ELSEVIER

Contents lists available at ScienceDirect

## Journal of Biomechanics

journal homepage: www.elsevier.com/locate/jbiomech



# The influence of load carriage and prosthetic foot type on measures of biomechanical demand

Aude S. Lefranc <sup>a</sup>, Glenn K. Klute <sup>b,c</sup>, Richard R. Neptune <sup>a,\*</sup>

- <sup>a</sup> Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
- <sup>b</sup> Department of Veteran Affairs, Center for Limb Loss and MoBility, Seattle, WA, USA
- <sup>c</sup> Department of Mechanical Engineering, University of Washington, Seattle, WA, USA

#### ARTICLE INFO

#### Keywords: Lower limb amputation Load carriage Gait, Biomechanics Muscle function Modeling and simulation

#### ABSTRACT

Individuals with transtibial amputation (TTA) are at increased risk for conditions such as intact-limb osteoarthritis and fatigue, likely due to elevated joint loading and metabolic cost compared to unimpaired individuals. These risks are amplified during load carriage, as individuals with TTA lack residual limb ankle plantarflexors and rely more heavily on their intact limb to meet increased mechanical demands. This study used musculoskeletal modeling and simulation to evaluate how different prosthetic feet and load carriage positions affect biomechanical demand during steady-state walking. Measures included total metabolic cost, individual muscle contributions to metabolic cost, and intact limb axial knee joint impulses. Walking data were collected from five individuals with TTA across five loading conditions (no-load and 30 lbs. carried as a front-, back-, intact-side-, or residual-side-load) while wearing four prosthetic feet (a passive standard-of-care foot, a stiffer foot, a heelwedge-modified foot, and a dual-keel foot). Two participants also completed additional trials using a powered ankle-foot prosthesis. Front-load carriage resulted in the highest metabolic cost  $(7.56 \pm 0.40 \text{ W} * \text{kg}^{-1})$  while back-load carriage had the lowest (6.34  $\pm$  0.38 W \* kg $^{-1}$ ). Key contributors to increased metabolic cost included the gastrocnemius, soleus, gluteus maximus and gluteus medius. Front-load carriage had the lowest intact knee joint impulse (16.56  $\pm$  1.33 N \* s \* kg $^{-1}$ ) while intact-side-load carriage had the highest (20.60  $\pm$  1.39 N \* s \* kg<sup>-1</sup>). The optimal prosthetic foot varied greatly depending on load carriage position or biomechanical demand. These findings highlight the importance of tailoring both load carriage strategies and prosthetic foot prescriptions to the individual to optimize outcomes.

#### 1. Introduction

Individuals with a unilateral transtibial amputation (TTA) often experience altered gait mechanics including bilateral asymmetries (Sanderson & Martin, 1997), reduced walking speed (Robinson et al., 1987) and altered residual limb muscle activity (Winter & Sienko, 1988). Consequently, individuals with TTA are at increased risk of developing secondary disorders such as osteoarthritis in the intact limb and also tend to experience higher metabolic costs and fatigue compared to non-amputees (Burke et al., 1978; Gailey et al., 1994; Waters et al., 1976).

For non-amputees, carrying a load while walking results in significantly larger metabolic costs and increased heart rates relative to unloaded walking (Knapik et al., 2004; Quesada et al., 2000; Silder

et al., 2013). Further, load carriage results in increased peak ground reaction forces (GRFs), loading rates and joint loads (Polcyn et al., 2002; Silder et al., 2013), which have been associated with lower limb injuries and increased osteoarthritis risk (Baliunas et al., 2002; Grimston et al., 1991). Children and objects can be carried in different ways, but perhaps the most common methods include posteriorly in a backpack, anteriorly in a sling or with arms, or asymmetrically with arms on either side (Coleman et al., 2015; Knapik et al., 2004). While most load carriage studies have focused on the effects of a back load or a combined front and back load, the effects of side or front load carriage alone remain relatively unknown.

Load carriage during walking presents an even greater challenge for individuals with TTA due to the functional loss of the ankle plantarflexors. Passive energy storage and return (ESAR) feet have been

E-mail address: rneptune@mail.utexas.edu (R.R. Neptune).

<sup>\*</sup> Corresponding author at: Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712-1591, USA.

designed with the intent of facilitating natural gait by seeking to replicate the biomechanical contributions of the ankle joint to tasks such as body support, forward propulsion and balance control. Clinicians typically prescribe the stiffness of ESAR feet based on an individual's anticipated activity level and body weight. While non-amputees modulate their ankle stiffness during loaded walking (Kern et al., 2019; Shamaei et al., 2013), the ESAR foot stiffness is constant and cannot adapt to accommodate load variations or as task demands change throughout the gait cycle. Thus, gradual weight changes often require refitting with a new prosthetic foot stiffness category, while sudden load changes lead to suboptimal stiffness. Clinicians have several low-cost options for individuals with TTA who routinely carry loads, including the prescription of a stiffer category foot, the addition of a heel wedge to stiffen the heel or the prescription of a dual keel prosthetic foot. During load carriage, a prosthetic foot with greater stiffness would be advantageous (Klodd et al., 2010); conversely, too high of a stiffness without a load is disadvantageous because it results in reduced energy storage and return (Fey et al., 2011). As a result, those using ESAR feet during altered load conditions experience greater metabolic cost, increased intact limb power generation and absorption, and increased prosthetic foot dorsiflexion during late stance (Doyle et al., 2014, 2015; Schnall et al., 2012, 2014).

Analysis of individual muscle and prosthetic ankle contributions to body support and forward propulsion using musculoskeletal modeling and simulation has demonstrated the importance of the ankle plantarflexors in maintaining a natural gait (Silverman & Neptune, 2012; Zmitrewicz et al., 2007). In addition, previous studies have highlighted the critical role of the ankle plantarflexors in maintaining balance control in both the frontal and sagittal planes (Neptune & McGowan, 2011, 2016) and adapting to altered load conditions (McGowan et al., 2008, 2009). Thus, a prosthesis that replicates ankle plantarflexor functionality would be advantageous in reducing biomechanical demand. While the potential benefits of powered-ankle prosthetic feet have been explored (Eilenberg et al., 2010; Herr & Grabowski, 2012; Montgomery & Grabowski, 2018; Sup et al., 2008), it is unclear whether those benefits translate to walking while carrying a load. Clinical trials examining prosthetic foot stiffness and damping have identified significant design trade-offs, with these parameters influencing biomechanical measures such as power generation, loading rate, and self-selected walking speed (Klute, 2023). However, the relationship between load carriage and commercially available prosthetic feet remains unclear.

The purpose of this study was to compare the effects of a range of passive and powered prosthetic feet on biomechanical measures of demand including metabolic cost and joint loading. In addition, the effects of load carriage position on these biomechanical quantities were evaluated for each prosthesis. This work is part of a broader investigation based on a shared dataset (Ardianuari et al., 2025; Lefranc et al., 2024). We anticipated that the feet which provided increased stiffness would result in reduced biomechanical demand relative to the standard-of-care foot during the loaded conditions, while the converse would be true during the unloaded condition. We also anticipated that the powered foot would result in the least biomechanical demand for all loading conditions. Further, we expected that one loading position would result in the least biomechanical demand, thereby being optimal relative to the other positions. Understanding the relationship between prosthetic foot

selection, load carriage position and these biomechanical measures of demand provides valuable insight into prosthetic foot prescription and design, as well as load carriage recommendations. This is essential to reducing fatigue, pain and the risk of developing comorbidities, which will ultimately improve amputee mobility and quality of life.

#### 2. Methods

#### 2.1. Data collection

Data were collected from five individuals (Table 1) with TTA walking at their self-selected walking speed (SSWS) across five overground force plates (AMTI), where the participants were instructed to walk in a straight line across the force plates. Trials were discarded and repeated if the participants were not walking within 10 % of their SSWS or if a trial did not have a single, complete foot contact on a force plate. Individuals were instructed to adjust their speed or starting point until all trials were close enough to their SSWS and each step was placed entirely on a force plate. Kinematic marker data were collected using a modified Plug-in-Gait full-model marker set consisting of sixty-two reflective markers and a 12-camera Vicon system. Electromyography (EMG) data were collected from 13 electrodes on key muscle groups (Lefranc et al., 2024). Twenty trials were collected for each individual, consisting of five loading conditions (no-load, front-load, back-load, intact-side-load and residual-side-load) while wearing four prosthetic feet (a passive clinically prescribed foot [PR], the same prescribed passive foot one category stiffer [SF], their prescribed foot with a heel stiffening wedge [HW] and a dual-keel foot [DK]; Fig. 1; (Klute, 2023)). Two participants also wore a powered ankle-foot prosthesis (PW; Empower, Ottobock) for all loading conditions, thus completing an additional five trials each. A 13.6 kg (30 lb) load was created using sand inside a cylindrical pack, which was placed inside a carrier (Ergobaby, Fig. 2) to be worn by participants. The subject was provided a minimum of 15 min to acclimate to each prosthesis/load combination. Rest breaks were provided as needed at the subject's request.

