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Abstract:  This paper examines the global effects of droughts on economic activity, proxied by 

remote-sensed nighttime lights data. We use two different, comprehensive indices of drought 

severity, one remote-sensed and one constructed from ground-sensed meteorological data, 

contributing to a literature on climate extremes that has previously focused on precipitation, 

rather than drought. Results suggest that moderate-or-worse droughts in the current year reduce 

luminosity by about 1 percent, with smaller but statistically significant impacts under even mild 

and incipient drought conditions. We estimate some lagged effects as well; moderate-or-worse 

droughts may reduce lights up to four years after they occur. We also test for mediating effects of 

access to groundwater resources of varying quality and access to reservoirs impounded by dams. 

We find evidence consistent with both groundwater and dams mitigating droughts’ economic 

impacts, though some of these results are not fully robust to the choice of drought index.  
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1. Introduction and Literature Review 

Drought regularly affects more people than any other natural hazard. The intensity and duration 

of droughts are increasing in many regions as the climate changes (Xu et al. 2019, Caretta et al. 

2022). The frequency of drought events may also increase in some regions, though this potential 

impact is more uncertain (Trenberth et al. 2013, Caretta et al. 2022).  Developing estimates of 

the global impact of these natural hazards on economic activity is thus a critical research goal.  

 Drought’s impacts on agricultural productivity, migration, wages, employment and health 

are well-documented in rural areas in many individual countries (Dercon 2004, Mueller and 

Osgood 2009, Bastos et al. 2013, Hornbeck 2012, Lohmann and Lechtenfeld 2015). In contrast, 

the urban and broader regional economic impacts of drought are less well-understood, as are the 

impacts of this climate extreme on a global scale. The literature demonstrates that dry shocks 

from 2005-2014 in 78 Latin American cities negatively affected employment, wages and other 

labor market outcomes (Desbureaux and Rodella 2019). Water outages in Luska, Zambia 

increased disease incidence, reduced banking transactions, and increased the time spent on 

chores by girls (Ashraf et al. 2021). Drought may also increase local violence and social conflict, 

an effect that appears to be stronger in highly-populated areas (Almer et al. 2017). These are 

several ways in which drought might be expected to reduce economic activity in cities, but 

drought could also conceivably have either positive or negative urban impacts via migration of 

affected populations away from agricultural communities; for example, droughts have been 

shown to increase rural-to-urban migration in Africa (Henderson et al. 2017, Gray and Mueller 

2012) and in Syria (Kelley et al. 2015).  

 In comparison to this rich and growing literature on the economic impacts of rural and, to 

a smaller extent, urban drought, and to the physical science literature establishing clear 

connections between drought and climate change, drought represents a substantial gap in the 

climate-economy literature. The impact of climate-related temperature extremes is well-

explored: higher temperatures have been shown to reduce agricultural productivity (Schlenker 

and Lobell 2010, Schlenker and Roberts 2009, Deschênes and Greenstone 2007) and labor 

productivity (Heal and Park 2014), increase conflict (Hsiang et al. 2011, Burke et al. 2009), and 

reduce overall economic output (Dell et al. 2012). Some of these same studies also test for 

similar impacts of precipitation extremes, and find little notable impact at the global scale, 

concluding that temperature increases are the main economic concern with respect to climate 
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change in these contexts. However, it is important not to conflate the singular parameter of 

precipitation, or even the departure of contemporaneous precipitation from historical averages, 

with drought. Drought is a complex phenomenon that tends to unfold slowly over time. 

Meteorological drought – a condition reflected in the types of anomalous precipitation deficits 

modeled in the prior climate-economy literature – can in some cases affect terrestrial systems 

over time, so that hydrologic drought develops and soil moisture is depleted, though not all 

meteorological droughts propagate in this manner (Zhu et al. 2021). Hydrologic drought can be 

exacerbated by additional evapotranspiration (ET), the transfer of water from land to the 

atmosphere by evaporation from soil and other surfaces and transpiration from plants. Depending 

on its season and duration, drought may lead to below-normal discharge of water in rivers and 

streams, lakes, and groundwater aquifers, to which urban economies may be more sensitive than 

to variations in contemporaneous rainfall. Thus, rather than asking whether negative 

precipitation shocks affect global economic activity, a more relevant question is whether drought 

shocks have such effects.  

This paper examines the global effects of drought on economic activity and the influence 

access to groundwater and large dams on this relationship.  We use spatially-specific data on 

drought severity and on economic activity (using the nighttime lights index as a proxy) to 

identify local effects that have not been previously studied.1  Our econometric approach is 

similar to the approach in the climate-economy literature focused on temperature, in that we 

classify drought measures into bins and control flexibly and comprehensively for unobservable 

confounders using grid-cell fixed effects and continent-year effects. We also control for 

temperature itself, to be sure that our drought measures are not proxying for the temperature 

impacts that are already well-demonstrated in the literature. We use global data, allowing us to 

 

1 Two previous studies use the nighttime lights data to estimate the effect of rainfall.  Henderson et al. (2017) 

examine the link between nighttime lights and rainfall in Africa in modeling the influence of aridity on rural-to-

urban migration. Fisker (2014) conducts a global analysis of the effects of lagged monthly rainfall and temperature 

on the lights index.   
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study not just high- but also low- and middle-income countries, where vulnerability to droughts 

may be more severe.2   

 One of our primary contributions is the use of two drought indices, the MODIS Global 

Terrestrial Drought Severity Index (DSI) and the self-calibrating Palmer Drought Severity Index 

(sc-PDSI), to examine the relationship between hydrologic extremes and economic activity. 

These drought indices are both available globally at a fine spatial scale, and they both 

incorporate rich information on hydrologic drought, a function of not only rainfall, but also 

temperature and soil moisture. Preliminary results suggest that droughts reduce local economic 

activity as measured by nighttime lights; a moderate-or-worse drought reduces the lights index 

by about 1 percent, with some variation around that estimate depending on the drought index 

used to characterize drought conditions and the severity of the drought. Statistically significant, 

though, smaller, negative effects are detected even for mild and incipient drought conditions.   

Models including lagged values of the drought indices suggest that moderate-or-worse drought 

may reduce economic activity up to four years after its occurrence. 

 Just as human economic activity can adapt to temperature extremes (via irrigation 

(Siebert et al. 2017) or crop migration (Sloat et al. 2020) in agriculture, or air conditioning in 

residential and commercial settings (Barreca et al. 2016)), people have adapted to variability in 

rainfall since ancient times by managing water resources.3 Natural surface water storage (e.g., in 

ponds and lakes), augmented surface water storage and transport (via dams and impoundments, 

aqueducts, storage tanks, etc.), and exploitation of groundwater that can be pumped to the 

surface all help to reduce the vulnerability of economic activity to variability in the 

contemporaneous supply of precipitation. Even in places where temperature-related adaptation 

 

2 Kahn (2005) demonstrates that developing countries experience more severe death tolls from natural disasters 

(though drought is not included in the analysis) and concludes that “economic development provides implicit 

insurance against nature’s shocks,” via income and higher-quality institutions to mitigate impacts. 

3 The oldest continuously-operating dam is the Lake Homs dam in Syria, first constructed under Egyptian rule in 

1319-1304 BCE and updated under the Roman Empire, which supplies the City of Homs via a canal system 

(https://www.water-technology.net/features/feature-the-worlds-oldest-dams-still-in-use/). Ancient hydraulic 

infrastructure in modern Japan, southern Europe, India and the Middle East provides evidence of ubiquitous human 

adaptation to variability in rainfall (Koutsoyiannis et al. 2008, Vetter and Rieger 2019). Ancient societies in arid 

regions, while adapted to low and variable rainfall, could nonetheless be severely impacted by drought (Manning et 

al. 2023, Gill et al. 2007). 

https://www.water-technology.net/features/feature-the-worlds-oldest-dams-still-in-use/
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may be minimal due to income or other constraints, when facing drought, economic activity 

benefits from the mediating influence of natural and constructed water storage. Thus, a global 

analysis of the impact of drought extremes on economic activity should both examine drought 

extremes rather than precipitation extremes, and also account for these potentially mediating 

water storage factors. 

In principle, the impact of water development projects (focused on groundwater or 

surface water) on drought impacts at any point in time could be positive or negative: in the short 

run, such projects might reduce vulnerability to drought shocks, but in the long run, as irrigators 

plant more water-intensive crops, and firms and households install more water-intensive 

technologies, vulnerability may increase. For example, in the U.S. Great Plains, the historical 

accessibility of groundwater from the Ogallala Aquifer initially decreased agricultural drought 

sensitivity but resulted in no long-run impact because farmers switched to more water-intensive 

crops (Hornbeck and Keskin, 2014).  

 Other literature suggests that groundwater may play an important role in drought 

mitigation in the agricultural sector. For example, Taylor (2023) shows that global groundwater 

use for irrigation has accelerated as climate change has made some regions hotter and drier over 

the past 50 years, contributing to accelerating groundwater depletion. At a smaller scale, recent 

work demonstrates that groundwater provides more than two-thirds of California’s irrigation 

water during drought (Liu et al. 2022), and Smith and Edwards (2021) show that stored irrigation 

water, generally, mitigates the impacts of drought on agriculture in the United States. We know 

of no prior work that attempts to quantify the importance of groundwater in mitigating the 

broader (non-agricultural) economic impacts of drought or that considers this question on a 

global scale.  

 Dams are an important component of climate change adaptation plans in many arid 

regions (Narain et al. 2011).  One estimate suggests that global reservoir storage capacity will 

increase between 2010 and 2050 by 2800-3000 cubic kilometers, at an annual average net cost of 

about $12 billion (Ward et al. 2010).  The literature is mixed, however, on whether dams’ 

welfare effects are positive. Hansen et al. (2011) demonstrate significant increases in welfare 

among local downstream beneficiaries of federal irrigation dams in the United States.  Duflo and 

Pande (2007) quantify the local and upstream impacts of irrigation dams in India; they find that 

dams’ welfare costs appear to outweigh their downstream benefits, suggesting that dams may 
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reduce welfare at the national level. By contrast, Strobl and Strobl (2011) find large downstream 

benefits of African dams, but no beneficial local effects.  In a departure from the typical focus on 

irrigation dams, Lipscomb et al. (2013) consider the economy-wide benefits from hydroelectric 

dams in Brazil, identifying large positive impacts on development. 

 The literature often focuses on the effects of dams in typical years, but two studies have 

examined whether dams mitigate the economic effect of drought, specifically. Hansen et al. 

(2011) estimate the impacts of drought and excessive precipitation on agricultural productivity in 

five north-central U.S. states between 1900 and 2002, testing for a mitigating impact of federal 

irrigation dams, and accounting for potential endogeneity in dam placement. They find that, in 

the arid portions of these five states, irrigation dams increased agricultural productivity for some 

crops during both drought years and flood years.  A study that assumes exogenous dam 

placement finds positive impacts of dams on agricultural productivity in Idaho, which appear to 

increase during droughts (Hansen et al. 2014). We know of no prior work that examines the 

mediating influence of dams on drought’s economic impacts outside of the agricultural sector or 

that uses data from all regions of the world.  

