, 117–124. 
https://doi.org/10.1016/S0966-6362(97)00040-4.

Kerrigan, D.C., Frates, E.P., Rogan, S., Riley, P.O., 2000. Hip hiking and circumduction: 
quantitative definitions. Am. J. Phys. Med. Rehabil. 79, 247–252. https://doi.org/ 
10.1097/00002060-200005000-00006.

Kim, C.M., Eng, J.J., 2004. Magnitude and pattern of 3D kinematic and kinetic gait 
profiles in persons with stroke: relationship to walking speed. Gait Posture 20, 
140–146. https://doi.org/10.1016/j.gaitpost.2003.07.002.

Lewerenz, A., Wolf, S.I., Dreher, T., Krautwurst, B.K., 2019. Performance of stair 
negotiation in patients with cerebral palsy and stiff knee gait. Gait Posture 71, 
14–19. https://doi.org/10.1016/j.gaitpost.2019.04.005.

Mazzoli, D., Giannotti, E., Manca, M., Longhi, M., Prati, P., Cosma, M., Ferraresi, G., 
Morelli, M., Zerbinati, P., Masiero, S., Merlo, A., 2018. Electromyographic activity of 
the vastus intermedius muscle in patients with stiff-knee gait after stroke. A 
retrospective observational study. Gait Posture 60, 273–278. https://doi.org/ 
10.1016/j.gaitpost.2017.07.002.

McLachlan, G.J., 1992. Cluster analysis and related techniques in medical research. Stat. 
Methods Med. Res. 1, 27–48. https://doi.org/10.1177/096228029200100103.

Ng, A., Jordan, M., Weiss, Y., 2001. On spectral clustering: Analysis and an algorithm. In: 
Advances in Neural Information Processing Systems. MIT Press.

Perry, J., Burnfield, J.M., 2010. Gait analysis: Normal and pathological function. 
J. Sports Sci. Med. 9, 353.

Popper, K., 2005. The Logic of Scientific Discovery. Routledge.
Reinbolt, J.A., Fox, M.D., Arnold, A.S., Õunpuu, S., Delp, S.L., 2008. Importance of 

preswing rectus femoris activity in stiff-knee gait. J. Biomech. 41, 2362–2369. 
https://doi.org/10.1016/j.jbiomech.2008.05.030.

Riley, P.O., Kerrigan, D.C., 1999. Kinetics of stiff-legged gait: induced acceleration 
analysis. IEEE Trans. Rehabil. Eng. 7, 420–426. https://doi.org/10.1109/86.808945.

Rosenberg, A., Hirschberg, J., 2007. V-measure: a conditional entropy-based external 
cluster evaluation measure. In: Proceedings of the 2007 Joint Conference on 
Empirical Methods in Natural Language Processing and Computational Natural 
Language Learning (EMNLP-CoNLL), pp. 410–420.

Royer, T.D., Martin, P.E., 2005. Manipulations of leg mass and moment of inertia: effects 
on energy cost of walking. Med. Sci. Sports Exerc. 37, 649–656. https://doi.org/ 
10.1249/01.mss.0000159007.56083.96.

Shorter, K.A., Wu, A., Kuo, A.D., 2017. The high cost of swing leg circumduction during 
human walking. Gait Posture 54, 265–270. https://doi.org/10.1016/j. 
gaitpost.2017.03.021.

Stanhope, V.A., Knarr, B.A., Reisman, D.S., Higginson, J.S., 2014. Frontal plane 
compensatory strategies associated with self-selected walking speed in individuals 
post-stroke. Clin. Biomech. 29, 518–522. https://doi.org/10.1016/j. 
clinbiomech.2014.03.013.

Steinley, D., 2004. Properties of the Hubert-arable adjusted Rand index. Psychol. 
Methods 9, 386–396. https://doi.org/10.1037/1082-989X.9.3.386.

Sullivan, G.M., Feinn, R., 2012. Using effect size—or why the P value is not enough. 
J. Grad. Med. Educ. 4, 279–282. https://doi.org/10.4300/JGME-D-12-00156.1.

Sulzer, J.S., Gordon, K.E., Dhaher, Y.Y., Peshkin, M.A., Patton, J.L., 2010. Preswing knee 
flexion assistance is coupled with hip abduction in people with stiff-knee gait after 
stroke. Stroke 41, 1709–1714. https://doi.org/10.1161/STROKEAHA.110.586917.