#### 2.2. Modeling and simulation framework

A generic 23-degree-of-freedom musculoskeletal model with 92 Hill-type musculotendon actuators (OpenSim model gait2392; Delp et al., 2007; Seth et al., 2018; Thelen, 2003) was modified to create a three-dimensional TTA model, as described in Lefranc et al. (2024). To model the various loading conditions, a 13.6 kg body was attached to the front, back, intact- and residual-side of the torso segment of the model with inertial properties adapted from Dembia et al. (2017). The interface between the mass and torso was modelled using a linear spring and damper along the vertical translational degrees of freedom. The spring constant and damping coefficient were adjusted for each subject and experimental condition so that the vertical pack translation closely matched that of the experimental kinematics (average values of  $k=5060 \ +/-468 \ N/m; \ b=319 \ +/-43 \ N \ * s/m).$ 

A representative gait cycle, defined as residual-side heel strike to subsequent residual-side heel strike, was identified from each trial. Simulations of each trial were performed using OpenSim 4.1 (Delp et al., 2007; Seth et al., 2018). Joint angles were determined using an inverse

**Table 1** Subject Demographics.

| Subject                       | Age (years) | Sex    | Height (mm)  | Mass (kg) | Side of amputation | Time since amputation (Years) |
|-------------------------------|-------------|--------|--------------|-----------|--------------------|-------------------------------|
| 1                             | 40          | Male   | 1799         | 101.5     | Left               | 14                            |
| 2                             | 60          | Male   | 1800         | 111.9     | Right              | 3                             |
| 3                             | 39          | Male   | 1712         | 105.7     | Right              | 12                            |
| 4                             | 25          | Female | 1565         | 53.4      | Right              | 24                            |
| 5                             | 43          | Male   | 1820         | 107.0     | Left               | 1                             |
| Mean $\pm$ standard deviation | $41\pm13$   |        | $1739\pm106$ | $96\pm24$ |                    | $11 \pm 9$                    |

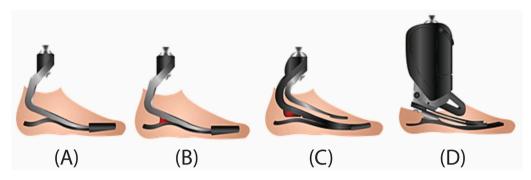



Fig. 1. Clinically prescribed foot and one category stiffer (A; PR, SF), Prescribed foot with heel-stiffening wedge (B; HW) Dual-keel foot (C; DK), and Powered ankle-foot (D; PW).

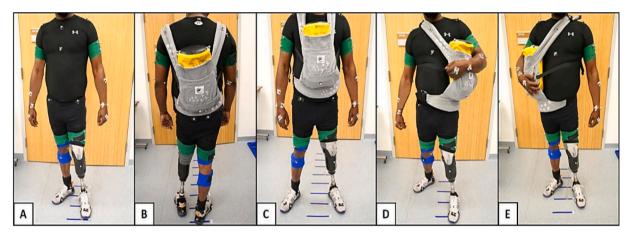



Fig. 2. (A) No-Load, (B) Back-Load, (C) Front-Load, (D) Residual-Side-Load, (E) Intact-Side-Load.

kinematics algorithm, which minimizes marker error between the experimental and model data. A residual reduction algorithm (RRA) was then used to adjust model mass properties and kinematics to ensure dynamic consistency between the GRFs and body segment kinematics. The resulting adjusted kinematics were used for all simulations. A computed muscle control algorithm (Thelen et al., 2003; Thelen and Anderson, 2006) was then used to determine the muscle excitations necessary to reproduce the kinematics obtained from RRA (Fig. 3). Each simulation was validated to confirm that the simulation muscle activations closely aligned with the EMG data, and that the kinematic errors, reserve actuators and residual forces were all within OpenSim's best

practices range (Hicks et al., 2015, Appendix).

#### 2.3. Measures of biomechanical demand

To estimate biomechanical demand, we analyzed metabolic cost and intact knee axial joint loads. To determine the metabolic cost, instantaneous metabolic power for each muscle was determined using the metabolic model by Umberger et al. (Uchida et al., 2016; Umberger, 2010; Umberger et al., 2003). Average metabolic power was calculated by integrating the instantaneous metabolic power  $(\dot{E})$  with respect to time over the gait cycle (Eq. (1)):

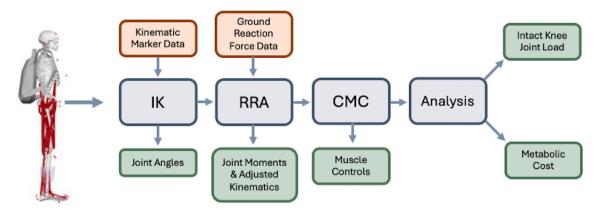



Fig. 3. Computational framework used to generate the simulations. Inverse kinematics (IK) was used to calculate joint angles from the experimental marker data. A residual reduction algorithm (RRA) reduced dynamic inconsistencies between GRFs and body segment kinematics by adjusting model mass properties and the kinematics. Computed muscle control (CMC) identified the muscle controls needed for the simulation to reproduce the experimental kinematics. Analyses were then performed to quantify the biomechanical demand measures of metabolic cost and intact knee joint loading.

$$E_{\rm gc} = \int_0^{t_{\rm g}} \dot{E}(t)dt \tag{1}$$

where  $t_g$  is the gait cycle time. Further, individual muscle contributions to metabolic power were determined by identifying the metabolic power generated by specific functional muscle groups (Table 2). Total average metabolic power (metabolic cost) was determined by summing the contributions from all the individual muscles in the model.

Intact knee axial joint loads were determined using OpenSim's joint reaction analysis tool, and then the joint contact impulse was calculated by time integrating the contact forces over the entire stance phase (Eq. (2):

$$J_{knee} = \int_0^{t_s} F_{knee}(t) dt \tag{2}$$

Both metabolic cost and joint contact impulse were normalized to body mass (no load condition) or body mass plus load.

#### 3. Results

#### 3.1. Total metabolic cost

As expected, the no-load condition resulted in the lowest metabolic cost across all prosthetic feet (5.9  $\pm$  0.3 W  $^{*}$  kg  $^{-1}$ ), followed by back (6.3  $\pm$  0.4 W  $^{*}$  kg  $^{-1}$ ), residual-side (6.8  $\pm$  0.4 W  $^{*}$  kg  $^{-1}$ ), intact-side (6.9  $\pm$  0.8 W  $^{*}$  kg  $^{-1}$ ), and front-load (7.6  $\pm$  0.4 W  $^{*}$  kg  $^{-1}$ ) conditions. The optimal loaded condition which resulted in the lowest metabolic cost was the back-load for the PR, DK and PW feet (6.0, 6.1 and 6.7 W  $^{*}$  kg  $^{-1}$ , respectively), the intact-side-load for the HW foot (5.7 W  $^{*}$  kg  $^{-1}$ ) and the residual-side-load for the SF foot (6.7 W  $^{*}$  kg  $^{-1}$ , Fig. 4). The PW foot had higher metabolic cost across all loading conditions compared to other feet.

#### 3.1.1. Individual muscle contributions to metabolic cost

The largest contributors to metabolic cost in both limbs were HAM, followed by GMAX, GAS, SOL and GMED (Figs. 5 and 6, Tables A1-2). The contributions of the intact- and residual-limb muscles to metabolic cost were often asymmetric, where the intact VAS (VASi) had a higher metabolic cost than the residual VAS (VAS<sub>r</sub>). Conversely, the HAM<sub>r</sub> contributed more to total metabolic cost than the HAM<sub>i</sub>. Relative to the no-load condition, HAM<sub>r</sub>, HAM<sub>i</sub>, RF<sub>r</sub> and RF<sub>i</sub> all responded to back-loads with reduced metabolic cost, while the other loading conditions, particularly the front-load, resulted in increased metabolic cost. GMAX, GMED<sub>i</sub>, VAS<sub>i</sub>, SOL, and GAS all had increased metabolic cost during loading; conversely, IL and VAS<sub>r</sub> were relatively unaffected by load carriage. The contribution of SOL and GAS to the metabolic cost increased more for the intact-side-loading condition than the residualside-loading condition, while the contribution of RF<sub>r</sub> increased more for the residual-side-load condition than the intact-side condition. For most muscles, the front-load condition resulted in the largest increase in metabolic cost.

**Table 2**Functional groups analyzed. Italicized muscles were not included in the residual limb of the amputee model.

| Group | Muscles/actuators                                                   |
|-------|---------------------------------------------------------------------|
| FOOT  | Prosthetic Foot                                                     |
| RF    | Rectus Femoris                                                      |
| VAS   | Vastus Medialis, Vastus Intermedius, Vastus Lateralis               |
| GMAX  | Superior, Middle and Inferior Gluteus Maximus                       |
| GMED  | Anterior, Middle and Posterior Gluteus Medius and Minimus           |
| HAM   | Semimembranosus, Semitendinosus, Biceps Femoris Long Head, Gracilis |
| BFSH  | Biceps Femoris Short Head                                           |
| GAS   | Medial Gastrocnemius, Lateral Gastrocnemius                         |
| SOL   | Soleus, Tibialis Posterior, Flexor Digitorum Longus                 |
| TA    | Tibialis Anterior, Extensor Digitorum Longus                        |

The powered foot condition typically resulted in the greatest metabolic cost for most muscles across loading conditions, except VAS and  $\rm IL_i$  (Figs. 4–6). Further, relative to the PR foot, the SF foot consistently resulted in higher metabolic costs for most muscles, except for the frontload condition. The DK foot consistently produced higher metabolic costs in most muscles for the front-load condition compared to the other feet. The HW foot resulted in lower metabolic cost in both the intact- and residual-side muscles for the intact-side-load, while resulting in increased cost for the residual-side-load compared to the other feet.