Thus, in addition to exploring the overall effects of drought, the second major 

contribution of our work is to test for mediating influences of both access to groundwater 

supplies and the presence of dams (and the reservoirs they impound) on drought’s economic 

impacts. We use a novel dataset obtained from the World Bank on the global extent and 

character of groundwater resources at fine spatial scale (World Bank 2022) for our groundwater 

analyses. These data are constructed from several prior datasets, using only exogenous 

geophysical characteristics at the grid-cell level, removing any potential endogeneity concern 

that might have arisen using data that reflect current and historical human use of groundwater 

resources. Building on our prior work on dams (Olmstead and Sigman 2015), our examination of 

the local influence of drought and dams allows estimation of the effects of dams in either 

mitigating or exacerbating the link between drought and economic activity, recognizing that 

dams may help some local areas and hurt others sharing the same water resource.  We separate 

the effects of local dams from those in upstream areas and address the potential endogeneity in 

dam location. We also consider whether hydroelectric dams, which tie electricity supply to water 

availability, as a special class of water infrastructure that may heighten drought sensitivity. 

Because we use the nighttime lights data as our independent variable, the impacts we measure go 
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beyond agricultural productivity (the focus of much of the prior literature). We use hydrologic 

information to identify effects for regions downstream of dams that might counterbalance local 

effects. The question of whether dams may redistribute drought vulnerability (and its economic 

impacts) over geographic space, rather than reducing it altogether, has not yet been addressed in 

the literature. 

Preliminary results from our groundwater analysis suggest that drought impacts in areas 

overlying the two most economically accessible types of groundwater resources – major alluvial 

or local/shallow aquifers – may be significantly mitigated, with further relief from each 

additional increment of long-term average water storage in underlying aquifers.  In the dams 

analyses, local dams overall appear to just about completely mitigate the effect of most droughts, 

except for the most extreme. In contrast, local hydroelectric dams cause additional local 

reductions in economic activity during moderate or worse droughts. We find no additional 

marginal impact of the size of reservoirs impounded by hydroelectric or non-hydro dams. We 

also find no evidence that dams create spatial shifts in drought impacts at the global scale. Dams 

in river sub-basins upstream of a local area neither reduce the positive influence of local dams on 

drought mitigation, nor do they have any negative impact of their own. Our dams results are 

similar whether or not we use instrumental variables (IV) to account for potential endogeneity in 

dam placement. Neither the groundwater nor the dams results are fully robust to the choice of 

drought index as a measure of drought severity, a caveat to keep in mind in interpreting results. 

Our approach has some important limitations.  For example, the analysis we conduct does 

not capture longer-run effects of drought; human health effects, for example, tend to occur in 

utero or in infancy or young childhood, with potential long-run educational and income impacts 

(Almond and Currie 2011, Maccini and Yang 2009, Dinkelman 2013, Shah and Steinberg 2013, 

Alderman et al. 2006).  In addition, our focus on economic activity does not fully capture 

households’ welfare losses, including those from reduced direct consumption of water (Mansur 

and Olmstead 2012). Nighttime lights may deviate even further than a more traditional measure 

of economic activity from true social welfare (Chen and Nordhaus 2011). Nonetheless, ours is 

the first paper to demonstrate that drought reduces economic activity using global data and at a 

subnational scale, and that groundwater and dams may have important economic value as 

insurance against drought. Given that groundwater is often an open-access resource (Edwards 

and Guilfoos 2020), our results highlight groundwater management as an important potential 
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adaptation approach for arid regions expecting to encounter longer, more intense droughts as the 

climate changes. And while individual water development projects must undergo rigorous 

benefit-cost analysis to determine their individual net economic impacts, our analysis suggests 

that dams typically reduce local vulnerability to the economic impacts of drought. The value of 

this role should be reflected in economic analysis of water infrastructure projects.  

 The rest of our paper proceeds as follows. In Section 2, we present our basic econometric 

models. Section 3 describes the data sources and procedures used to integrate data on drought, 

lights, dams, and groundwater. Section 4 reports results, and we offer some conclusions in 

Section 5. 

  

2. Econometric Models 

A general model for the effect of drought on nighttime lights is equation (1): 

𝐿𝑖𝑔ℎ𝑡𝑠𝑖𝑡 = 𝑓(𝐷𝑖𝑡) + ∑ 𝛽𝑚𝑥𝑖𝑡
𝑚𝑀

𝑚=1 𝑇𝑖𝑡 + 𝛼𝑖 + 𝜈𝑐𝑡 + 𝜀𝑖𝑡       (1) 

where Lightsit is the inverse hyperbolic sine (IHS) of the nighttime lights index for area i in year 

t, Dit is a drought severity index, 𝑥𝑖𝑡
𝑚𝑇𝑖𝑡 is a set of temperature controls (we use a cubic function 

of the deviation of annual average grid-cell temperature from the grid-cell mean), αi are grid-cell 

fixed effects and νct are year effects that vary across continents, c. The error term, εit, is clustered 

over time and within river sub-basins.  The relationship between lights and droughts, f(.), could 

take many forms.   One flexible approach classifies observations into bins defined by the value 

of a drought severity index:  

𝐿𝑖𝑔ℎ𝑡𝑠𝑖𝑡 = ∑ 𝛾𝑘𝑑𝑟𝑜𝑢𝑔ℎ𝑡𝑖𝑡 +∑ 𝛽
𝑚
𝑥𝑖𝑡
𝑚𝑀

𝑚=1 𝑇𝑖𝑡 + 𝛼𝑖 + 𝜈𝑐𝑡 + 𝜀𝑖𝑡
𝐾
𝑘=1  , (2) 

with the estimated coefficients k  reflecting the impact of varying drought conditions on lights, 

allowing the response to differ by drought severity.   Equation (2) describes our basic models of 

the impact of drought on economic activity. 

In Section 4, we also estimate models that allow two different types of water storage, 

groundwater and large dams, to mediate drought’s impact on lights. These models interact the 
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characteristics of groundwater aquifers or the presence of local and upstream dams with the 

drought condition as in Equation (3).   

𝐿𝑖𝑔ℎ𝑡𝑠𝑖𝑡 = ∑ 𝛾𝑘𝑑𝑟𝑜𝑢𝑔ℎ𝑡𝑖𝑡 +
𝐾
𝑘 ∑ 𝜋𝑘𝑏𝑖𝑛𝑖𝑡 ∗ 𝑎𝑞_𝑑𝑎𝑚𝑖 + ∑ 𝛽

𝑚
𝑥𝑖𝑡
𝑚𝑀

𝑚=1 𝑇𝑖𝑡 + 𝛼𝑖 + 𝜈𝑐𝑡 + 𝜀𝑖𝑡
𝐾
𝑘=1  (3) 

The variable aq_dami in Equation (3) stands in for several different ways in which we interact an 

area’s aquifer characteristics and the presence of dams in an area with drought severity. Some 

models also treat the drought-dam interaction as endogenous. We describe each of these 

extensions in greater detail in Section 4. 

3. Data 

We integrate several global datasets on economic activity, drought, and the location of dams to 

estimate our econometric models.   

 

3.1. Dependent variable: economic activity 

The main measure of economic activity, our dependent variable, is a satellite-based measure of 

the brightness of nighttime lights, which the literature suggests is a helpful proxy for economic 

activity (Chen and Nordhaus 2011, Henderson et al. 2012). We use the Defense Meteorological 

Satellite Program-Operational Linescan System (DMSP-OLS) Nighttime Lights Time Series, 

which is available annually from 1992-2013 at a very fine spatial scale (NOAA 2014).4 The 

variable is an index ranging from 0 to 63; the densest cities are effectively top-coded with values 

of 63.  We drop grid cells containing natural gas flares because these flares result in very bright 

lights that do not necessarily correspond to high levels of economic activity.5  

 Each half-degree grid cell in our data covers approximately 50 square kilometers, 

although the precise area varies with latitude. The spatial precision of the nighttime lights index 

is much finer than any measure of economic activity available through traditional national 

 

4 An alternative source of gridded economic data is downscaled national accounts data (e.g., Nordhaus et al., 2006, 

Wang and Sun, 2022).  However, these downscaled data risk missing the short-term local effects of drought because 

they are downscaled from larger regions and may be measured much less frequent than annually in many countries, 

especially lower income ones. Measurement error is also much more likely to vary with levels of economic 

development in national accounts data. 

5 The data of Elvidge et al (2016) are used to identify grid cells containing flares; any .5 degree grid cell containing 

a flare at any time is dropped from entirely from the panel. 
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accounts or other survey-based data. However, the index is only a proxy and can deviate from 

underlying economic activity in systematic ways.  Given that the models we estimate contain 

grid-cell fixed effects (i), we identify effects of drought only from variation in lights over time 

within a grid cell. Though the prior literature using the lights data uses the natural log of lights as 

the dependent variable (Henderson et al. 2012, Kocornik-Mina et al. 2020), we transform the 

lights data using the IHS to avoid dropping grid cells with zero lights before aggregating (by 

taking an average) from the 30-arc-second degree scale in the original DMSP-OLS data to the 

0.5-degree scale we use in our analysis. This approach requires that we compute marginal effects 

post-estimation (Bellemare and Wichman 2020). 

 Newer remotely-sensed nighttime lights data are available from 2012 onward using the 

Visible Infrared Imaging Radiometer Suite (VIIRS), measured from a newer satellite designed 

for research (rather than for military aircraft navigation), and the literature discusses some 

advantages of using these newer data (Gibson et al. 2020). However, our remotely-sensed 

drought index is available only from 2000-2011, a period which pre-dates the availability of the 

VIIRS luminosity data. Thus, we follow the approach of current papers in the economics 

literature that use the DMSP-OLS data to address some of their shortcomings. In particular, we 

use year effects (which we allow to vary by continent) in all our specifications to deal with any 

measurement error from the use of different satellites in different years (Kocornik-Mina et al. 

2020), we average the IHS of lights at the 0.5-degree grid cell rather than using it at the 30-arc-

second grid in which these data are collected, which reduces the potential influence of 

measurement error from spatial “blurring” in the assignment of light to pixels in the DMSP data 

(Gibson et al. 2020), and we remove gas-flaring grid cells from the data (Elvidge et al. 2016).  

 One critique of the DMSP-OLS data in the development literature is that, while these 

data are often used to describe economic activity in less-populated regions (where more 

traditional economic growth measures are less likely to be available), the DMSP-OLS data will 

tend to underestimate economic activity in precisely those areas, given that rural and agricultural 

activity emits little or no light detected by the DMSP satellites (Keola et al. 2015). In our case, 

this aspect of the DMSP-OLS data actually provides an advantage, because we are more 

interested in the impacts of drought on urban and ex-urban activity than we are on agricultural 

impacts. As Gibson et al. (2020) note, “The lights that can be detected with satellites are mainly 

for urban economic activity...[and] are not usually found in rural areas” (p. 966).  
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3.2 Data on drought occurrence and severity 

 We use two different indices as measures of the severity of hydrologic drought, which 

results from a period of abnormally low rainfall and is sometimes exacerbated by additional 

evapotranspiration (ET), the transfer of water from land to the atmosphere by evaporation from 

soil and other surfaces and transpiration from plants. For the analysis, we average both drought 

indices to 0.5-decimal-degree grid cells (about 50 km wide at mid-latitudes) for tractability and 

to merge them with our aggregated lights data and the other dependent variables. 6  

 The first drought measure, the MODIS Global Terrestrial Drought Severity Index (DSI), 

is a remote-sensed drought index based on satellite observations of ET and vegetation greenness 

(Mu et al., 2013). 7 In the raw data, annual averages for the index are provided at the .05-decimal 

degree grid from 2000 through 2011. The DSI is continuous, ranges from unlimited negative to 

unlimited positive values, and is normalized with mean zero and standard deviation 1. We work 

principally with categorical descriptions of the level of drought specified in Mu et al. (2013) to 

create the drought severity bins we employ in our econometric approach.  The fact that the DSI is 

remotely-sensed is appealing, as it broadens the global coverage of our drought measure (it is 

available in areas where our second index, the self-calibrating Palmer Drought Severity Index 

(sc-PDSI) cannot be calculated due to lack of meteorological data) and is also measured 

consistently across all grid cells. We prefer the DSI for these reasons. However, one concern 

about using the DSI to measure the effect of relative water stress on economic activity is possible 

endogeneity of the greenness index that is one component of the DSI. For example, a positive 

economic shock that allows farmers to plant more crops (Szerman et al. 2022) might increase 

greenness and appear as a reduction in drought, while also brightening lights. This is not a large 

concern from our perspective, given two facts. First, as noted earlier, the DMSP luminosity data 

tend not to capture agricultural activity (Gibson et al. 2020, Keola et al. 2015), making this kind 

of endogenous brightness very unlikely. Second, the normal scale of agricultural expansions and 

 

6 Earlier versions of the analysis at finer spatial levels yielded similar results but presented computational 

challenges. 