Sutherland, D.H., Santi, M., Abel, M.F., 1990. Treatment of stiff-knee gait in cerebral 
palsy: a comparison by gait analysis of distal rectus Femoris transfer versus proximal 
rectus release. J. Pediatr. Orthop. 10, 433.

Tenniglo, M.J.B., Nene, A.V., Rietman, J.S., Buurke, J.H., Prinsen, E.C., 2023. The effect 
of botulinum toxin type a injection in the rectus Femoris in stroke patients walking 
with a stiff knee gait: a randomized controlled trial. Neurorehabil. Neural Repair 37, 
640–651. https://doi.org/10.1177/15459683231189712.

Vinh, N.X., Epps, J., Bailey, J., 2010. Information theoretic measures for clusterings 
comparison: variants, properties, normalization and correction for chance. J. Mach. 
Learn. Res. 11, 2837–2854.

Ward Jr., J.H., 1963. Hierarchical grouping to optimize an objective function. J. Am. 
Stat. Assoc. 58, 236–244. https://doi.org/10.1080/01621459.1963.10500845.

Wu, J., Xiong, H., Chen, J., 2009. Adapting the Right Measures for K-Means Clustering, 
in: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, KDD ‘09. Association for Computing Machinery, New 
York, NY, USA, pp. 877–886. https://doi.org/10.1145/1557019.1557115.

J. Lee et al.                                                                                                                                                                                                                                       Clinical Biomechanics 120 (2024) 106351 

8 

https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105035
https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105035
https://doi.org/10.1186/s13643-019-1063-z
https://doi.org/10.1016/S0021-9290(03)00106-4
https://doi.org/10.1016/S0021-9290(03)00106-4
https://doi.org/10.1016/j.jbiomech.2005.01.015
https://doi.org/10.1016/j.jbiomech.2005.01.015
https://doi.org/10.1186/s40634-018-0161-5
https://doi.org/10.1186/s40634-018-0161-5
https://doi.org/10.1016/S0003-9993(03)00030-3
https://doi.org/10.1016/S0003-9993(03)00030-3
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0095
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0095
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0100
https://doi.org/10.1016/j.gaitpost.2005.02.005
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0110
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0110
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0110
https://doi.org/10.1016/S0966-6362(97)00040-4
https://doi.org/10.1097/00002060-200005000-00006
https://doi.org/10.1097/00002060-200005000-00006
https://doi.org/10.1016/j.gaitpost.2003.07.002
https://doi.org/10.1016/j.gaitpost.2019.04.005
https://doi.org/10.1016/j.gaitpost.2017.07.002
https://doi.org/10.1016/j.gaitpost.2017.07.002
https://doi.org/10.1177/096228029200100103
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0145
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0145
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0150
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0150
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0155
https://doi.org/10.1016/j.jbiomech.2008.05.030
https://doi.org/10.1109/86.808945
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0170
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0170
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0170
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0170
https://doi.org/10.1249/01.mss.0000159007.56083.96
https://doi.org/10.1249/01.mss.0000159007.56083.96
https://doi.org/10.1016/j.gaitpost.2017.03.021
https://doi.org/10.1016/j.gaitpost.2017.03.021
https://doi.org/10.1016/j.clinbiomech.2014.03.013
https://doi.org/10.1016/j.clinbiomech.2014.03.013
https://doi.org/10.1037/1082-989X.9.3.386
https://doi.org/10.4300/JGME-D-12-00156.1
https://doi.org/10.1161/STROKEAHA.110.586917
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0205
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0205
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0205
https://doi.org/10.1177/15459683231189712
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0215
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0215
http://refhub.elsevier.com/S0268-0033(24)00183-9/rf0215
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1145/1557019.1557115

	Between-limb difference in peak knee flexion angle can identify persons post-stroke with Stiff-Knee gait
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 Data collection
	2.3 Data analysis
	2.4 Gait parameters associated with post-stroke SKG
	2.5 Univariate clustering
	2.6 Cluster validity analysis
	2.7 Cutoff value
	2.8 Statistics

	3 Results
	4 Discussion
	5 Conclusions
	Human ethics and consent to participate declarations
	Funding statement declaration
	Contribution
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A Supplementary data
	References