#### 3.2. Axial intact knee joint impulses

As expected, the no-load condition resulted in the lowest average axial intact knee joint contact force impulses for all prostheses (Fig. 7). Of the loaded conditions, the intact-side-load resulted in the greatest intact knee impulses, followed by the residual-side-load, then the back-and front-loads. The front-load resulted in the smallest knee impulses for the DK, SF and HW feet (17.1, 14.7 and 15.3 N \* s \* kg $^{-1}$ , respectively), while the back-load resulted in the smallest knee impulses for the PW foot (16.7 N \* s \* kg $^{-1}$ ), and the residual-side-load resulted in the smallest impulse for the PR foot (15.9 N \* s \* kg $^{-1}$ ).

The best prosthesis for minimizing intact knee joint impulses was the PW foot for the no-load, back-load and intact-side-load conditions, the SF foot for the front-load condition and the PR foot for the residual-side-load condition (Fig. 7). Compared to the other feet, the HW foot resulted in relatively small knee impulses for the front- and back-loads (15.3 and 17.8 N \* s \* kg $^{-1}$ ), while resulting in relatively large impulses for the intact-side- and residual-side-loads (21.9 and 19.9 N \* s \* kg $^{-1}$ ). The SF foot produced relatively high joint impulses for all conditions besides the front-load condition, where it resulted in relatively small impulses. The PW foot resulted in consistent intact knee impulses across all loading conditions (17.7  $\pm$  0.8 N \* s \* kg $^{-1}$ ).

#### 4. Discussion

The results of this study indicate that the optimal prosthetic foot varies depending on loading position and measure of biomechanical demand (see Table 3). This suggests the need for patient-specific prescription as there was a large range of responses to each prosthetic foot. Increases in knee joint impulses resulting from a prosthetic foot or loading condition did not always correspond to increased metabolic cost, suggesting that variations in muscle coordination and walking mechanics caused these two measures of biomechanical demand to diverge. This also suggests that a prosthetic foot that is optimal for one metric may not be optimal for the other and foot prescription should be modified to target specific objectives.

The SF foot produced relatively high biomechanical demand for all conditions except during front-load carriage, suggesting that it may be detrimental for most prosthesis users, even under load-carriage conditions. We also found that the PW foot typically resulted in slightly lower intact knee impulses relative to the PR foot. Contrary to previous work (Esposito et al., 2016; Montgomery & Grabowski, 2018), the PW foot typically resulted in increased metabolic cost, particularly from HAM, RF and GMAX. Based on these outcomes, a standard PR foot may be advantageous in broadly reducing biomechanical demand, while a PW foot may be beneficial for those at risk of developing intact knee osteoarthritis.

While we observed a relationship between biomechanical demand and load position, the load position that was optimal for minimizing one measure of demand was not necessarily optimal for minimizing other measures. For individuals experiencing fatigue, carrying loads on their back may help minimize metabolic cost, while carrying a front-load may worsen fatigue. For individuals with intact knee pain or osteoarthritis, the results suggest that the front- and back-loading positions are optimal for reducing intact knee impulses, while carrying intact-side-loads may exacerbate knee pain.

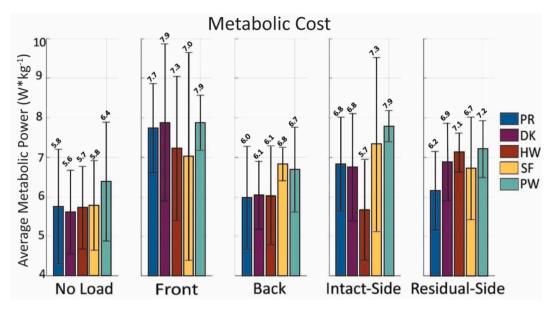



Fig. 4. Metabolic cost  $\pm$  one standard deviation across a gait cycle for five different loading conditions (unloaded, front, back, intact-side and residual-side loads). Prostheses evaluated include prescribed (PR), dual-keel (DK), prescribed with heel-wedge (HW), one category stiffer (SF) and Empower (Ottobock, Austin, TX) powered foot (PW).

#### 4.1. Metabolic cost

We found that all loading conditions required increased metabolic cost, consistent with previous work (Fallowfield et al., 2012; Schnall et al., 2012). Further, the front-load condition resulted in the greatest total metabolic cost, while the back-load condition resulted in the least. Previous studies have demonstrated the importance of the ankle plantarflexors (SOL and GAS) in producing the second vertical GRF peak and accelerating the COM during the second half of stance (Liu et al., 2006; McGowan et al., 2010; Neptune et al., 2001). In addition, GAS and SOL provide increased body support during load carriage (McGowan et al., 2010; Silder et al., 2013). Similarly, we found that the contributions to metabolic cost from GAS and SOL both increased in response to all loading conditions. Previous work has indicated that GMED and GMAX are primary contributors to load acceptance and body weight support during the first half of stance (McGowan et al., 2010), which is consistent with our results. Further, the participants demonstrated increased contributions from GMED; and GMAX; to metabolic cost relative to GMED<sub>r</sub> and GMAX<sub>r</sub>. These results suggest that individuals with TTA depend more heavily on their intact limb than their residual limb to accommodate increased loads.

We expected to see increased metabolic cost from HAM during the front-load condition and a reduced contribution to metabolic cost during the back-load condition, since HAM has been shown to be a key contributor to generating backward angular momentum in early stance (Neptune & McGowan, 2011). Indeed, HAM metabolic cost was greatest for the front-load condition and smallest for the back-load condition. Similarly, GMAX demonstrated increased metabolic cost during the front-load condition. This may reflect an attempt to increase muscle contributions to support, thus generating greater backwards angular momentum, which is consistent with a prior analysis using the same dataset (Lefranc et al., 2024). The increased metabolic cost from the hipextensors (GMAX and HAM) in combination with increased hip-flexor activity from RF suggests increased co-contraction at the hip during the front-load condition. Increased co-contraction is more commonly observed in individuals with orthopedic injuries or neuromuscular disorders to compensate for lack of joint stability (Higginson et al., 2006; Lamontagne et al., 2000; McGinnis et al., 2013; Rudolph et al., 2000). While co-contraction has been reported to increase joint stiffness and potentially leads to improved stability (Latash & Huang, 2015), it also results in increased metabolic cost (Moore et al., 2014). This suggests that individuals carrying front-loads may have increased perception of instability and may respond by stiffening their hip.

VAS metabolic cost was generally unaffected by load carriage, contrary to previous studies that found increased VAS activity in response to carrying a load (McGowan et al., 2010; Silder et al., 2013). However, Lefranc et al. (2024) found that VAS contributions to support and propulsion did not increase notably during load carriage, and therefore metabolic cost was relatively unchanged. These results suggest that the participants in the present study responded to load carriage by modulating other muscles rather than VAS.

We found that the PW foot did not reduce the metabolic cost. This result was consistent with some previous studies (e.g., Kim et al., 2021) but differed from others (e.g., Esposito et al., 2016; Herr & Grabowski, 2012). These discrepancies may be due to limited acclimatization time, suboptimal tuning of the prosthesis control algorithm, or differences in participant characteristics such as age and activity level. For instance, both Herr & Grabowski (2012) and Esposito et al. (2016) allowed for relatively long acclimatization periods (2 h and 3 weeks, respectively), and Esposito's participants were notably younger, with an average age of 29.

#### 4.2. Axial intact knee joint loads

Previous work has indicated that individuals with lower-limb amputations are at increased risk of developing intact knee osteoarthritis due to increased dependence and loading of their intact limb (Burke et al., 1978; Norvell et al., 2005; Struyf et al., 2009). The results of this study indicated that axial loading impulses in the intact knee were greater during load carriage than during the no-load condition, and specifically the intact-side-load condition produced the highest intact knee joint loads. Consequently, amputees who carry loads during activities of daily living, particularly on the intact-side, may be at an increased risk of developing intact knee pain and ultimately osteoarthritis (Burke et al., 1978; Norvell et al., 2005; Struyf et al., 2009).

These results appear to conflict with the findings of Ardianuari et al. (2025), who reported that the external knee adduction moment (KAM) on the intact limb was lowest during the intact-side-loading condition. While KAM serves as a proxy for medial compartment loading, it is highly sensitive to the direction of the GRFs relative to the knee joint

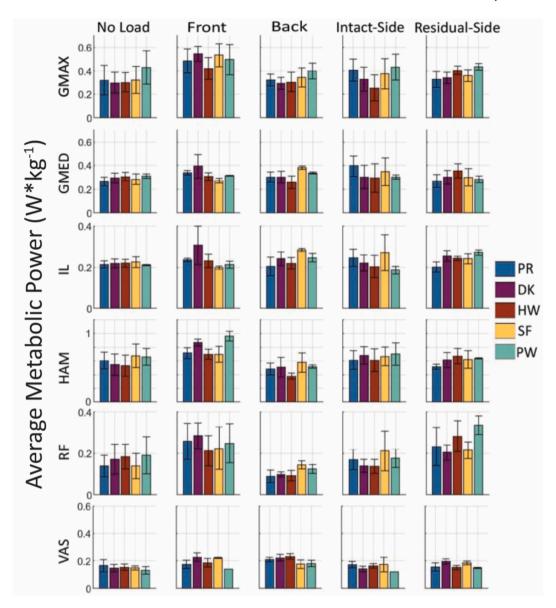



Fig. 5. Residual limb metabolic cost  $\pm$  one standard deviation across a gait cycle for GMAX, GMED, IL, HAM, RF and VAS across five different loading conditions (unloaded, front, back, intact-side and residual-side loads). Prostheses evaluated include prescribed (PR), dual-keel (DK), prescribed with heel-wedge (HW), one category stiffer (SF) and Empower (Ottobock, Austin, TX) powered foot (PW).

center and is not a direct measurement of total axial knee loading. Further, knee load estimates derived from musculoskeletal modeling capture the effects of compressive forces generated from muscles, providing a more comprehensive representation of joint loading.