7 The MODIS Global Terrestrial Drought Severity Index is provided by the Numerical Terradynamic Simulation 

Group (NTSG) at the University of Montana at http://www.ntsg.umt.edu/project/modis/dsi. 
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contractions may not influence the satellite measurements of vegetation greenness enough to 

alter the DSI; the remote-sensing experts who constructed the index do not mention changes in 

land use as an issue with their measure.  However, given the potential threat to identification 

from this aspect of the DSI, we also use a second drought measure and assess the robustness of 

our results using both indices throughout the paper. 

 That second drought measure, the sc-PDSI, is calculated using global meteorological data 

on temperature, precipitation, and soil moisture collected at the Earth’s surface (Osborn et al. 

2017, van der Schrier et al. 2013, Wells et al. 2004). The sc-PDSI is a continuous index ranging 

from -4 (extremely dry) to +4 (extremely wet), occasionally taking on values outside of these 

bounds during extreme events. It is “self-calibrating” in the sense that the wetness categories of 

the sc-PDSI are constructed so that the “extremely dry” and “extremely wet “categories in each 

cell capture events that occur in 2 percent or less of months in that cell over the period of 

calibration (in our case, 1901-2016) (Osborn et al. 2017). The index is available monthly in a 

0.05-decimal degree grid in raw form; we average the monthly data to form an annual average at 

the 0.5-degree scale from 2000 through 2011 to be comparable to our DSI data.8  We work 

primarily with a set of eleven categories for the sc-PDSI defined in van der Schrier et al. (2013). 

Like the DSI, the sc-PDSI has some drawbacks. The use of global meteorological data collected 

by many different institutions introduces measurement error, especially where ground 

observations are sparse, and the sc-PDSI may also underestimate the occurrence of anomalously 

dry and wet spells (having a bias toward “normal” conditions from both directions) for regions 

and times with poor data coverage (van der Schrier et al. 2013).9 In contrast to the DSI, however, 

 

8 The global sc-PDSI is available starting in 1901 from the Climatic Research Unit at the University of East Anglia: 

https://crudata.uea.ac.uk/cru/data/drought/. We use the data from 2000-2011, with the index calibrated to the period 

1901-2016. 

9 The earlier Palmer Drought Severity Index (PDSI) had additional problems. For example, it tended to lag emerging 

drought and was developed for semi-arid regions, making it less applicable elsewhere and inaccurate for 

mountainous areas with frequent climatic extremes (Keyantash and Dracup 2002, Mu et al. 2013). However, the sc-

PDSI overcomes many of these problems and is more suitable than the PDSI for comparing relative moisture 

conditions between different climate regions (van der Schrier et al. 2013). 

https://crudata.uea.ac.uk/cru/data/drought/
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the sc-PDSI does not use contemporaneous surface vegetation measures and does not raise 

endogeneity concerns.10  

 By construction, both drought indices capture cumulative drought conditions, because 

they measure cumulative departures in the surface water balance. The sc-PDSI, for example, 

incorporates both water inputs (precipitation), water outputs (ET and runoff), and “antecedent 

soil moisture conditions” (Mu et al. 2013, p. 84). In addition, we average these indices at an 

annual time-step, so an area experiencing an annual average condition in the moderate-to-severe 

drought range of either index is experiencing more than a contemporaneous precipitation 

anomaly – it is experiencing hydrologic drought conditions that would have developed over time, 

as a function of precipitation and many other factors. However, we also estimate some models 

with lagged values of both drought variables on the right-hand side, to see whether drought 

conditions in preceding years affect contemporaneous economic activity. Our ability to run these 

tests is somewhat limited by the short time frame of our analysis (2000-2011), and by the fact 

that including each lagged value entails dropping some observations. 

 Although both drought indices have eleven categories with similar names, ranging from 

extremely wet to extremely dry (or extreme drought), the categories for each index capture 

different portions of the distribution of observed drought conditions in our data. Table 1 

demonstrates that the differences in the two indices are particularly pronounced at the extremes, 

with many more annual average conditions categorized using the DSI as “extreme drought” and 

“extremely wet” than is the case using the sc-PDSI. This is consistent with a common critique 

that the sc-PDSI may underestimate the occurrence of anomalously dry and wet spells (van der 

Schrier et al. 2013). Given that each drought index has both appealing characteristics and 

drawbacks, we use both in the analysis.  

   

 

3.3 Local hydrology data used to link drought, groundwater, dams and economic activity 

 

10 The sc-PDSI uses surface vegetation data in its ET calculation. However, the surface vegetation data used in 

calculating the sc-PDSI is from a reference period (April 1992-March 1993) that captures the “typical” vegetation 

types within each grid cell and is thus exogenous to economic activity underlying the nighttime lights index in a grid 

cell during our study period (2000-2011) (van der Schrier et al. 2013, p. 4030). The sc-PDSI “does not consider 

human impacts on the water balance, such as irrigation” (Fuchs 2012, p. 4). 
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 Hydrologically-defined river sub-basins play two roles in our analysis.  First, our 

estimates cluster standard errors at the sub-basin level to allow correlation within sub-basins in 

the impacts of drought on lights.  We do this because the impacts of droughts and the mediating 

influence of groundwater and dams may depend on local hydrology.  Second, the sub-basin 

defines the likely area of influence for local and upstream dams.   

 In our analysis, river sub-basins are defined by the HYDRO1k dataset from the US 

Geological Survey (USGS), which uses global elevation data to divide land area into river basins 

and sub-basins (USGS, 2012).11  The HYDRO1k sub-basins are coded using the Pfafstetter 

system (Verdin and Verdin, 1999), which provides a hierarchical coding of river basins and their 

subdivisions into several possible levels of sub-basins.  The finest sub-basin classification has 6 

digits. We rely on the 4-digit sub-basin level, both for clustering standard errors and to create the 

dam variables and other sub-basin characteristics used in the analysis. Globally, there are about 

13,100 4-digit Pfafstetter sub-basins. To focus on permanently populated places, our equations 

drop sub-basins that are completely dark during any year of the data as well as sub-basins outside 

of the latitude-longitude range for the nighttime lights and drought data.  As a result, a total of up 

to 6,241 sub-basins are included in our analyses.   

 

3.4 Groundwater data 

 Our work benefits from a novel groundwater dataset developed by the World Bank for its 

ongoing assessment on the economics of groundwater in a changing climate (World Bank 2022). 

This effort has assembled a global dataset of aquifer types and groundwater resource availability, 

building on four existing datasets: the World-wide Hydrogeological Mapping and Assessment 

Programme’s (WHYMAP’s) Groundwater Resources of the World and World Karst Aquifer 

maps (Richts et al. 2011), the Global Lithological Map (GLiM) dataset (Hartmann and Moosdorf 

2012) and related Global Hydrogeology Maps (GLHYMPS) dataset (Gleeson et al. 2014), global 

soil thickness data from Pelletier et al. (2016), and global water-table depth data from Fan et al. 

(2013). Using these data, the Bank’s new dataset characterizes the underlying aquifer 

characteristics for each 0.5-degree grid cell around the globe. 

 

11 HYDRO1k provides global coding except in polar areas and for the Australian mainland. 
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 These new groundwater data describe the share of each cell represented by one of four 

different aquifer types: major alluvial, local/shallow, complex, and karstic. Major alluvial 

aquifers behave like “bathtubs” storing water underground, and tend not to respond much to 

local precipitation, making them more vulnerable to depletion from irrigation and other human 

uses (World Bank 2022). Alluvial aquifer systems, in addition to having high quantities of the 

water resource in-situ, can typically be accessed economically by individuals. Local/shallow 

aquifers store water more like an “egg carton” underground. They do tend to recharge with 

rainfall, and are typically the most economically accessible aquifer type for individuals, though 

availability of the water resource is less homogeneous than for alluvial aquifers within a given 

region. Importantly for our purposes, both of these two aquifer types have the potential to buffer 

local economic activity from inter-annual meteorological variability and can be cost-effectively 

accessed by individuals (World Bank 2022).  

 The other two types of aquifers identified in the World Bank data are complex and 

karstic. Complex aquifers share the “bathtub” characteristic with alluvial aquifers, in that they do 

not respond to local rainfall, but there is a high risk that individual wells will not tap a productive 

area of the resource. Karstic aquifers have both significant spatial heterogeneity in access to the 

resource (like complex aquifers), but have the additional challenge of typically requiring deep 

wells. Given these characteristics, the World Bank describes both complex and karstic systems 

as (on average) less economically accessible than alluvial and local/shallow systems (World 

Bank 2022). In our groundwater models in Section 4, we assign the aquifer type that underlies 

the maximum area of each grid cell and create a set of four indicator variables, one for each type 

(alluvial, local/shallow, complex, and karstic), which we interact with drought in order to capture 

the capacity of groundwater access to mediate drought’s impact on economic activity. 

 A final groundwater variable that we adopt from these new data reflect the long-term 

average groundwater recharge in km3/yr, also at the 0.5-degree grid cell scale, a measure of 

water resource availability, conditional on aquifer type. To develop these data, the Bank 

downscaled country-level variation in annual rainfall from the Food and Agriculture 

Organization (FAO 2022) using local lithology, permeability and porosity and other inputs 

(World Bank 2022).  We use the resulting continuous groundwater resource availability variable 

in our models, interacting it with drought conditions as we do for the four aquifer type indicators 

described above. 
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 These new data have some unique advantages. First, they are exogenous by design. Both 

the discrete aquifer type indicators and continuous groundwater resource variable are estimated 

globally using only geophysical and hydrological characteristics that do not reflect depletion due 

to extraction by local populations for irrigation or other purposes. While this means that we are 

unable to capture the influence of variation in groundwater quality due to potential 

contamination from surface activities, or the impact of depletion over time from pumping in 

excess of recharge – both, admittedly, important phenomena in many parts of the world – it also 

eliminates an important threat to identification in our study, because the economic activities that 

create these groundwater quality and quantity challenges would be correlated with luminosity.12 

Second, these new groundwater data were developed largely in response to perceived gaps and 

insufficiencies on the part of all four of the underlying data sources, which had resulted in mis-

classification of aquifer types in some high-profile cases.13 Third, while prior work in economics 

uses one of the four datasets that the Bank combined in these new groundwater data (e.g., Taylor 

2023), using any of these inputs individually provides a less-complete picture of groundwater 

availability than what we are able to achieve with this new dataset. 

 Our expectations with respect to the impact of these groundwater access variables in 

mediating the influence of drought on lights are mixed. On the one hand, the water storage 

capacity of aquifers acts as a counterweight to variable surface water supply, so the presence of 

the more economically accessible aquifer types (alluvial and local/shallow aquifers) may reduce 

any impacts of drought on lights. On the other hand, prior work shows that in agricultural 

settings, farmers react maladaptively to accessibility of groundwater resources, planting less 

drought-tolerant crops and over time and reducing groundwater’s drought-mitigating potential 

(Hornbeck and Keskin 2014). The same could be true in the urban areas captured by the lights 

data, where commercial and industrial activity and residential landscaping could become more 

water-intensive in response to groundwater access. Our results will indicate whether, at the 

 

12 For example, this threat to identification would be a concern in our context if we were using the well-known 

GRACE satellite data on water mass anomalies that has been used as a proxy for groundwater depletion (Unfried et 

al. 2022). 

13 For example, the WHYMAP data (Richts et al. 2011) had long classified parts of India within the “complex” 

aquifer type, which are more accurately classified as “local/shallow” (World Bank 2022). 
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global scale, aquifer access is on average a help, a hindrance or a neutral factor in determining 

drought sensitivity. 

 

3.5 Data on dam location and dam characteristics 

 For data on the location of large dams, we use the Global Reservoir and Dams (GRanD) 

data set (Lehner et al., 2011).  GRanD provides latitude and longitude for 6,862 of the world’s 

largest dams and reservoirs. GRanD includes all dams with reservoirs that have storage capacity 

greater than 0.1 km3 and some dams with smaller reservoirs.  The GRanD dataset also includes 

some information on the characteristics of the dams that we can consider in our analysis.  For 

example, GRanD classifies dams by primary use and provides total reservoir capacity and dam 

height.  Table 1 reports the main use category for all the dams in GRanD.  Irrigation is the most 

frequent use, followed by hydroelectricity; unfortunately, the data lack information on primary 

use for 23 percent of dams.  The dam location data are purely cross-sectional, but not much 

change occurred during the relatively short time scale of our panel (2000-2011). 

 GRanD provides geo-coded dam locations that make it straightforward to estimate the 

impacts of local dams (those within a grid cell’s sub-basin) on economic activity. However, 

counting dams upstream of a grid-cell’s sub-basin is considerably more involved. The Pfafstetter 

system (Verdin and Verdin 1999) provides a hierarchical coding of river basins and their 

subdivisions into several possible levels of sub-basins, coding them in a way that makes it 

possible to traverse a network of drainage basins and identify whether an area is downstream of 

another area in which dams are present. We use these codes to determine sub-basins that are 

immediately and more distantly downstream of large dams.   

 Similar to groundwater, the availability of dams and the reservoirs they impound may 

alleviate drought’s impacts, but maladaptive responses are also possible. In the context of dams, 

maladaptive responses may have two different dimensions – they may induce behavioral changes 

that increase drought sensitivity locally, and they may have heterogeneous spatial impacts, so 

that drought is alleviated locally but exacerbated downstream. While we cannot model the first 

phenomenon directly at the global scale, our local dam estimates will reveal whether, on average, 

local impacts are on net positive or negative. The second maladaptive phenomenon (different 

impacts locally vs. downstream) we model directly. 
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3.6 Additional data on grid-cell characteristics 

 We include several additional variables in some equations to look for heterogeneity in 

effects. First, the literature concludes that temperature has a significant impact on economic 

growth (Dell et al. 2012).  To address concerns that estimated effects of droughts may confound 

temperature effects on output, we also include a cubic function of the deviation of annual 

average grid-cell temperature from the grid-cell mean.  The temperature data are based on the 

monthly gridded temperature series from the Climate Research Unit (specifically CRU TS 4.00, 

see Harris et al. (2014)).  Second, we consider heterogeneity in the effects of drought according 

to the initial cropland share in the grid cell.  Cropland share is a remote sensed measure from 

Ramankutty et al. (2010). These data are from 2000, the initial year of our data, to reduce the 

risk that they are affected by droughts during our study period.  Finally, since dams are more 

common in more settled regions, one equation controls for population density in estimating the 

effects of dams on drought sensitivity.  We use population data from the Gridded Population of 

the World version 3 (GPWv3), which provides estimates of population density in 2000 (CIESIN 

2005); the units are thousand people per square kilometer.  

 

3.7 Instruments for dams   

 To address the possible endogeneity of dam location, we use instrumental variables that 

reflect the physical suitability of the area for a dam and the political circumstances for dam 

placement. First, slope has been used in the prior literature as an instrument for dams because it 

measures the feasibility of dam placement (Duflo and Pande, 2007).  As slope instruments, we 

use average and maximum slope in the sub-basin, constructed from the HYDRO1k data.  Use of 

these slope instruments is somewhat controversial:  some authors express concern that slope 

variables may be related to the suitability of the land for agriculture or urban development and 

thus not satisfy the exclusion restriction.  Second, prior research suggests that dams are more 

likely to be located on shared rivers (Olmstead and Sigman, 2015).  Thus, we use as instruments 

the number of different countries downstream from a given sub-basin. The downstream country 

count has the advantage of relating to conditions downstream of the location, not to local 

geographic heterogeneity. In addition, we include the number of countries that share the sub-

basin where the dam is located as another measure of the water-resource commons problem.  
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3.8 Summary statistics 

 Table 3 reports summary statistics for the data in our analysis for the full sample, for sub-

samples split by the presence or absence of a dam in the sub-basin, and for sub-samples split by 

whether or not the two most economically accessible aquifer types (major alluvial, and 

local/shallow) comprise a majority of the grid cell area.  About 15-18 percent of grid-cell-years 

in our data experience moderate, severe or extreme drought, depending on whether we use the 

DSI or the sc-PDSI to estimate this share. The DSI is centered for each cell by construction and 

thus has the same mean across observations in total, and when we split the sample by 

groundwater aquifer or dam characteristics. There is a statistically significant difference in the 

mean sc-PDSI and the share of cell-years experiencing moderate-or-worse drought between both 

the groups divided by aquifer type and by the presence or absence of dams. Intuitively, sub-

basins with dams are drier, on average, than those without dams. Areas with dams and those with 

local/shallow or major alluvial aquifers comprising the majority of underlying groundwater 

typology (the two most economically accessible types) also have higher average annual 

temperatures. As would be expected, the average nighttime lights index and population density 

are much greater in sub-basins with dams. Population density is also higher in areas with access 

to better groundwater aquifer types, though lights are less, not more bright in these areas. For 

these reasons and others, all equations include grid-cell fixed effects to control comprehensively 

for unobservable, non-time-varying characteristics.  

 Major alluvial aquifers underlie about 10 percent of grid cells as the majority 

groundwater typology, and local/shallow aquifers about 43 percent, with the less economically 

accessible types (complex and karstic) underlying the remaining 37 percent and 10 percent of 

cells. About 36 percent of observations are in a sub-basin with at least one local dam.  

Four variables in Table 3 are used as instruments for the placement of dams in Section 4.  

Both average and maximum slope are higher in sub-basins with dams, as expected for these 

measures of the physical suitability of the sub-basin for a dam. The political instruments, which 

indicate resource sharing, are in the next rows.  Although most sub-basins are in only one 

country, a few are in several, so the average number of countries per sub-basin is 1.2. The 

differences between the observations with and without dams counter expectations: basins 

without dams have more downstream countries though they are about equally likely to be in a 

shared basin. 
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Table 3 also includes variables that allow us to explore the effects of upstream dams. As 

noted earlier, we use the Pfafstetter system to establish which dams are upstream of which sub-

basins. The upstream dam counts variables are based on far fewer observations because most 

grid cells have no upstream sub-basins; only 21% of observations are in sub-basins with at least 

one upstream basin. The upstream dam variables in Table 3 are summarized for just this subset 

of the data.   

4.   Results: overall impact of drought on economic activity 

Our first two sets of results (sections 4.1 and 4.2) consider the overall drought sensitivity 

of economic activity and drought’s lagged effects. Results in sections 4.3 and 4.4 describe the 

mediating influences of groundwater and dams on this relationship.  

4.1 Impact of drought on lights for full spectrum of hydrologic conditions using both indices 

 Tables 4 and 5 contain coefficient estimates from Equation (2) using the two alternative 

drought indices (DSI in Table 4, and sc-PDSI in Table 5), while Figure 1 presents a summary of 

the coefficients from these two tables.  Each column also includes fixed effects for the grid cells 

and dummies that interact the year and the continent of the observation for each of 12 years 

(2000-2011). We cluster standard errors by sub-basin to allow for serial correlation in a cell over 

time and spatial autocorrelation in hydrologically-linked regions. The bins for each drought 

index are bounded by convention in the physical science literature14 and are based on the annual 

average of monthly index values for a grid cell. For example, if the average sc-PDSI in a grid-

cell-year is less than or equal to -4, that cell-year will be in the “extremely dry” category.15 The 

omitted category is “near normal” hydrologic conditions (sc-PDSI = 0 +/- 0.5, and DSI = 0 +/-

0.3).  

 Looking at column (1) in both tables, we find that the impacts of drought on lights 

increases monotonically with drought severity, with statistically significant reductions in 

 

14 We use the ranges listed in Table 2 of Mu et al. (2013). 

15 Results were similar if we instead used the summer values for the index (June in the Northern hemisphere and 

December in the Southern hemisphere) or the minimum annual value. This similarity is not surprising because these 

indices have built-in persistence to capture the effects of drought rather than simply short-run precipitation. 
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luminosity for all four levels of abnormally dry conditions (from incipient to extreme). This is 

true for both indices, and the coefficient estimates for each drought category in column (1) of 

Tables 4 and 5 are quite similar. While the confidence intervals overlap in some adjacent drought 

categories, for both indices, the impact of moderate, severe and extreme drought is of larger 

magnitude than the impact of mild and incipient drought. The fact that the coefficient estimate 

more than doubles between the “moderate” drought category and the next-less-severe category 

for both indices leads us to report estimates from a regression for each index in which we 

compress three drought categories of moderate or greater severity into a single binary drought 

variable. Those coefficient estimates are reported in column (3) of each table – results are quite 

similar using the two different indices, and both estimates are statistically significant. In several 

of the extensions in Section 4.2, we substitute this binary specification for the full set of drought 

bins in the interest of tractability and ease of interpretation.  

 In column 2 of Tables 4 and 5, we add the temperature controls, losing a small number of 

observations for grid-cell-years in which temperature data are not available. Using both indices 

and across the full spectrum of drought conditions, in almost all cases, adding temperature 

controls tends to reduce the magnitude of the drought bin coefficients. This demonstrates the 

importance of including temperature in the models, given its established links with economic 

growth, but it also establishes that conditional on temperature, drought has an independent, 

negative effect on the economic activity that is correlated with luminosity. The temperature 

variables are jointly statistically significant and are retained for the remaining models in the 

paper. 