Of the loaded conditions, the front-load condition had the lowest axial intact knee impulses for most prosthetic feet. Since GAS has been shown to be a primary contributor to knee joint loads (Sasaki & Neptune, 2010), reduced knee impulses may be due to reduced GAS contributions to support and propulsion, which is consistent with our previous findings (Lefranc et al., 2024).

The PW foot often resulted in the lowest intact knee impulses. Previous work has indicated that during early stance, VAS is the largest contributor to knee joint loads followed by RF (Sasaki & Neptune, 2010). Since the PW foot also resulted in reduced VAS contributions to metabolic cost, as well as reduced VAS and RF muscle contributions to support (Lefranc et al., 2024), VAS and RF are likely responsible for the reduced axial intact knee joint impulses observed in the PW foot.

#### 5. Conclusion

This study highlights the complex interaction between prosthetic foot type, load carriage position, and biomechanical demand in individuals with TTA. While the PR foot may offer broad benefits, the PW foot may better suit users concerned with intact knee loading. Similarly, back- and front-load positions may be preferred depending on whether metabolic efficiency or knee joint protection is prioritized. Patients prone to fatigue may benefit from back-load carriage, while those at risk of knee pain should avoid intact-side load carriage. These results emphasize that there is no universal optimal prosthetic foot, thus prescriptions should be individualized and tailored to each user's biomechanical needs and risk factors. Future prosthetic designs should incorporate adaptable stiffness that responds to activity, load carriage, and environmental demands.

#### 6. Limitations

Due to COVID-19-related challenges and the extensive nature of the

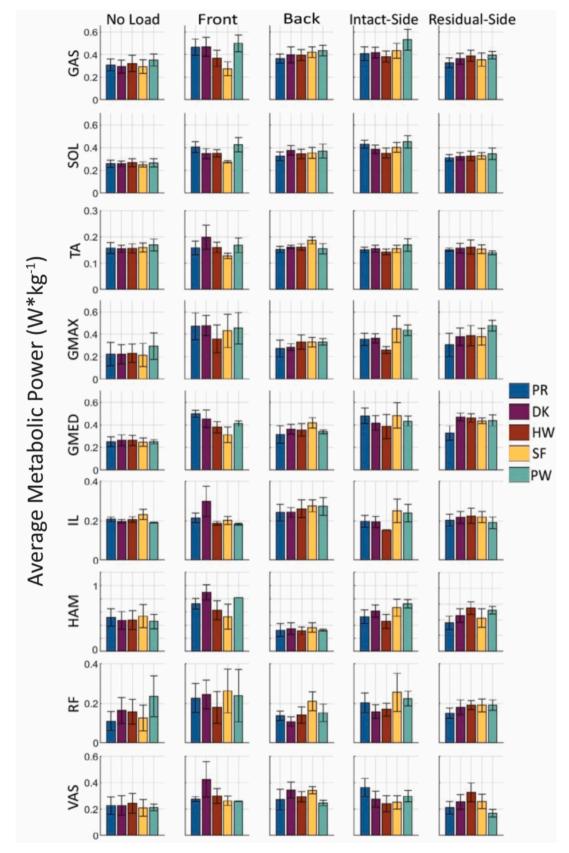



Fig. 6. Intact limb metabolic cost  $\pm$  one standard deviation across a gait cycle for GAS, SOL, TA, GMAX, GMED, IL, HAM, RF and VAS across five different loading conditions (unloaded, front, back, intact-side and residual-side loads). Prostheses evaluated include prescribed (PR), dual-keel (DK), prescribed with heel-wedge (HW), one category stiffer (SF) and Empower (Ottobock, Austin, TX) powered foot (PW).

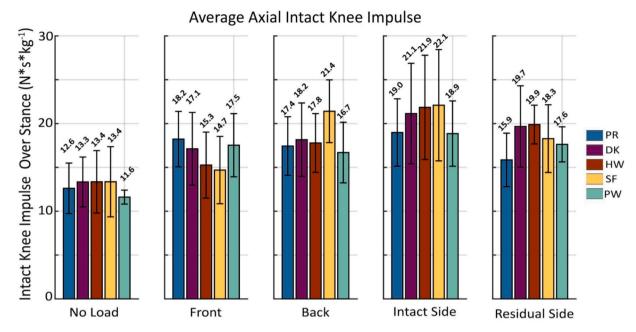



Fig. 7. Average axial intact knee impulses  $\pm$  one standard deviation across the stance phase of a gait cycle for five different loading conditions (unloaded, front, back, intact-side and residual-side loads). Prostheses evaluated include prescribed (PR), dual-keel (DK), prescribed with heel-wedge (HW), one category stiffer (SF) and Empower (Ottobock, Austin, TX) powered foot (PW).

# Table 3 Prosthetic foot which performed the best for each load carriage position and measure of biomechanical demand. Feet evaluated included a clinically prescribed energy-storage and return foot (PR), a one-category stiffer than prescribed foot (SF), a dual-keel foot (DK), a prescribed foot with a heel-stiffening wedge (HW) and a powered-ankle prosthetic foot (PW).

|                   | No-<br>load | Front-<br>load | Back-<br>load | Intact-side-<br>load | Residual-side-<br>load |
|-------------------|-------------|----------------|---------------|----------------------|------------------------|
| Metabolic cost    | DK          | SF             | PR            | HW                   | PR                     |
| Axial intact knee | PW          | SF             | PW            | PW                   | PR                     |

protocol, recruiting participants who could safely complete the study was difficult, resulting in below-target enrollment. Further, due to the build height of the PW foot, most participants did not have enough pylon length to use the PW foot, so data were only collected from two participants. Further research with more participants is recommended to generalize the findings. For further discussion of limitations related to sample size, acclimation, data collection and modeling, please see Lefranc et al. (2024).

### Appendix

#### CRediT authorship contribution statement

Aude S. Lefranc: Writing – original draft, Visualization, Validation, Software, Investigation, Formal analysis. Glenn K. Klute: Writing – review & editing, Project administration, Methodology, Investigation, Funding acquisition, Data curation, Conceptualization. Richard R. Neptune: Writing – review & editing, Supervision, Resources, Project administration, Methodology, Investigation, Funding acquisition, Conceptualization.

#### Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

#### Acknowledgements

This research was supported in part by awards IO1 RX003138 and IK6 RX002974 from the United States Department of Veterans Affairs Rehabilitation Research, Development and Translation.

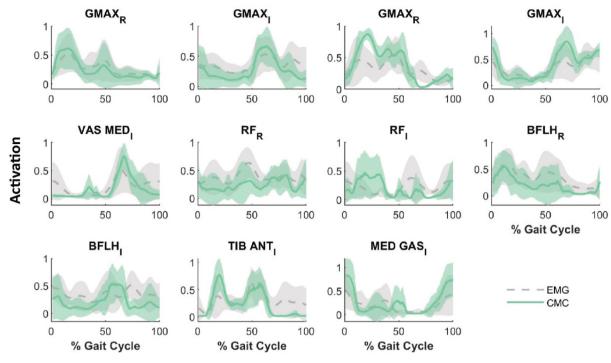



Fig. A1. Normalized CMC-derived muscle activation patterns (solid line) compared to electromyography (EMG) data (dashed line) averaged across all participants walking with no load with their prescribed foot. Shaded regions represent  $\pm$  1 standard deviation.