 Note, also, that the estimate for the “extremely dry” category for the sc-PDSI is only 

weakly significant when temperature controls are included (Table 4, column 2), and that this 

coefficient estimate in both columns 1 and 2 of Table 4 is the only one to break the trend of 

monotonically increasing impacts with drought severity. Looking at Figure 1, we can see that at 

both ends of the hydrological spectrum, consistent with the physical science literature (and a 

comparison of counts within the most extreme bins between the sc-PDSI and the DSI in Table 

1), that the sc-PDSI may underestimate the occurrence of anomalously dry and wet spells (van 

der Schrier et al. 2013). These smaller numbers produce noisier estimates of the impact of 

extreme drought using the sc-PDSI (the same is true at the wettest end of the spectrum). Given 

that our coefficient estimates for the two indices are otherwise very similar, and our argument 
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from Section 3 that endogeneity in the DSI measure is not likely to be a significant concern 

given that the impacts we measure are in areas with luminosity bright enough to detect in the 

DSMP-OLS data, we proceed with the rest of the analysis using primarily the DSI drought 

measure, in some cases relegating the equivalent sc-PDSI results to Appendix A. 

 In terms of magnitude, areas in our data facing average annual hydrologic conditions in 

the “moderate drought” or worse (severe, extreme) categories experience about a 1 percent 

dimming of nighttime lights, compared to those experiencing anomalously wet, near-normal, or 

mildly dry conditions. These effects are somewhat stronger extreme droughts, and somewhat 

weaker for moderate droughts, and they are consistent across both drought indices (in Tables 4 

and 5). Using the standard lights-GDP elasticity of about -0.3 (Henderson et al. 2012), this 

would translate to about a 0.3 percent reduction in GDP.  It is difficult to directly compare the 

magnitude of drought’s impact in our models with the prior literature, given that few papers 

address this question. Korcornik-Mina et al. (2020) find that large urban floods reduce 

luminosity by 2-8 percent in the year of the flood, and that lights typically rebound within one 

year. Floods can happen suddenly, thus we might expect a greater economic shock from these 

events than from drought, which develops slowly. Henderson et al. (2017) find that annual 

rainfall has no effect, on average, on luminosity from African cities. However, rainfall reduces 

lights (elasticity of -0.17) for the most industrialized countries on the continent, but has positive 

and insignificant effects on lights for the least industrialized countries. This pattern is consistent 

with other evidence in their paper that aridity drives urbanization.   

 Finally, the statistically significant, positive impacts on lights of moderately- to 

extremely-wet conditions in some specifications in Tables 4 and 5 are notable, as is the absence 

of negative effects on lights from even the most extreme wet conditions. This may appear to 

conflict with the prior literature, which suggests that economic activity migrates away from large 

urban floods (Kocornik-Mina et al. 2020). This is not necessarily the case, however. Both the 

DSI and sc-PDSI are drought indices, optimized to identify areas experiencing anomalously dry, 

rather than anomalously wet conditions. Even extremely wet conditions do not necessarily result 

in flooding, and the prior literature focuses on identifiable flooding events (for example, using 

inundation maps and spatial data on the known extent of identifiable, large floods). Given our 

focus on drought and the water storage approaches that may mediate its economic effects, we 

leave further exploration of impacts on the wet end of the hydrological spectrum to future work. 
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4.2 Extension: effects of moderate or worse drought in prior years 

In Figure 2, we report results from estimating the effect of the binary moderate-or-worse drought 

indicator variable on lights, as we did in column 3 of Tables 4 and 5, but the Figure 2 models 

also include a set of lagged values of the binary drought indicator. For models including each of 

the two drought indices, we use a set of six lagged values, so that the equations capture the effect 

of an average annual index value reflecting moderate or worse drought conditions in each of the 

prior six years, in addition to the current year. With each lagged variable, we lose observations 

for the “marginal” year, where we cannot observed the earlier drought index value. At the top of 

Figure 2, where we include only the current year’s value (equivalent to column 3 in Tables 4 and 

5), we have about 448,000 observations in the DSI sample, and about 421,000 in the sc-PDSI 

sample. By the time we include six lagged values of the binary drought indicator, we have cut 

the number of observations in half using both indices (224,000 for the DSI sample, and 210,000 

for the sc-PDSI sample). Thus, results from models with many lags may not be representative of 

the full sample, because they are based on a much shorter time series. However, the model 

results reported in Figure 2 suggest that moderate-or-worse drought conditions may reduce 

luminosity (and by proxy, economic activity) for at least four years. While the confidence 

intervals for the sc-PDSI lagged drought indicator mostly overlap, looking at the DSI results, it 

appears that a moderate-or-worse drought two to three years prior could have a stronger effect on 

economic activity than a drought in the current year. We cannot explain the counterintuitive 

positive and significant coefficient associated with a moderate-or-worse drought six years prior 

using the sc-PDSI data. 

 

4.3 Extension: influence of access to groundwater on drought effects 

In this extension, we test for a mediating influence of groundwater access on drought’s impacts 

on economic activity. To do so, we estimate equation (4):  

 

𝐿𝑖𝑔ℎ𝑡𝑠𝑖𝑡 = 𝛾𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑖𝑡 + ∑ 𝜃𝑗𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑖𝑡 ∗ 𝐴𝑞𝑢𝑖𝑓𝑒𝑟𝑖𝑗
4
𝑗=1 + 𝜇𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑖𝑡 ∗ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑖 +

∑ 𝛽
𝑚
𝑥𝑖𝑡
𝑚𝑀

𝑚=1 𝑇𝑖𝑡 + 𝛼𝑖 + 𝜈𝑐𝑡 + 𝜀𝑖𝑡 , (4) 
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in which the variable Droughtit is equal to 1 if cell i experienced average annual conditions of 

moderate, severe or extreme drought in year t. The Aquiferij variables are indicators for the four 

underlying aquifer types that represent the maximum share for each grid cell. Resourcei is the 

long-term average recharge to groundwater aquifers of any type in cell i. The remaining 

variables and parameters are identical to those described in equations (1)-(3).  

 Table 6 reports estimates from three models, using the DSI as our drought measure. In 

column 1, we estimate our baseline model of the effect of moderate-or-worse drought on lights, 

using only the sample for which we observe our groundwater variables, obtaining an estimate 

very similar to those in Tables 4 and 5 – drought reduces lights by about 1 percent.  In column 2, 

we include the interactions between drought and the majority groundwater aquifer types, 

excluding the “karstic” category, the least economically accessible resource, on average (World 

Bank 2022). Results suggest that in areas where alluvial aquifers represent the majority share of 

the local groundwater typology, the impact of moderate-or-worse drought is basically alleviated. 

The effects of the interactions with other aquifer types (local/shallow and complex) are positive, 

but not statistically different from zero. In column 3, we add the long-term groundwater recharge 

variable, finding similar results for alluvial aquifers, and also an additional marginal effect of 

long-term recharge. For every 1% increase in long-term average recharge, lights during drought 

are increased by 1.6%. Note that controlling comprehensively for groundwater access as we do 

in column 3 also increases our estimates of drought’s impact on lights (in the first row) 

appreciably.  

 As a robustness check, we re-estimate the models in Table 6 using the sc-PDSI to 

characterize drought. Results (reported in Table A1 in Appendix A) are similar, with one 

difference: access to local/shallow aquifers as a majority share reduces drought’s impact on 

lights in these models, but the coefficient for the alluvial aquifer interaction is positive and 

statistically insignificant. Thus, our aquifer type results are not fully robust to the choice of 

drought index (though the long-term recharge results are). Given that both the alluvial and 

local/shallow aquifer types are more economically accessible than complex and karstic aquifers, 

as described in Section 2, this difference in results is interesting, but qualitatively consistent with 

access to “better” aquifers alleviating drought, on average. Taken together, the results of these 

tests suggest that, while maladaptive responses could occur in some areas, on net, access to 

groundwater at the global scale is an important buffer against drought shocks. 
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4.4.   Extension: influence of dams on effect of droughts 

This section explores the effects of dams on drought sensitivity. To estimate the effects of dams 

and reservoirs on resilience to drought, we use interaction terms between presence of local and 

upstream dams and drought.  We start by estimating equation (3), in which the water storage 

variable (aq_dami) is replaced with an indicator variable for the presence of any dam in the 

area’s local sub-basin. Results using the DSI to characterize drought conditions are reported in 

Table 7, with sc-PDSI results reported in the Appendix, Table A2. Coefficient estimates for the 

drought bins (𝛾𝑘 from eq. 3) are presented in column 1, and coefficients on the interactions 

between drought bins and the presence of a dam (𝜋𝑘 from eq. 3) in column 2.   

For all but the most extreme droughts, local dams appear to mitigate their economic 

harm.  The point estimates suggest that local dams reduce the net effect of droughts by over half 

for the “severe” drought category (though this effect is only weakly significant) and just about 

eliminate negative effects of moderate, mild and incipient drought.  For extreme droughts, the 

interaction coefficient is small and not statistically significant.  The lack of an effect in extreme 

droughts could be valid: dams might be able to smooth water access during ordinary events but 

be insufficient for extraordinary events.  However, it might also be another manifestation of the 

difficulty estimating effects for the small observed numbers of such events. In the F-tests 

presented at the bottom of the Table 7, we can reject that dams have no effect in all the dryer-

than-normal conditions at the 1 percent level (F=3.65).  The sc-PDSI results in Table A2 are 

qualitatively similar, except that the mitigating effect of local dams is no longer significant for 

severe or incipient drought conditions, but it is for both moderate and mild drought. 

Table 8 explores a broader set of dam variables, focusing on the simpler comparison of 

the droughts characterized as moderate or worse with all other conditions. Column 1 of Table 8 

suggests that one or more dams in the area’s local sub-basin mitigates more than half the effect 

of moderate-or-worse drought, on net. Column 2 adds a variable for the presence of at least one 

hydroelectric dam in the sub-basin.  Areas that depend on electricity from their dams should 

suffer more dramatic drought-induced declines in lights than areas that use the dams for 

irrigation, urban water supply, recreation, or other uses in which the dams and the reservoirs they 

impound may provide a substitute for precipitation.  The point estimate on hydroelectric dams is 

statistically significant and negative as expected, suggesting that this heterogeneity is important. 
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Having one or more hydroelectric dams in the local sub-basin approximately doubles the 

negative impact of drought on lights. Once we differentiate among dam types in this way, the 

point estimate on the generic dam interaction more than doubles compared to column 1.16  

Table 8 also addresses a few other dimensions of heterogeneity in the potential mediating 

effect of dams on the impacts of drought. First, dams tend to be in more populous places, so one 

might worry that the dam interaction picks up differential effects in more- or less-settled places, 

rather than effects of dams, per se. To address this concern column 3 controls for the population 

density in the sub-basin at the beginning of the period. The interaction term between population 

density and moderate-or-worse drought is not statistically significant, and including this variable 

does not appreciably affect the coefficient on the dam-drought interaction, supporting our 

interpretation of the dam effect above. 

Finally, column 4 of Table 8 explores another dimension of heterogeneity, the quantity of 

water impounded by dams.  The new variable is the estimated reservoir capacity of dams in the 

sub-basin (summed over all dams present when there are multiple dams), in km3. The GRanD 

Project calculated reservoir capacity for almost all dams, making this variable our preferred 

measure of dam size. Reservoir capacity has a very pronounced upper tail, so a few observations 

may be very influential. The variable as entered in the equation is the maximum reservoir storage 

capacity in trillions of cubic meters. Because the effect of hydro dams is expected to differ from 

that of other dams, we include the total reservoir capacity and the hydro dam reservoir capacity 

separately.  Neither of these variables has a statistically significant effect on drought’s impacts, 

so the presence of dam appears more important than its size.  

  

 

16 The comparison between hydro vs nonhydro dams in the analysis is likely biased toward zero because of lack of 

use classification for about a quarter of the GRanD dams.  Some dams classified as non-hydro are presumably in 

fact hydro dams. Henderson et al. find no differential effect of hydropower dependence on the effects of rainfall on 

nighttime lights in Africa. This difference with our work is likely due to our focus on hydrologic drought, which is 

much more likely to affect hydroelectric dam operation than would contemporaneous rainfall. 
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Although the results in Table 8 suggest an important role for non-hydro dams in 

mitigating the effects of drought, a caveat is that these results are not fully robust to using the 

alternative measure of drought. Results using the sc-PDSI are reported in Table A3 in Appendix 

A. Consistent with the results using the DSI measure, the overall dam interaction variable with 

the sc-PDSI is positive.  However, it is not statistically significant.  The lack of statistical 

significance may not be surprising because it may stem from the imprecision in the estimates of 

the effects of the worst droughts using this alternative drought measure. The positive point 

estimate on the interactions between hydro dam and drought with the sc-PDSI may be more 

surprising, but again, this coefficient is far from significant. 

 

Upstream dams 

Table 9 considers the role of upstream dams.  Upstream dams may result in reduced 

water flow (or differently timed flow) that could reduce the resilience of downstream areas to 

droughts.  To examine their effect, we separate upstream dams into two groups: those in the 

immediately adjacent upstream basin and those that are farther (two or more sub-basins) 

upstream.  Immediately upstream dams may be quite close to the basin in question and thus any 

benefits of proximity to the dam may mix with any costs that dams impose downstream.  We 

expect dams farther upstream to generate costs more exclusively but also to have more diluted 

effects because many different sub-basins may be upstream of a given grid cell.  

To estimate the effects of upstream dams, we restrict the sample to cells in sub-basins 

that have other sub-basins upstream of them. If no sub-basins are upstream, the sub-basin will 

necessarily not have any upstream dams and this difference in position in the river system may 

confound any estimate of the effects of upstream dams.  Column 1 of Table 9 addresses this 

concern by repeating the equation from Column 1 of Table 8 with the restriction to areas with at 

least one upstream sub-basin; as a result, the upstream dam models that follow in the remaining 

columns of Table 9 use a comparable subset of the data.  Notice that these models must drop 84 

percent of the cells and 75 percent of sub-basins used in the local dams analysis in Table 8. 

Nonetheless, the coefficient estimates for the baseline drought impact on lights and the mediating 

impact of local dams are quite similar to those in Table 8.  

Column 2 adds a variable for the presence of a dam in the sub-basin immediately 

upstream of a grid cell’s sub-basin.  This variable has no statistically significant mediating effect 
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on lights under moderate-or-worse drought. Column 3 adds a variable for the presence of a dam 

two or more sub-basins upstream, which has an unexpected (weakly) positive effect on lights 

during drought.  The final column of Table 9 again considers the role of hydroelectric dams 

separately, adding variables for both local and near upstream hydroelectric dams.  The local dam 

coefficients are not statistically significant, although the hydro dam * drought interaction has the 

same sign and is similar in magnitude to equivalent coefficients in Table 8. Near-upstream hydro 

dams are not significant, though the sign on this coefficient is negative. The results using the sc-

PDSI (Table A4 in Appendix A) instead of the DSI to characterize drought are similar except 

that (as in Table A3) the local dam effects on drought sensitivity are not statistically significant. 

 

Instrumental variable estimates of the effect of dams    

The potential endogeneity of dam locations is a concern in estimating equation (3).  For example, 

if dams strengthen resilience against drought, they might preferentially be built in places that 

expect strong effects of drought.  The presence of dams may also simply be correlated with other 

factors that affect resilience, such as access to capital. To address these concerns, this subsection 

reports instrumental variable estimates of equation (3).   

 The potentially endogenous variable in our equations is the interaction between the local 

dam and the drought condition.  All equations include grid cell fixed effects, so instruments 

cannot be based only on geographic variation.  Therefore, we construct instruments based on the 

interactions of drought conditions and the instruments described in Section 2.  This strategy 

makes it difficult to interpret the first-stage coefficients but should yield instruments that satisfy 

the relevance and exclusion conditions for IV estimators.      

      Table 10 presents the IV estimates focusing just on conditions of moderate-or-worse 

drought. To address concerns about the suitability of the instrument sets, Table 10 reports results 

using just the slope instruments, just the political instruments, and using all available 

instruments.  With all instrumental variable sets, the point estimates of the coefficients remain 

similar to the estimates of the same equation without instruments in Table 8 column 1. However, 

the standard errors are much larger with the IV estimates and the interaction between the 

presence of a dam and drought is not statistically significant. The estimates provide some 

reassurance that our earlier results are not driven by endogenous dam placement:  in addition to 

the similarity of the point estimates, Durbin-Wu-Hausman tests reported in Table 10 fail to reject 



 28 

exogeneity of the interaction variable, supporting a causal interpretation of our earlier dam 

results.17  We report the same model results using the sc-PDSI as the drought index, instead of 

the DSI, in Table A5 in Appendix A. Results are similar but somewhat stronger; the interaction 

between drought and dams in two of the IV models using the sc-PDSI (those using only the slope 

instruments, and those using all instruments) are positive and significantly different from zero, 

consistent with the main results reported in Table 8. 

 

4.5 Additional extensions and robustness 

Figure 3 plots coefficient estimates from equations like those in Table 4 column 2, but allowing 

heterogeneity in the responses by the initial amount of cropland in the grid cell. This analysis 

provides a bit more information on the nature of the economic effects we observe with the 

nighttime lights as the dependent variable. Not surprisingly, we observe the most dramatic 

effects of drought in places that are most heavily farmed, but even the cells in the lowest tercile 

of cropland experience statistically significant negative effects from extreme and severe 

droughts. Figure 3 provides some reassurance that the greenness component of the remote-

sensed drought index (the DSI) does reflect moisture availability rather than crop area because 

droughts cause damage even in places with little agriculture. Except for the most severe drought 

conditions, we have more confidence of the negative effects of drought in places with less 

cropland.   

 

5. Conclusion 

Our work suggests that droughts significantly reduce local economic activity. Use of the 

nighttime lights index as a proxy for economic activity means that the impacts we estimate are 

more likely to capture effects on urban economic activity than agricultural effects, which have 

been studied more frequently in the prior literature. The panel fixed effects models we estimate 

suggest that moderate-or-worse droughts reduce the lights index by about 1 percent, with slightly 

larger effects for more severe droughts and smaller but still statistically significant effects for 

 

17 However, this test does maintain the assumption that the instruments themselves are valid, which might be a 

concern because J-tests reject the overidentification restrictions for both sets of instruments and the combined 

instrument set. 
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even mild and incipient droughts. These effects are similar whether we use remotely-sensed or 

ground-sensed measures of drought severity (except for the most extreme drought, which our 

ground-sensed drought measure, the sc-PDSI, does not capture as well as the remote-sensed 

measure), and they may persist for up to four years. While the effects we measure are small 

(translating to a one-third of one percent reduction in local GDP), they provide a useful contrast 

to prior climate-economy papers that consider rainfall extremes and find no effect. 

 One reason that drought may have small effects on economic activity is that cities may 

locate where it is possible to smooth the variability in surface water supply via access to 

groundwater or by impounding surface water to create reservoir storage, a common practice even 

in ancient societies. Our analysis shows that both of these factors do, in fact, mitigate drought’s 

impacts at a global scale. Access to more economically-accessible aquifers and aquifers with 

higher long-term average recharge mitigates drought’s impacts on lights. Local dams appear to 

mitigate the impacts of incipient-to-severe droughts using the remote-sensed DSI drought 

measure, but only those of mild-to-moderate droughts using the sc-PDSI. While we obtain some 

intriguing and intuitive results with respect to the tendency of dependence on hydroelectric dams 

for electricity supply to worsen the impact of drought on lights, these results are not robust to the 

choice of drought index. Prior work demonstrates that countries may be strategic in the choice of 

dam locations in international river basins (Olmstead and Sigman 2015), but our current paper 

finds no detrimental effects of upstream dams on downstream drought impacts (though upstream 

dams do not appear to mitigate drought in the manner of local dams). 

 In the context of a literature finding mixed long-run impacts of access to groundwater and 

dams (Hornbeck and Keskin 2014, Duflo and Pande 2007), our work demonstrates that, on net, 

these water resources do reduce the impacts of drought shocks on economic activity at a global 

scale – one of many potential economic benefits. However, this does not speak to whether 

individual water development projects have net benefits, as our results could easily mask local 

heterogeneity in dams’ and aquifers’ impacts given behavioral reactions to their availability, 

differences in property rights structures, and other institutional and policy differences. Given 

increasing intensity, duration and possibly frequency of droughts in a changing climate (Caretta 

et al. 2022), more work is needed to understand the economic impacts of these climate hazards 

and the water management infrastructure investments that may alleviate them. 
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Table 1. Distribution of observations across sc-PDSI and DSI categories 

sc-PDSI category Frequency Percent DSI category Frequency Percent 

Extremely dry 5,954 1.41 Extreme drought 17,122 3.76 

Severely dry 24,964 5.91 Severe drought 20,195 4.44 

Moderately dry 50,072 11.85 Moderate drought 31,610 6.95 

Slightly dry 64,338 15.23 Mild drought 42,423 9.33 

Incipient dry spell 39,344 9.31 Incipient drought 54,110 11.89 

Near normal 107,962 25.56 Near normal 121,521 26.71 

Incipient wet spell 33,085 7.83 Incipient wet spell 55,222 12.14 

Slightly wet 45,374 10.74 Slightly wet 45,341 9.97 

Moderately wet 32,237 7.63 Moderately wet 32,094 7.05 

Severely wet 15,332 3.63 Very wet 19,315 4.25 

Extremely wet 3,774 0.89 Extremely wet 15,967 3.51 

Total 422,436 100.00  454,920 100.00 
Notes: sc-PDSI is the self-calibrating Palmer Drought Severity Index constructed from meteorological data, and DSI 

is the remotely sensed Drought Severity Index. 

 

Table 2.  Main uses of dams in GRanD 

 

Main use Number Share 

Irrigation 1,781 25.95 

Missing 1,577 22.98 

Hydroelectricity 1,541 22.46 

Water supply 847 12.34 

Flood control 547 7.97 

Recreation 293 4.27 

Other 206 3.00 

Navigation 56 0.82 

Fisheries 14 0.20 

Total 6,862 100.00 
 

Source: Authors’ calculations based on data from GRanD (Lehner et al., 2011).  