Table A1 Means and standard deviations for individual muscle contributions to metabolic cost in the residual limb (N \* s \* kg $^{-1}$ ).

| Group              | Foot | No load                            | Front                              | Back                               | Intact-side                        | Residual-side                      |
|--------------------|------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| $GMAX_r$           | PR   | $0.32 \pm 0.13$                    | $0.48 \pm 0.10$                    | $0.31\pm0.06$                      | $0.41\pm0.09$                      | $0.35\pm0.05$                      |
|                    | DK   | $0.30\pm0.09$                      | $0.54\pm0.06$                      | $0.30\pm0.05$                      | $0.33\pm0.10$                      | $0.34 \pm 0.05$                    |
|                    | HW   | $0.30\pm0.08$                      | $0.42\pm0.09$                      | $0.31\pm0.08$                      | $0.26\pm0.11$                      | $0.41\pm0.04$                      |
|                    | SF   | $0.32 \pm 0.11$                    | $0.53\pm0.10$                      | $0.35\pm0.08$                      | $0.38\pm0.13$                      | $0.36\pm0.05$                      |
|                    | PW   | $0.43 \pm 0.12$                    | $0.50\pm0.13$                      | $0.40\pm0.07$                      | $0.43 \pm 0.11$                    | $0.43\pm0.03$                      |
| $GMED_r$           | PR   | $0.26\pm0.04$                      | $0.34 \pm 0.02$                    | $0.33 \pm 0.04$                    | $0.40\pm0.09$                      | $0.24\pm0.04$                      |
| GMLDI              | DK   | $0.30 \pm 0.04$                    | $0.39 \pm 0.10$                    | $0.30 \pm 0.05$                    | $0.30 \pm 0.10$                    | $0.30 \pm 0.06$                    |
|                    | HW   | $0.31 \pm 0.03$                    | $0.31 \pm 0.03$                    | $0.26 \pm 0.05$                    | $0.29 \pm 0.12$                    | $0.35 \pm 0.06$                    |
|                    | SF   | $0.28 \pm 0.05$                    | $0.27 \pm 0.02$                    | $0.38 \pm 0.01$                    | $0.35 \pm 0.12$                    | $0.30 \pm 0.07$                    |
|                    | PW   | $0.31\pm0.02$                      | $0.31 \pm 0.00$                    | $0.34 \pm 0.01$                    | $0.30\pm0.02$                      | $0.28\pm0.03$                      |
| 11                 | PR   | $0.21 \pm 0.02$                    | $0.24 \pm 0.01$                    | $0.21 \pm 0.04$                    | $0.25\pm0.04$                      | $0.19 \pm 0.04$                    |
| $IL_r$             | DK   | $0.21 \pm 0.02$ $0.22 \pm 0.02$    | $0.24 \pm 0.01$<br>$0.31 \pm 0.09$ | $0.21 \pm 0.04$<br>$0.24 \pm 0.03$ | $0.25 \pm 0.04$<br>$0.22 \pm 0.04$ | $0.19 \pm 0.04$<br>$0.25 \pm 0.03$ |
|                    | HW   | $0.22 \pm 0.02$<br>$0.22 \pm 0.02$ | $0.31 \pm 0.09$<br>$0.23 \pm 0.03$ | $0.24 \pm 0.03$<br>$0.22 \pm 0.03$ | $0.22 \pm 0.04$<br>$0.20 \pm 0.05$ | $0.23 \pm 0.03$ $0.24 \pm 0.01$    |
|                    | SF   | $0.22 \pm 0.02$<br>$0.23 \pm 0.03$ | $0.20 \pm 0.03$ $0.20 \pm 0.01$    | $0.22 \pm 0.03$<br>$0.28 \pm 0.01$ | $0.20 \pm 0.03$ $0.27 \pm 0.09$    | $0.24 \pm 0.01$ $0.24 \pm 0.02$    |
|                    | PW   | $0.23 \pm 0.03$<br>$0.21 \pm 0.00$ | $0.20 \pm 0.01$<br>$0.21 \pm 0.02$ | $0.25 \pm 0.01$<br>$0.25 \pm 0.02$ | $0.27 \pm 0.09$ $0.19 \pm 0.02$    | $0.24 \pm 0.02$ $0.27 \pm 0.01$    |
|                    | 1 ** | 0.21 ± 0.00                        | 0.21 ± 0.02                        | 0.25 ± 0.02                        | 0.17 ± 0.02                        | 0.27 ± 0.01                        |
| $HAM_r$            | PR   | $0.61 \pm 0.12$                    | $0.71\pm0.08$                      | $0.48 \pm 0.09$                    | $0.62 \pm 0.13$                    | $\textbf{0.54} \pm \textbf{0.03}$  |
|                    | DK   | $0.55\pm0.14$                      | $0.87\pm0.05$                      | $0.51\pm0.15$                      | $0.68 \pm 0.13$                    | $0.62\pm0.11$                      |
|                    | HW   | $0.53\pm0.15$                      | $0.70\pm0.07$                      | $0.38\pm0.05$                      | $0.61\pm0.17$                      | $0.67\pm0.11$                      |
|                    | SF   | $0.68\pm0.18$                      | $0.70\pm0.11$                      | $0.58\pm0.14$                      | $0.67\pm0.13$                      | $0.62\pm0.13$                      |
|                    | PW   | $0.66\pm0.12$                      | $0.96\pm0.07$                      | $0.52\pm0.03$                      | $0.70\pm0.17$                      | $0.64 \pm 0.01$                    |
| $RF_r$             | PR   | $0.14 \pm 0.05$                    | $0.26\pm0.09$                      | $0.09 \pm 0.03$                    | $0.17 \pm 0.05$                    | $0.23\pm0.10$                      |
| -                  | DK   | $0.17\pm0.07$                      | $0.29 \pm 0.06$                    | $0.10\pm0.01$                      | $0.14\pm0.03$                      | $0.20\pm0.04$                      |
|                    | HW   | $0.18 \pm 0.06$                    | $0.21\pm0.07$                      | $0.09 \pm 0.02$                    | $0.14\pm0.03$                      | $0.28 \pm 0.07$                    |
|                    | SF   | $0.14 \pm 0.06$                    | $0.23\pm0.10$                      | $0.14\pm0.02$                      | $0.21\pm0.10$                      | $0.22 \pm 0.04$                    |
|                    | PW   | $0.19 \pm 0.09$                    | $0.25\pm0.09$                      | $0.12\pm0.02$                      | $0.18\pm0.04$                      | $0.34 \pm 0.04$                    |
| VAS <sub>r</sub>   | PR   | $0.17 \pm 0.04$                    | $0.17 \pm 0.03$                    | $0.18 \pm 0.03$                    | $0.17 \pm 0.02$                    | $0.19 \pm 0.03$                    |
| • 110 <sub>T</sub> | DK   | $0.17 \pm 0.04$<br>$0.15 \pm 0.03$ | $0.17 \pm 0.03$<br>$0.23 \pm 0.03$ | $0.10 \pm 0.03$<br>$0.22 \pm 0.03$ | $0.17 \pm 0.02$ $0.14 \pm 0.02$    | $0.19 \pm 0.03$<br>$0.19 \pm 0.02$ |
|                    | HW   | $0.15 \pm 0.03$<br>$0.15 \pm 0.02$ | $0.19 \pm 0.03$                    | $0.22 \pm 0.03$<br>$0.23 \pm 0.02$ | $0.14 \pm 0.02$<br>$0.16 \pm 0.02$ | $0.15 \pm 0.02$<br>$0.15 \pm 0.01$ |
|                    | SF   | $0.15 \pm 0.02$<br>$0.15 \pm 0.01$ | $0.17 \pm 0.03$<br>$0.22 \pm 0.01$ | $0.18 \pm 0.03$                    | $0.10 \pm 0.02$ $0.17 \pm 0.05$    | $0.13 \pm 0.01$<br>$0.18 \pm 0.01$ |
|                    | PW   | $0.13 \pm 0.01$<br>$0.13 \pm 0.03$ | $0.14 \pm 0.00$                    | $0.18 \pm 0.03$<br>$0.18 \pm 0.02$ | $0.17 \pm 0.03$<br>$0.12 \pm 0.00$ | $0.15 \pm 0.01$<br>$0.15 \pm 0.00$ |
|                    | . "  | 0.10 ± 0.00                        | 0.1 . ± 0.00                       | 0.10 ± 0.02                        | 5.12 ± 0.00                        | 3.10 ± 0.00                        |

 $\begin{tabular}{ll} \textbf{Table A2} \\ \textbf{Means and standard deviations for individual muscle contributions to metabolic cost in the intact limb (N * s * kg$^{-1}$).} \\ \end{tabular}$ 