Notes: A few dams also have major or secondary uses indicated, but most do not.  “Other” includes dams with 

primary uses of livestock watering and water pollution control, in addition to those labeled in GRanD as “other”.  
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Table 3. Summary Statistics 

 Total Alluv/LS Other GW With dam No dam 

 Mean SD Mean SD Mean SD Mean SD Mean SD 

Nighttime lights index 1.984 4.257 1.747 4.141 2.252* 4.368 3.088 5.275 1.370* 3.415 

Inverse hyperbolic sine (lights index) 0.524 0.836 0.462 0.809 0.594* 0.860 0.797 0.986 0.372* 0.694 

Drought variables           

Drought Severity Index (DSI) 0.000 0.849 0.000 0.859 -0.000 0.839 0.000 0.847 -0.000 0.850 

Moderate or worse drought (DSI) 0.153 0.360 0.152 0.359 0.154 0.361 0.153 0.360 0.153 0.360 

Self-calibrating PDSI -0.208 1.818 0.311 1.799 -0.091* 1.832 -0.208 1.818 -0.267* 1.816 

Moderate or worse drought (sc-PDSI) 0.176 0.381 0.189 0.391 0.162* 0.369 0.188 0.391 0.170* 0.375 

Groundwater variables           

Major alluvial aquifer is maximum share 0.102 0.303 0.192 0.394   0.095 0.294 0.106* 0.308 

Local/shallow aquifer is maximum share 0.429 0.495 0.808 0.394   0.468 0.499 0.407* 0.491 

Complex aquifer is maximum share 0.370 0.483   0.788 0.408 0.332 0.471 0.391* 0.488 

Karstic aquifer is maximum share 0.099 0.299   0.212 0.408 0.105 0.306 0.096* 0.295 

Long-term water resource availability (km3/yr) 0.408 0.597 0.449 0.627 0.361* 0.558 0.518 0.623 0.347* 0.574 

Dam variables (including instruments)           

Local dam 0.357 0.479 0.379 0.485 0.333* 0.471     

Local hydro dam 0.167 0.373 0.144 0.351 0.194* 0.395 0.468 0.499   

Reservoir capacity of local dams (km3) 2726 11336 2499 10788 2984* 11921 7628 17948   

Reservoir capacity of local hydro dams (km3) 2170 11061 1889 10462 2491* 11694 6074 17850   

Near upstream dama 0.238 0.426 0.255 0.436 0.219* 0.413 0.475 0.499 0.106* 0.308 

Near upstream hydro dama 0.066 0.248 0.070 0.256 0.061* 0.238 0.138 0.345 0.026* 0.158 

Further upstream dama 0.581 0.493 0.577 0.494 0.584* 0.493 0.786 0.410 0.466* 0.499 

Mean slope in sub-basin 1.384 1.832 1.695 2.152 1.030* 1.293 1.715 2.030 1.200* 1.684 

Max slope in sub-basin 1.865 2.660 2.325 3.113 1.344* 1.898 2.575 3.345 1.470* 2.086 

Number of downstream countries 0.562 1.081 0.677 1.124 0.431* 1.016 0.471 1.023 0.613* 1.109 

Number of countries in sub-basin 1.224 0.478 1.273 0.506 1.169* 0.436 1.226 0.497 1.223* 0.466 
At least one upstream sub-basin 0.208 0.406     0.163 0.369 0.255* 0.430 

Other independent variables           

Population density in 2000 (000/km2) 59.37 163.6 74.08 195.1 42.71* 115.9 88.75 180.7 43.04* 150.8 

Average annual temp, deg C 12.09 11.59 13.63 12.03 10.35* 10.81 13.69 9.77 11.20* 12.40 

Observations using sc-PDSI 423,456 249,480 173,460 191,136 232,320 

Observations using DSI 453,444 265,464 185,760 205,740 247,704 
Notes: An observation is a grid-cell-year. Asterisk indicates the t-test for difference in means (with dam vs. no dam, and major alluvial or local/shallow aquifer 

vs. others) is significant at 0.05. aNear upstream dam and further upstream dams summarized only for the subset with at least one upstream sub-basin.  
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Table 4.  Impact of droughts on nighttime lights using remote-sensed DSI, 2000-2011 

 (1) (2) (3) 

 DSI  DSI with temperature DSI binary variable 

Moderate or worse 

drought 

  -0.009** 

  (0.0016) 
    

Extreme drought -0.018** -0.013**  

 (0.0029) (0.0028)  
    

Severe drought -0.0093** -0.0067**  

 (0.0021) (0.0021)  
    

Moderate drought -0.0086** - 0.0063**  

 (0.0017) (0.0017)  
    

Mild drought -0.0041** -0.0028*  

 (0.0013) (0.0013)  
    

Incipient drought -0.0028** -0.0021*  

 (0.0010) (0.0010)  
    

Incipient wet spell 0.0016+ 0.0012  

 (0.0009) (0.0009)  
    

Slightly wet 0.0038** 0.0031*  

 (0.0012) (0.0012)  
    

Moderately wet 0.0071** 0.0063**  

 (0.0015) (0.0015)  
    

Very wet 0.0099** 0.0087**  

 (0.0019) (0.0019)  
    

Extremely wet 0.0139** 0.0118**  

 (0.0031) (0.0031)  

Grid cell FEs yes yes yes 

Continent-year  yes yes yes 

Temp controls no yes yes 

R2 0.213 0.220 0.219 

N sub-basins 6141 6133 6133 

N cells 37787 37277 37277 

N observations 453444 447324 447324 
 

Notes: Dependent variable is the inverse hyperbolic sine of the DMSP-OLS nighttime lights index. Excluded DSI 

category is near normal (DSI=0+/-0.29). Standard errors in parentheses are clustered by 4-digit Pfafstetter sub-basin. 

Temperature controls in all models are a cubic function of the deviation of annual average grid-cell temperature 

from the grid-cell mean, 2001-2011. All models include fixed effects for cells and continent-year interactions. 
+ p < .10, * p < .05, ** p < .01 
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Table 5: Impact of drought on nighttime lights using sc-PDSI, 2000-2011 

 (1) (2) (3) 

 sc-PDSI sc-PDSI with 

temperature 

sc-PDSI binary 

variable 

Moderately dry or 

worse 

  -0.0081** 

  (0.0016) 
    

Extremely dry -0.0132** -0.0076+  

 (0.0046) (0.0046)  
    

Severely dry -0.0147** -0.0111**  

 (0.0025) (0.0025)  
    

Moderately dry -0.0097** -0.0074**  

 (0.0018) (0.0018)  
    

Slightly dry -0.0044** -0.0026*  

 (0.0013) (0.0013)  
    

Incipient dry spell -0.0020+ -0.0007  

 (0.0011) (0.0011)  
    

Incipient wet spell 0.0029* 0.0020+  

 (0.0012) (0.0012)  
    

Slightly wet 0.0042** 0.0029*  

 (0.0014) (0.0014)  
    

Moderately wet 0.0040* 0.0029  

 (0.0019) (0.0019)  
    

Severely wet 0.0073** 0.0060*  

 (0.0028) (0.0028)  
   

Extremely wet 0.0061 0.0040  

 (0.0054) (0.0054)  

Grid cell FEs yes yes yes 

Continent-year  yes yes yes 

Temp controls no yes yes 

R2 0.217 0.223 0.223 

N sub-basins 6044 6040 6040 

N cells 35288 35067 35067 

N observations 423456 420804 420804 
 

Notes: Dependent variable is inverse hyperbolic sine of nighttime lights index. Excluded sc-PDSI category is near 

normal (PDSI=0+/-0.49). Standard errors in parentheses are clustered by 4-digit Pfafstetter sub-basin. Temperature 

controls are a cubic function of the deviation of annual average grid-cell temperature from the grid-cell mean, 2001-

2011. All models include fixed effects for cells and continent-year interactions. 
+ p < .10, * p < .05, ** p < .01 
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Table 6:  Effects of groundwater access on impacts of moderate or worse drought 

 

 (1) 

No 

groundwater 

(2) 

Groundwater 

aquifer type 

(3) 

Groundwater aquifer 

type & resource 

Moderate or worse 

drought 

-0.0095** 

(0.0016) 

-0.0115** 

(0.0033) 

-0.0179** 

(0.0034) 

    

Major alluvial * drought  0.0100* 

(0.0049) 

0.0112* 

(0.0049) 

    

Local/shallow*drought  0.0004 0.0014 

  (0.0036) (0.0036) 

    

Complex*drought  0.0027 0.0038 

  (0.0041) (0.0041) 

    

Groundwater resource* 

drought 

 

 

 

 

0.0160** 

(0.0030) 

    

R2 0.220 0.220 0.220 

N sub-basins 6132 6132 6102 

N cells 37176 37176 36889 

Observations 446112 446112 442668 
 

Notes: Dependent variable is inverse hyperbolic sine of nighttime lights index. Drought variable is equal to 1 if 

annual average DSI drought category is moderate, severe or extreme. Standard errors in parentheses are clustered by 

4-digit Pfafstetter sub-basin. All models include a cubic in deviation from mean temperature, fixed effects for cells, 

continent*year effects, and a constant. Relative to Tables 4 and 5, these models drop all grid cells for which the 

maximum groundwater aquifer type was missing or unidentified. The three aquifer type coefficients are all relative 

to the excluded category, which is “karstic.” 
+ p < .10, * p < .05, ** p < .01 
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Table 7: Effects of local dams for full set of drought conditions 

 

 (1) (2) 

 Base effects Interaction with 

dam 

Extreme drought -0.0140** 0.0017 

 (0.0031) (0.0057) 

   

Severe drought -0.0101** 0.0074+ 

 (0.0026) (0.0043) 

   

Moderate drought -0.0116** 0.0117** 

 (0.0021) (0.0035) 

   

Mild drought -0.0071** 0.0094** 

 (0.0017) (0.0027) 

   

Incipient drought -0.0055** 0.0075** 

 (0.0013) (0.0021) 

   

Incipient wet spell 0.0032** -0.0044* 

 (0.0012) (0.0019) 

   

Slightly wet 0.0053** -0.0050* 

 (0.0015) (0.0025) 

   

Moderately wet 0.0061** 0.0004 

 (0.0017) (0.0031) 

   

Very wet 0.0089** -0.0007 

 (0.0024) (0.0038) 

   

Extremely wet 0.0094* 0.0051 

 (0.0037) (0.0061) 

   

F test all coefficients in 

column (2) jointly= 0 

2.54 

p=0.005 

F test coefficients 1-5 in 

column (2) jointly =0 

3.65 

p=0.003 

R2 0.220 

6133 

37277 

447324 

Number of sub-basins 

Number of cells 

Observations 
Notes: Dependent variable is inverse hyperbolic sine of nighttime lights index.  Drought index is remote-sensed DSI 

, with “near-normal" category excluded. Standard errors in parentheses are clustered by 4-digit Pfafstetter sub-basin. 

All models include a cubic in deviation from mean temperature, fixed effects for cells, continent*year effects, and a 

constant. + p < .10, * p < .05, ** p < .01 
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Table 8:  Effects of dams on impacts of moderate-or-worse drought 
 

 (1) (2) (3) (4) 

Moderate, severe or 

extreme drought 

-0.0127** 

(0.0019) 

-0.0127** 

(0.0019) 

-0.0135** 

(0.0020) 

-0.0127** 

(0.0019) 

     

Dam* drought 0.0071* 

(0.0038) 

0.0158** 

(0.0042) 

0.0147** 

(0.0041) 

0.0163** 

(0.0041) 

     

Dam reservoir capacity* 

drought 

 

 

 

 

 

 

-0.0001 

(0.0003) 

     

Hydro dam* drought  

 

-0.0175** 

(0.0056) 

-0.0172** 

(0.0055) 

-0.0203** 

(0.0060) 

     

Hydro reservoir 

capacity* drought 

 

 

 

 

 

 

0.0003 

(0.0003) 

     

Pop density* drought  

 

 

 

0.0202 

(0.0130) 

 

 

R2 0.220 0.220 0.220 0.220 

N sub-basins 6133 6133 6133 6133 

N cells 37277 37277 37277 37277 

Observations 447324 447324 447324 447324 
 

Notes: Dependent variable is value of nighttime lights index. Drought variable is equal to 1 if annual average DSI 

drought category is moderate, severe or extreme. Standard errors in parentheses are clustered by 4-digit Pfafstetter 

sub-basin. All models include a cubic in deviation from mean temperature, fixed effects for cells, continent-year 

effects, and a constant. + p < .10, * p < .05, ** p < .01 
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Table 9: Effects of upstream dams on impacts of moderate-or-worse drought 

 

 (1) (2) (3) (4) 

Moderate-or-worse 

drought 

-0.0168** 

(0.0028) 

-0.0172** 

(0.0029) 

-0.0216** 

(0.0037) 

-0.0172** 

(0.0029) 

     

Dam* drought 0.0145** 

(0.0055) 

0.0131* 

(0.0064) 

0.0112+ 

(0.0063) 

0.0201** 

(0.0062) 

     

Near upstream dam* 

drought 

 

 

0.0038 

(0.0072) 

0.0005 

(0.0074) 

0.0044 

(0.0077) 

     

Far upstream dam* 

drought 

 

 

 

 

0.0101+ 

(0.0486) 

 

 

     

Hydro dam* drought  

 

 

 

 

 

-0.0149 

(0.0104) 

     

Near upstream hydro* 

drought 

 

 

 

 

 

 

-0.0053 

(0.0132) 

R2 0.218 0.218 0.218 0.218 

N sub-basins 1980 1980 1980 1980 

N cells 7837 7837 7837 7837 

Observations 94044 94044 94044 94044 
 

Notes: Dependent variable is value of nighttime lights index. Drought variable is equal to 1 if annual average DSI 

drought category is moderate, severe or extreme. Standard errors in parentheses are clustered by 4-digit sub-basin. 

All models include a cubic in deviation from mean temperature, fixed effects for cells, continent-year effects, and a 

constant. Restricted to areas with at least one upstream sub-basin. + p < .10, * p < .05, ** p < .01 
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Table 10.  IV estimates of effects of local dams on drought sensitivity 

 

 (1) (2) (3) 

 Geophys IV  Political IV  All IV 

Moderate or worse drought  -0.0150** 

(0.00541) 

-0.0116* 

(0.00536) 

-0.0128** 

(0.00468) 

    

Dam * drought 0.0121 

(0.0112) 

0.00482 

(0.0113) 

0.00740 

(0.00967) 

    

Montiel-Pflueger robust F-test (weak 

instruments) 

28.8 28.1 19.2 

Critical value for F with 10% bias 12.0 17.7 19.2 

Durbin-Wu-Hausman test 

  (exogeneity) 

.22 

(.64) 

.04 

(.84) 

.00 

(.97) 

Hansen’s J test (overidentification) 8.023 

(.005) 

3.652 

(.06) 

12.1 

(.007) 

N sub-basins 6133 6119 6119 

N cells 37277 37262 37262 

Observations 447324 447144 447144 
 

Notes: Dependent variable is the inverse hyperbolic sine of the nighttime lights index. Standard errors in parentheses 

are clustered by 4-digit sub-basin and all tests are cluster-robust. All models include a cubic in the deviation from 

mean temperature, fixed effects for cells and continent-year effects.  + p < .10, * p < .05, ** p < .01 
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Figure 1. Effects of droughts on lights, two indices compared 

 

Notes: DSI estimates are from Table 4, column 2, and sc-PDSI estimates are from Table 5, column 2.   

The excluded case for both indices reflects “near normal” conditions: -0.3 to 0.3 for the DSI, and -0.5 to 

0.5 for the sc-PDSI. 
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Figure 2. Effects of moderate or worse drought in prior years 
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Figure 3. Effects of remote-sensed drought index by initial cropland acreage  

 

Note: Based on estimates of the equation in Table 4 column 2 separately by initial cropland tercile. 
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Appendix A. Additional results and robustness 

 

Table A1. Groundwater models using sc-PDSI instead of DSI 

 

 (1) 

No 

groundwater 

(2) 

Groundwater 

aquifer type 

(3) 

Groundwater aquifer 

type & resource 

Moderate or worse 

drought 

-0.0081** 

(0.0016) 

-0.0156** 

(0.0047) 

-0.0217** 

(0.0049) 

    

Major alluvial * drought  0.0039 

(0.0067) 

0.0055 

(0.0067) 

    

Local/shallow*drought  0.0112* 0.0124* 

  (0.0050) (0.0049) 

    

Complex*drought  0.0050 0.0062 

  (0.0055) (0.0056) 

    

Groundwater resource* 

drought 

 

 

 

 

0.0140** 

(0.0036) 

    

R2 0.223 0.223 0.223 

N sub-basins 6040 6040 6010 

N cells 35042 35042 34841 

Observations 420504 420504 418092 
 

Notes: Dependent variable is inverse hyperbolic sine of nighttime lights index. Drought index is the remote-sensed 

DSI. Standard errors in parentheses are clustered by 4-digit Pfafstetter sub-basin. All models include a cubic in 

deviation from mean temperature, fixed effects for cells, continent*year effects, and a constant. Relative to Tables 4 

and 5, these models drop all grid cells for which the maximum groundwater aquifer type was missing or 

unidentified. The three aquifer type coefficients are all relative to the excluded category, which is “karstic.” + p < 

.10, * p < .05, ** p < .01 
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Table A2: Effects of local dams for full set of drought conditions using sc-PDSI 

 

 (1) (2) 

 Base effects Interaction with 

dam 

Extreme drought -0.0061 -0.0031 

 (0.0052) (0.0091) 

   

Severe drought -0.0131** 0.0042 

 (0.0029) (0.0050) 

   

Moderate drought -0.0125** 0.0109** 

 (0.0021) (0.0036) 

   

Mild drought -0.0060** 0.0073** 

 (0.0016) (0.0026) 

   

Incipient drought -0.0022+ 0.0033 

 (0.0013) (0.0023) 

   

Incipient wet spell 0.0023 -0.0006 

 (0.0015) (0.0025) 

   

Slightly wet 0.0016 0.0031 

 (0.0018) (0.0030) 

   

Moderately wet 0.0009 0.0046 

 (0.0022) (0.0040) 

   

Very wet 0.0041 0.0043 

 (0.0035) 0.0059) 

   

Extremely wet 0.0011 0.0063 

 (0.0078) (0.0107) 

   

F test all coefficients in 

column (2) jointly= 0 

1.62 

p=0.094 

F test coefficients 1-5 in 

column (2) jointly =0 

2.61 

p=0.023 

R2 0.223 

6040 

35067 

420804 

Number of sub-basins 

Number of cells 

Observations 
Notes: Dependent variable is inverse hyperbolic sine of nighttime lights index.  Drought index is sc-PDSI , with 

“near-normal” category excluded. Standard errors in parentheses are clustered by 4-digit Pfafstetter sub-basin. All 

models include a cubic in deviation from mean temperature, fixed effects for cells, continent*year effects, and a 

constant. + p < .10, * p < .05, ** p < .01 
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Table A3:  Effects of dams on impacts of drought using sc-PDSI 
 

 (1) (2) (3) (4) 

Moderate, severe or 

extreme drought 

-0.0104** 

(0.0018) 

-0.0104** 

(0.0018) 

-0.0091** 

(0.0018) 

-0.0104** 

(0.0018) 

     

Dam* drought 0.0047 

(0.0033) 

0.0028 

(0.0041) 

0.0044 

(0.0041) 

0.0023 

(0.0040) 

     

Dam reservoir capacity* 

drought 

 

 

 

 

 

 

0.0001 

(0.0004) 

     

Hydro dam* drought  

 

0.0040 

(0.0057) 

0.0037 

(0.0058) 

0.0031 

(0.0061) 

     

Hydro reservoir 

capacity* drought 

 

 

 

 

 

 

-0.0001 

(0.0004) 

     

Pop density* drought  

 

 

 

-0.0283+ 

(0.0161) 

 

 

R2 0.220 0.220 0.220 0.220 

N sub-basins 6040 6040 6040 6040 

N cells 35067 35067 35067 35067 

Observations 420804 420804 420804 420804 
 

Notes: Dependent variable is value of nighttime lights index. Drought variable is equal to 1 if annual average sc-

PDSI drought category is moderate, severe or extreme. Standard errors in parentheses are clustered by 4-digit 

Pfafstetter sub-basin. All models include a cubic in deviation from mean temperature, fixed effects for cells, 

continent-year effects, and a constant. + p < .10, * p < .05, ** p < .01 
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Table A4: Effects of upstream dams on impacts of drought using sc-PDSI 

 

 (1) (2) (3) (4) 

Moderate-or-worse 

drought 

-0.0129** 

(0.0033) 

-0.0120** 

(0.0035) 

-0.0174** 

(0.0046) 

-0.0121** 

(0.0035) 

     

Dam* drought 0.0046 

(0.0068) 

0.0072 

(0.0066) 

0.0048 

(0.0066) 

0.0031 

(0.0080) 

     

Near upstream dam* 

drought 

 

 

-0.0071 

(0.0080) 

-0.0106 

(0.0081) 

-0.0095 

(0.0089) 

     

Far upstream dam* 

drought 

 

 

 

 

0.0118* 

(0.0058) 

 

 

     

Hydro dam* drought  

 

 

 

 

 

0.0094 

(0.0116) 

     

Near upstream hydro* 

drought 

 

 

 

 

 

 

0.0126 

(0.0163) 

R2 0.221 0.221 0.222 0.222 

N sub-basins 1968 1968 1968 1968 

N cells 7768 7768 7768 7768 

Observations 93216 93216 93216 93216 
 

Notes: Dependent variable is value of nighttime lights index. Drought variable is equal to 1 if annual average DSI 

drought category is moderate, severe or extreme. Standard errors in parentheses are clustered by 4-digit sub-basin. 

All models include a cubic in deviation from mean temperature, fixed effects for cells, continent-year effects, and a 

constant. Restricted to areas with at least one upstream sub-basin. + p < .10, * p < .05, ** p < .01 
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Table A5: IV estimates of effects of local dams using sc-PDSI 

 

 (1) (2) (3) 

 Geophys IV  Political IV  All IV 

Moderate or worse drought -0.0264** 

(0.00628 

-0.0110 

(0.00884) 

-0.0194** 

(0.00601) 

    

Dam * drought 0.0376** 

(0.0120) 

0.00590 

(0.0182) 

0.0231+ 

(0.0125) 

    

Montiel-Pflueger robust F-test 34.6 20.5 16.1 

Critical value for 10% bias 9.8 16.5 19.0 

Durbin-Wu-Hausman test 

(for exogeneity) 

9.73 

(.002) 

.000 

(.95) 

3.40 

(.07) 

Hansen’s J test 

(overidentification) 

1.06 

(.30) 

10.5 

(.001) 

11.5 

(.009) 

N sub-basins 6133 6119 6119 

N cells 37277 37262 37262 

Observations 447324 447144 447144 
 

Notes: Notes: Dependent variable is the inverse hyperbolic sine of the nighttime lights index. Standard errors in 

parentheses are clustered by 4-digit sub-basin and all tests are cluster-robust. All models include a cubic in the 

deviation from mean temperature, fixed effects for cells and continent-year effects.  + p < .10, * p < .05, ** p < .01 
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