| Foot | No Load                                                                                                                                                                        | Front                                                | Back                                                 | Intact-Side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Residual-Side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PR   | $0.31 \pm 0.05$                                                                                                                                                                | $0.47\pm0.07$                                        | $0.36 \pm 0.04$                                      | $0.41 \pm 0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.34 \pm 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DK   | $0.29 \pm 0.06$                                                                                                                                                                | $0.47\pm0.08$                                        | $0.40\pm0.07$                                        | $0.42\pm0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.36\pm0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| HW   | $0.32\pm0.07$                                                                                                                                                                  | $0.37\pm0.07$                                        | $0.40\pm0.05$                                        | $0.38\pm0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.39\pm0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SF   | $0.29\pm0.06$                                                                                                                                                                  | $0.27\pm0.06$                                        | $0.42\pm0.05$                                        | $0.43\pm0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.36\pm0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PW   | $0.35\pm0.05$                                                                                                                                                                  | $0.50\pm0.07$                                        | $0.43\pm0.05$                                        | $0.53\pm0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.40\pm0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DD.  | 0.06 + 0.00                                                                                                                                                                    | 0.40   0.05                                          | 0.00 + 0.04                                          | 0.40   0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 + 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.32 \pm 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.32 \pm 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.33 \pm 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PW   | $0.25 \pm 0.02$<br>$0.26 \pm 0.04$                                                                                                                                             | $0.27 \pm 0.01$<br>$0.43 \pm 0.06$                   | $0.35 \pm 0.05$<br>$0.37 \pm 0.06$                   | $0.40 \pm 0.04$ $0.45 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.33 \pm 0.03 \\ 0.34 \pm 0.05 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PR   | $0.16\pm0.02$                                                                                                                                                                  | $0.16\pm0.03$                                        | $0.16\pm0.01$                                        | $0.15\pm0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.15\pm0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DK   |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.16\pm0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| HW   | $0.16\pm0.02$                                                                                                                                                                  | $0.16\pm0.02$                                        | $0.16\pm0.01$                                        | $0.14\pm0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.16\pm0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SF   | $0.16\pm0.02$                                                                                                                                                                  | $0.13\pm0.01$                                        | $0.19 \pm 0.01$                                      | $0.15\pm0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.15\pm0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PW   | $0.17\pm0.02$                                                                                                                                                                  | $0.17\pm0.03$                                        | $0.15\pm0.02$                                        | $0.17 \pm 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.14\pm0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.30\pm0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.38 \pm 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.39 \pm 0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.38 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PW   | $0.29 \pm 0.12$                                                                                                                                                                | $0.45 \pm 0.14$                                      | $0.33\pm0.03$                                        | $0.43\pm0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.48\pm0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PR   | $0.25 \pm 0.04$                                                                                                                                                                | $0.50 \pm 0.03$                                      | $0.33 \pm 0.07$                                      | $0.48 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.32 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.47 \pm 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.46 \pm 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.44 \pm 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PW   | $0.25 \pm 0.02$                                                                                                                                                                | $0.41 \pm 0.02$                                      | $0.34 \pm 0.02$                                      | $0.43 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.44 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.17\pm0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.22\pm0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.22\pm0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SF   | $0.23\pm0.02$                                                                                                                                                                  | $0.20\pm0.02$                                        | $0.27\pm0.03$                                        | $0.25\pm0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.22\pm0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PW   | $0.19\pm0.00$                                                                                                                                                                  | $0.18\pm0.00$                                        | $0.27\pm0.04$                                        | $0.24\pm0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.19\pm0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PR   | $0.52 \pm 0.13$                                                                                                                                                                | $0.72 \pm 0.08$                                      | $0.34 \pm 0.09$                                      | $0.53 \pm 0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.35 \pm 0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.46 \pm 0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.55 \pm 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.33 \pm 0.08$ $0.42 \pm 0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.42 \pm 0.12$<br>$0.52 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1 11 | 0.10 ± 0.11                                                                                                                                                                    | 0.02 ± 0.00                                          | 0.00 ± 0.02                                          | 0.72 ± 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02 ± 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PR   | $0.11\pm0.05$                                                                                                                                                                  | $\textbf{0.23} \pm \textbf{0.07}$                    | $0.13 \pm 0.03$                                      | $0.20\pm0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.15\pm0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | $0.16\pm0.07$                                                                                                                                                                  |                                                      | $0.11\pm0.02$                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.18\pm0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| HW   | $0.16\pm0.06$                                                                                                                                                                  | $0.18\pm0.08$                                        | $0.14\pm0.04$                                        | $0.17\pm0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.19\pm0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SF   | $0.13\pm0.06$                                                                                                                                                                  | $0.26\pm0.11$                                        | $0.21\pm0.05$                                        | $0.26\pm0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.19\pm0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PW   | $0.24\pm0.10$                                                                                                                                                                  | $0.24 \pm 0.13$                                      | $0.15\pm0.04$                                        | $0.22\pm0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.19\pm0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DR   | $0.23 \pm 0.07$                                                                                                                                                                | 0.28 ± 0.02                                          | $0.28 \pm 0.07$                                      | 0.36 ± 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.20\pm0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.20 \pm 0.06$<br>$0.25 \pm 0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.25 \pm 0.06$<br>$0.33 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.33 \pm 0.07$<br>$0.26 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PW   | $0.21 \pm 0.03$                                                                                                                                                                | $0.20 \pm 0.00$                                      | $0.25 \pm 0.02$                                      | $0.30 \pm 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.17 \pm 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | PR DK HW SF PW  PR DK HW SF PW | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} \text{PR} & 0.31 \pm 0.05 \\ \text{DK} & 0.29 \pm 0.06 \\ \text{DK} & 0.29 \pm 0.06 \\ \text{DM} & 0.37 \pm 0.07 \\ \text{OM} & 0.40 \pm 0.07 \\ \text{SF} & 0.29 \pm 0.06 \\ \text{OM} & 0.35 \pm 0.05 \\ \text{OSD} & 0.50 \pm 0.07 \\ \text{OM} & 0.35 \pm 0.05 \\ \text{DW} & 0.35 \pm 0.05 \\ \text{OSD} & 0.50 \pm 0.07 \\ \text{OM} & 0.42 \pm 0.05 \\ \text{DW} & 0.35 \pm 0.05 \\ \text{OSD} & 0.50 \pm 0.07 \\ \text{DW} & 0.35 \pm 0.05 \\ \text{DN} & 0.26 \pm 0.02 \\ \text{DN} & 0.26 \pm 0.02 \\ \text{OM} & 0.33 \pm 0.03 \\ \text{DN} & 0.26 \pm 0.02 \\ \text{OM} & 0.35 \pm 0.05 \\ \text{OM} & 0.38 \pm 0.04 \\ \text{HW} & 0.27 \pm 0.03 \\ \text{SF} & 0.25 \pm 0.02 \\ \text{OM} & 0.26 \pm 0.04 \\ \text{DM} & 0.37 \pm 0.06 \\ \text{DW} & 0.26 \pm 0.04 \\ \text{DM} & 0.37 \pm 0.06 \\ \text{DW} & 0.26 \pm 0.04 \\ \text{DM} & 0.16 \pm 0.02 \\ \text{DM} & 0.17 \pm 0.02 \\ \text{DM} & 0.22 \pm 0.08 \\ \text{DM} & 0.37 \pm 0.06 \\ \text{DM} & 0.22 \pm 0.08 \\ \text{DM} & 0.32 \pm 0.06 \\ \text{DM} & 0.22 \pm 0.08 \\ \text{DM} & 0.32 \pm 0.06 \\ \text{DM} & 0.29 \pm 0.12 \\ \text{DM} & 0.29 \pm 0.12 \\ \text{DM} & 0.26 \pm 0.04 \\ \text{DM} & 0.26 \pm 0.05 \\ \text{DM} & 0.26 \pm 0.04 \\ \text{DM} & 0.36 \pm 0.05 \\ \text{DM} & 0.26 \pm 0.05 \\ \text{DM} & 0.36 \pm 0.06 \\ \text{DM} & 0.36$ | $\begin{array}{c} PR & 0.31 \pm 0.05 & 0.47 \pm 0.07 & 0.36 \pm 0.04 & 0.41 \pm 0.06 \\ DK & 0.29 \pm 0.06 & 0.47 \pm 0.08 & 0.40 \pm 0.07 & 0.42 \pm 0.05 \\ DK & 0.29 \pm 0.06 & 0.47 \pm 0.08 & 0.40 \pm 0.07 & 0.42 \pm 0.05 \\ SF & 0.29 \pm 0.06 & 0.27 \pm 0.06 & 0.42 \pm 0.05 & 0.43 \pm 0.05 \\ PW & 0.55 \pm 0.05 & 0.50 \pm 0.07 & 0.43 \pm 0.05 & 0.53 \pm 0.10 \\ PR & 0.26 \pm 0.03 & 0.40 \pm 0.05 & 0.33 \pm 0.04 & 0.43 \pm 0.03 \\ DK & 0.26 \pm 0.02 & 0.35 \pm 0.05 & 0.33 \pm 0.04 & 0.43 \pm 0.03 \\ DK & 0.26 \pm 0.02 & 0.35 \pm 0.05 & 0.33 \pm 0.04 & 0.38 \pm 0.04 \\ HW & 0.27 \pm 0.03 & 0.35 \pm 0.03 & 0.34 \pm 0.04 & 0.38 \pm 0.04 \\ SF & 0.25 \pm 0.02 & 0.27 \pm 0.01 & 0.35 \pm 0.05 & 0.34 \pm 0.04 & 0.35 \pm 0.04 \\ PW & 0.26 \pm 0.02 & 0.27 \pm 0.01 & 0.35 \pm 0.05 & 0.40 \pm 0.05 \\ PR & 0.16 \pm 0.02 & 0.16 \pm 0.03 & 0.16 \pm 0.01 & 0.15 \pm 0.01 \\ DK & 0.15 \pm 0.01 & 0.20 \pm 0.05 & 0.16 \pm 0.01 & 0.15 \pm 0.01 \\ HW & 0.16 \pm 0.02 & 0.16 \pm 0.02 & 0.16 \pm 0.02 & 0.16 \pm 0.01 & 0.15 \pm 0.01 \\ PW & 0.17 \pm 0.02 & 0.17 \pm 0.03 & 0.15 \pm 0.02 & 0.17 \pm 0.03 \\ PR & 0.22 \pm 0.11 & 0.47 \pm 0.12 & 0.28 \pm 0.07 & 0.35 \pm 0.06 \\ DK & 0.15 \pm 0.01 & 0.17 \pm 0.03 & 0.15 \pm 0.02 & 0.17 \pm 0.02 \\ PR & 0.22 \pm 0.18 & 0.48 \pm 0.09 & 0.28 \pm 0.07 & 0.35 \pm 0.06 \\ DK & 0.22 \pm 0.08 & 0.48 \pm 0.09 & 0.28 \pm 0.03 & 0.36 \pm 0.04 \\ PW & 0.23 \pm 0.08 & 0.48 \pm 0.09 & 0.28 \pm 0.03 & 0.36 \pm 0.04 \\ PW & 0.23 \pm 0.08 & 0.48 \pm 0.09 & 0.28 \pm 0.03 & 0.36 \pm 0.04 \\ PW & 0.23 \pm 0.08 & 0.48 \pm 0.09 & 0.28 \pm 0.03 & 0.36 \pm 0.04 \\ PW & 0.23 \pm 0.04 & 0.50 \pm 0.03 & 0.33 \pm 0.04 & 0.45 \pm 0.12 \\ DK & 0.25 \pm 0.04 & 0.50 \pm 0.03 & 0.33 \pm 0.04 & 0.45 \pm 0.12 \\ DK & 0.25 \pm 0.04 & 0.50 \pm 0.03 & 0.33 \pm 0.04 & 0.44 \pm 0.05 \\ PW & 0.29 \pm 0.12 & 0.45 \pm 0.14 & 0.33 \pm 0.05 & 0.38 \pm 0.04 \\ PW & 0.25 \pm 0.04 & 0.31 \pm 0.05 & 0.33 \pm 0.04 & 0.42 \pm 0.06 \\ PW & 0.29 \pm 0.12 & 0.45 \pm 0.14 & 0.33 \pm 0.05 & 0.38 \pm 0.04 \\ PW & 0.25 \pm 0.04 & 0.31 \pm 0.05 & 0.33 \pm 0.04 & 0.42 \pm 0.06 \\ PW & 0.29 \pm 0.01 & 0.19 \pm 0.01 & 0.20 \pm 0.03 & 0.36 \pm 0.04 \\ PW & 0.25 \pm 0.04 & 0.31 \pm 0.05 & 0.33 \pm 0.04 & 0.42 \pm 0.05 \\ PW & 0.29 \pm 0.04 & 0.31 $ |

Table A3 Marker root mean squared (RMS) and standard deviation (STD) kinematic errors (cm, deg) across all participants for model scaling and inverse kinematics (IK) steps.

|                            | Scaling and IK |      |
|----------------------------|----------------|------|
|                            | RMS            | STD  |
| Scaling Marker Errors (cm) | 0.82           | 0.09 |
| IK Marker Errors (cm)      | 1.62           | 0.24 |

#### Table A4

Marker root mean squared (RMS) and standard deviation (STD) kinematic errors (cm, deg), residual forces (N), and residual moments ( $N^*m$ ) across all participants for residual reduction algorithm (RRA) step.

|                        | RRA   |      |  |
|------------------------|-------|------|--|
|                        | RMS   | STD  |  |
| RRA Trans (cm)         | 0.41  | 0.22 |  |
| RRA Rot (deg)          | 0.11  | 0.06 |  |
| Residual Forces (N)    | 5.08  | 2.98 |  |
| Residual Moments (N*m) | 10.12 | 4.38 |  |

#### Table A5

Marker root mean squared (RMS) and standard deviation (STD) kinematic errors (cm, deg), residual forces (N), residual moments (N  $^{*}$  m) and reserve actuator moments (N $^{*}$ m) across all participants and conditions for CMC step.

|                            | CMC   |      |  |
|----------------------------|-------|------|--|
|                            | RMS   | STD  |  |
| CMC Trans (cm)             | 0.02  | 0.01 |  |
| CMC Rot (deg)              | 0.27  | 0.13 |  |
| Residual Forces (N)        | 4.80  | 2.77 |  |
| Residual Moments (N * m)   | 19.29 | 9.00 |  |
| Reserves Actuators (N * m) | 4.94  | 3.29 |  |

#### References

- Ardianuari, S., Morgenroth, D.C., Neptune, R.R., Klute, G.K., 2025. Load carriage influences intact limb knee loading estimate associated with osteoarthritis in individuals with transtibial amputation. Clin. Biomech. 124, 106486. https://doi. org/10.1016/j.clinbiomech.2025.106486.
- Baliunas, A.J., Hurwitz, D.E., Ryals, A.B., Karrar, A., Case, J.P., Block, J.A., Andriacchi, T.P., 2002. Increased knee joint loads during walking are present in subjects with knee osteoarthritis. Osteoarthr. Cartil. 10 (7), 573–579. https://doi. org/10.1053/joca.2002.0797.
- Burke, M.J., Roman, V., Wright, V., 1978. Bone and joint changes in lower limb amputees. Ann. Rheum. Dis. 37 (3), 252–254. https://doi.org/10.1136/ard.37.3.252.
- Coleman, T.J., Hamad, N.M., Shaw, J.M., Egger, M.J., Hsu, Y., Hitchcock, R., Jin, H., Choi, C.K., Nygaard, I.E., 2015. Effects of walking speeds and carrying techniques on intra-abdominal pressure in women. Int. Urogynecol. J. 26 (7), 967–974. https:// doi.org/10.1007/s00192-014-2593-5.
- Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G., 2007. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54 (11), 1940–1950. https:// doi.org/10.1109/TBMF.2007.901024.
- Dembia, C.L., Silder, A., Uchida, T.K., Hicks, J.L., Delp, S.L., 2017. Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads. PLoS One 12 (7). https://doi.org/10.1371/journal.pone.0180320.
- Doyle, S.S., Lemaire, E.D., Besemann, M., Dudek, N.L., 2014. Changes to level ground transtibial amputee gait with a weighted backpack. Clin. Biomech. 29 (2), 149–154. https://doi.org/10.1016/j.clinbiomech.2013.11.019.
- Doyle, S.S., Lemaire, E.D., Besemann, M., Dudek, N.L., 2015. Changes to transtibial amputee gait with a weighted backpack on multiple surfaces. Clin. Biomech. 30 (10), 1119–1124. https://doi.org/10.1016/j.clinbiomech.2015.08.015.
- Eilenberg, M.F., Geyer, H., Herr, H., 2010. Control of a powered ankle-foot prosthesis based on a neuromuscular model. IEEE Trans. Neural Syst. Rehabil. Eng. 18 (2), 164–173. https://doi.org/10.1109/TNSRE.2009.2039620.
- Esposito, E.R., Aldridge Whitehead, J.M., Wilken, J.M., 2016. Step-to-step transition work during level and inclined walking using passive and powered ankle-foot prostheses. Prosth. Orthot. Int. 40 (3), 311–319. https://doi.org/10.1177/ 0309364614564021.
- Fallowfield, J.L., Blacker, S.D., Willems, M.E.T., Davey, T., Layden, J., 2012. Neuromuscular and cardiovascular responses of Royal Marine recruits to load carriage in the field. Appl. Ergon. 43 (6), 1131–1137. https://doi.org/10.1016/j.apergo.2012.04.003
- Fey, N.P., Klute, G.K., Neptune, R.R., 2011. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Clin. Biomech. (Bristol, Avon) 26 (10), 1025–1032. https://doi.org/10.1016/j. clinbiomech.2011.06.007.
- Gailey, R.S., Wenger, M.A., Raya, M., Kirk, N., Erbs, K., Spyropoulos, P., Nash, M.S., 1994. Energy expenditure of trans-tibial amputees during ambulation at self-selected pace. Prosthet. Orthot. Int. 18 (2), 84–91. https://doi.org/10.3109/ 03093649409164389.

- Grimston, S.K., Engsberg, J.R., Kloiber, R., Hanley, D.A., 1991. Bone mass, external loads, and stress fracture in female runners. Int. J. Sport Biomech. 7 (3), 293–302. https://doi.org/10.1123/ijsb.7.3.293.
- Herr, H.M., Grabowski, A.M., 2012. Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation. Proc. R. Soc. B Biol. Sci. 279 (1728), 457–464. https://doi.org/10.1098/rspb.2011.1194.
- Hicks, J.L., Uchida, T.K., Seth, A., Rajagopal, A., Delp, S.L., 2015. Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement. J. Biomech. Eng. 137 (2). https://doi.org/10.1115/ 14020204
- Higginson, J.S., Zajac, F.E., Neptune, R.R., Kautz, S.A., Delp, S.L., 2006. Muscle contributions to support during gait in an individual with post-stroke hemiparesis. J. Biomech. 39 (10), 1769–1777. https://doi.org/10.1016/j.jbiomech.2005.05.032.
- Kern, A.M., Papachatzis, N., Patterson, J.M., Bruening, D.A., Takahashi, K.Z., 2019.
  Ankle and midtarsal joint quasi-stiffness during walking with added mass. PeerJ 7, e7487
- Kim, J., Wensman, J., Colabianchi, N., Gates, D.H., 2021. The influence of powered prostheses on user perspectives, metabolics, and activity: a randomized crossover trial. J. Neuroeng. Rehabil. 18 (1), 49. https://doi.org/10.1186/s12984-021-00842-2
- Klodd, E., Hansen, A., Fatone, S., Edwards, M., 2010. Effects of prosthetic foot forefoot flexibility on gait of unilateral transtibial prosthesis users. J. Rehabil. Res. Dev. 47 (9), 899. https://doi.org/10.1682/JRRD.2009.10.0166.
- Klute, G. K., 2023. Prosthetic Feet. In Foot and Ankle Biomechanics, pp. 749–764. Elsevier. https://doi.org/10.1016/B978-0-12-815449-6.00027-5.
- Knapik, J.J., Reynolds, K.L., Harman, E., 2004. Soldier load carriage: historical, physiological, biomechanical, and medical aspects. Mil. Med. 169 (1), 45–56. https://doi.org/10.7205/MILMED.169.1.45.
- Lamontagne, A., Richards, C.L., Malouin, F., 2000. Coactivation during gait as an adaptive behavior after stroke. J. Electromyogr. Kinesiol. 10 (6), 407–415. https:// doi.org/10.1016/S1050-6411(00)00028-6.
- Latash, M.L., Huang, X., 2015. Neural control of movement stability: Lessons from studies of neurological patients. Neuroscience 301, 39–48. https://doi.org/10.1016/ i.neuroscience.2015.05.075.
- Lefranc, A.S., Klute, G.K., Neptune, R.R., 2024. The influence of load carriage and prosthetic foot type on individual muscle and prosthetic foot contributions to body support and propulsion. J. Biomech. 177, 112379. https://doi.org/10.1016/j. jbiomech.2024.112379.
- Liu, M.Q., Anderson, F.C., Pandy, M.G., Delp, S.L., 2006. Muscles that support the body also modulate forward progression during walking. J. Biomech. 39 (14), 2623–2630. https://doi.org/10.1016/j.jbiomech.2005.08.017.
- McGinnis, K., Snyder-Mackler, L., Flowers, P., Zeni, J., 2013. Dynamic joint stiffness and co-contraction in subjects after total knee arthroplasty. Clin. Biomech. 28 (2), 205–210. https://doi.org/10.1016/j.clinbiomech.2012.11.008.
- McGowan, C.P., Kram, R., Neptune, R.R., 2009. Modulation of leg muscle function in response to altered demand for body support and forward propulsion during walking. J. Biomech. 42 (7), 850–856. https://doi.org/10.1016/j. jbiomech.2009.01.025.

- McGowan, C.P., Neptune, R.R., Clark, D.J., Kautz, S.A., 2010. Modular control of human walking: Adaptations to altered mechanical demands. J. Biomech. 43 (3), 412–419. https://doi.org/10.1016/j.jbiomech.2009.10.009.
- McGowan, C.P., Neptune, R.R., Kram, R., 2008. Independent effects of weight and mass on plantar flexor activity during walking: implications for their contributions to body support and forward propulsion. J. Appl. Physiol. 105 (2), 486–494. https:// doi.org/10.1152/japplohysiol.90448.2008.
- Montgomery, J.R., Grabowski, A.M., 2018. Use of a powered ankle-foot prosthesis reduces the metabolic cost of uphill walking and improves leg work symmetry in people with transtibial amputations. J. R. Soc. Interface 15 (145), 20180442. https://doi.org/10.1098/rsif.2018.0442.
- Moore, I.S., Jones, A.M., Dixon, S.J., 2014. Relationship between metabolic cost and muscular coactivation across running speeds. J. Sci. Med. Sport 17 (6), 671–676. https://doi.org/10.1016/j.jsams.2013.09.014.
- Neptune, R.R., Kautz, S.A., Zajac, F.E., 2001. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J. Biomech. 34 (11), 1387–1398. https://doi.org/10.1016/s0021-9290(01)00105-1.
- Neptune, R.R., McGowan, C.P., 2011. Muscle contributions to whole-body sagittal plane angular momentum during walking. J. Biomech. 44 (1), 6–12. https://doi.org/ 10.1016/j.jbiomech.2010.08.015.
- Neptune, R.R., McGowan, C.P., 2016. Muscle contributions to frontal plane angular momentum during walking. J. Biomech. 49 (13), 2975–2981. https://doi.org/ 10.1016/j.ibiomech.2016.07.016.
- Norvell, D.C., Czerniecki, J.M., Reiber, G.E., Maynard, C., Pecoraro, J.A., Weiss, N.S., 2005. The prevalence of knee pain and symptomatic knee osteoarthritis among veteran traumatic amputees and nonamputees. Arch. Phys. Med. Rehabil. 86 (3), 487–493. https://doi.org/10.1016/j.apmr.2004.04.034.
- Polcyn, A. F., Bensel, C. K., Harman, E. A., Obusek, J. P., Pandorf, C., 2002. Effects of Weight Carried by Soldiers: Combined Analysis of Four Studies on Maximal Performance, Physiology, and Biomechanics.
- Quesada, P.M., Mengelkoch, L.J., Hale, R.C., Simon, S.R., 2000. Biomechanical and metabolic effects of varying backpack loading on simulated marching. Ergonomics 43 (3), 293–309. https://doi.org/10.1080/001401300184413.
- Robinson, R.O., Herzog, W., Nigg, B.M., 1987. Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. J. Manipulative Physiol. Ther. 10 (4), 172–176.
- Rudolph, K.S., Axe, M.J., Snyder-Mackler, L., 2000. Dynamic stability after ACL injury: who can hop? Knee Surg. Sports Traumatol. Arthrosc. 8 (5), 262–269. https://doi. org/10.1007/s001670000130.
- Sanderson, D.J., Martin, P.E., 1997. Lower extremity kinematic and kinetic adaptations in unilateral below-knee amputees during walking. Gait Post. 6 (2), 126–136. https://doi.org/10.1016/S0966-6362(97)01112-0.
- Sasaki, K., Neptune, R.R., 2010. Individual muscle contributions to the axial knee joint contact force during normal walking. J. Biomech. 43 (14), 2780–2784. https://doi. org/10.1016/j.jbiomech.2010.06.011.

- Schnall, B.L., Hendershot, B.D., Bell, J.C., MSE, Wolf, E.J., 2014. Kinematic analysis of males with transtibial amputation carrying military loads. J. Rehabil. Res. Dev. 51 (10), 1505–1514. https://doi.org/10.1682/JRRD.2014.01.0022.
- Schnall, B.L., Wolf, E.J., Bell, J.C., Gambel, J., Bensel, C.K., 2012. Metabolic analysis of male servicemembers with transtibial amputations carrying military loads. J. Rehabil. Res. Dev. 49 (4), 535–544. https://doi.org/10.1682/jrrd.2011.04.0075.
- Seth, A., Hicks, J.L., Uchida, T.K., Habib, A., Dembia, C.L., Dunne, J.J., Ong, C.F., DeMers, M.S., Rajagopal, A., Millard, M., Hamner, S.R., Arnold, E.M., Yong, J.R., Lakshmikanth, S.K., Sherman, M.A., Ku, J.P., Delp, S.L., 2018. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput. Biol. 14 (7). https://doi.org/10.1371/journal.
- Shamaei, K., Sawicki, G.S., Dollar, A.M., 2013. Estimation of quasi-stiffness and propulsive work of the human ankle in the stance phase of walking. PLoS One 8 (3). https://doi.org/10.1371/journal.pone.0059935.
- Silder, A., Delp, S.L., Besier, T., 2013. Men and women adopt similar walking mechanics and muscle activation patterns during load carriage. J. Biomech. 46 (14), 2522–2528. https://doi.org/10.1016/j.jbiomech.2013.06.020.
- Silverman, A.K., Neptune, R.R., 2012. Muscle and prosthesis contributions to amputee walking mechanics: a modeling study. J. Biomech. 45 (13), 2271–2278. https://doi. org/10.1016/j.jbiomech.2012.06.008.
- Struyf, P.A., van Heugten, C.M., Hitters, M.W., Smeets, R.J., 2009. The prevalence of osteoarthritis of the intact hip and knee among traumatic leg amputees. Arch. Phys. Med. Rehabil. 90 (3), 440–446. https://doi.org/10.1016/j.apmr.2008.08.220.
- Sup, F., Bohara, A., Goldfarb, M., 2008. Design and control of a powered transfemoral prosthesis. Int. J. Robot. Res. 27 (2), 263–273. https://doi.org/10.1177/ 0278364907084588
- Thelen, D.G., 2003. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech. Eng. 125 (1), 70–77. https://doi. org/10.1115/1.1531112.
- Uchida, T.K., Hicks, J.L., Dembia, C.L., Delp, S.L., 2016. Stretching your energetic budget: how tendon compliance affects the metabolic cost of running. PLoS One 11 (3), e0150378. https://doi.org/10.1371/journal.pone.0150378.
- Umberger, B.R., 2010. Stance and swing phase costs in human walking. J. R. Soc. Interface 7 (50), 1329–1340. https://doi.org/10.1098/rsif.2010.0084.
- Umberger, B.R., Gerritsen, K.G.M., Martin, P.E., 2003. A model of human muscle energy expenditure. Comput. Methods Biomech. Biomed. Eng. 6 (2), 99–111. https://doi. org/10.1080/1025584031000091678.
- Waters, R.L., Perry, J., Antonelli, D., Hislop, H., 1976. Energy cost of walking of amputees: the influence of level of amputation. J. Bone Joint Surg. Am. 58 (1), 42–46
- Winter, D.A., Sienko, S.E., 1988. Biomechanics of below-knee amputee gait. J. Biomech. 21 (5), 361–367. https://doi.org/10.1016/0021-9290(88)90142-X.
- Zmitrewicz, R.J., Neptune, R.R., Sasaki, K., 2007. Mechanical energetic contributions from individual muscles and elastic prosthetic feet during symmetric unilateral transtibial amputee walking: a theoretical study. J. Biomech. 40 (8), 1824–1831. https://doi.org/10.1016/j.jbiomech.2006.07.009.