• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
UT Shield
The University of Texas at Austin
  • Texas ScholarWorks
  • Texas Data Repository
  • OER LibGuide
  • Copyright LibGuide

January 14, 2020, Filed Under: Research

Space Limitations in UT’s Fluid-preserved Fish Collection

Today we have a guest post about cataloging and access to natural history collections from Adam Cohen, Dean Hendrickson, and Melissa Casarez of the University of Texas’ Biodiversity Center. 

Specimens are, in many ways, like books written in languages we are still learning. New technologies like DNA analyses, high-resolution CT scanning, and modern chemistry are providing ways to “read” the complex information stored in specimens. They tell us more about their evolutionary relationships, their health, interactions between species, and the conditions of the environments in which they lived. The value of specimens thus appreciates every time a new technology opens doors allowing them to be “read” in new ways. New technologies have similarly revolutionized how the cataloged data about specimens – where/when they were collected, who collected them, size, maturity, sex, etc. – are stored and made available. Conversion of initially hand-written museum catalogs to digital databases in globally standardized formats enabled open sharing, and in turn analysis by powerful computers. Suddenly ecologists became major users of specimen-based data, providing insights into how ecosystems work and are changing. Recent initiatives like the Extended Specimens Network are aiming to connect specimens to data derived from them to other relevant data, creating a data network facilitating complex analyses.

However, the way these now more-valuable-than-ever physical collections of specimens are stored has hardly changed over all those years. Yes, environmental conditions have improved, with temperatures and illumination now controlled in ways that increase specimen life and quality. But the way specimens are arranged in natural history collections is deeply rooted in tradition and almost universally accepted among specimen collections, changing little since they were first placed on shelves hundreds of years ago. Specimens are arranged taxonomically, all jars of a species together alongside their closest relatives, with spaces left empty after each species for new specimens to be added. This system evolved primarily to facilitate “old-school” taxonomic study. Anyone describing a new species needed to compare their specimens to all of its close relatives, so having them all in one small part of the collection was convenient. Our own fish collection has been arranged taxonomically since inception, 73 years ago. As we grew, the inevitable filling of those gaps left for growth forced us to shuffle jars of adjacent species to make space. Sometimes we’d move hundreds of jars to accommodate a few dozen new ones. We began to see this way of arranging jars as a significant efficiency problem.

Given budgetary and other obstacles to getting more space or installing compactorized shelving, and with the space squeeze significantly affecting our productivity, our first thoughts were to conserve or create “new” space. For example, in the field, we became less likely to keep large specimens, often releasing them, or if we did keep them, we’d consider keeping only the head or other parts. That countered our long-standing attempts to rectify the obvious historic bias in our collection against large-bodied species.

Chain pickerel from Cass County Texas
TNHC 44309, Chain pickerel (Esox niger) from Cass County, Texas. Example of preserving a part of an individual to save space. The complete specimen would have filled at least a gallon jar, but its head alone fits into a quart. Although the specimen identification can be made with a head only, this limits greatly the potential research value of the specimen.

Fishes are stored, sometimes rather inefficiently, in “lots” – all specimens of a species collected at a point in space and time into one container. Thus, a single small specimen can consume an entire jar that could otherwise hold hundreds of specimens. To better utilize wasted space we laboriously vialed single small specimen lots and combined them into multi-lot quart jars (up to 30 vials each) and multi-lot tanks for larger specimens (up to 65 specimens each). That massive effort resulted in 5,352 lots (8% of the total collection) moving to multi-lot containers of some sort. Next, we moved a large subset of our collection to a nearby building lacking the environmental controls in our primary building. We also started packing our smallest jars (8 oz) into high-density boxes and stacking them on dollies in aisles. Then, we filled space freed up by the removal of an entomology collection from our building.

Multi-lot quart jar holding Mimic shiner
Example of a multi-lot quart jar holding Mimic shiner (Notropis volucellus) specimens that were once housed singly in approximately two dozen 8 oz jars. This saves space, but is very time consuming to do, increases the possibility of data loss, and takes longer to retrieve and shelve.

Our collection is now spread across four spaces in two buildings. Although we do not regret those actions, because they allowed us to continue growing, each method used to gain space is flawed in one way or another. Collection management is now complicated by fragmentation. Though three of the four spaces retain the same taxonomic ordering arrangement, specimens of virtually every species are now in at least two (and most in three) different places. Housing specimens in separate buildings doubles the effort required for monitoring environmental conditions and coordinating maintenance. Plus, supplies like spill kits, extra jars, ethanol, broken glass disposal containers, step ladders etc., are doubled to satisfy requirements in both buildings. As for multi-lot jars, not only does their creation take considerable time, it also introduces possible errors, allowing for the opportunity to lose original jar labels (which can’t fit into vials), and now makes specimen retrieval and re-shelving more time consuming. Multi-lot tanks now clog up aisles and hallways. While we have saved space, the workload for collection managers, curator and staff has increased as a result of the move. Still battling space, and assuming it might be some time before we’d get more, we concluded that we needed to be even more creative about resolving our space problem.

It took us a while to start thinking “out-of-the-box” about some of the most basic and ingrained traditions. But, after many years of battling space limitations and considerable wracking of brains, we realized that our active and nearly exponentially growing collection (>72,000 lots) would be a perfect test bed to conduct an assessment comparing the taxonomic arrangement of jars to a more space-efficient arrangement. The new system requires that jars be placed on shelves in catalog number order and maximizes space by co-shelving jars of the same size only. The elimination of spaces resulting from variable sized jars being co-shelved allowed us to hold an additional 24 jars per square meter of shelf space. In addition to space savings, there are other benefits, and a qualitative comparative assessment of fourteen tasks we routinely perform in our collection revealed that the catalog number ordered section of jars out performed the taxonomic system in nine of them, while the taxonomic arrangement outperformed in four. One task we could not determine an advantage.

We are becoming convinced this system will conserve space, reduce shelving errors, and increase overall work efficiency. There are some disadvantages, but overall, we find ourselves leaning (admittedly with some trepidation) toward eventual conversion of our entire collection to this system, despite the considerable effort that would entail. We prepared an early draft manuscript and invite comments from colleagues. Please use this link to get to it, and this link to a form where you can submit your thoughts that will allow us to improve the manuscript. Thanks in advance for your help.

Taxonomically arranged shelf
Taxonomically arranged shelf (after spaces for growth between taxa were removed). Notice that space is wasted by co-shelving jars of various sizes.
catalog number ordered shelves
Catalog number ordered shelves. Little space is wasted when jars of the same size are on each shelf.

 

Primary Sidebar

Archives

  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • January 2020
  • November 2019
  • October 2019
  • September 2019
  • July 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • December 2016
  • November 2016
  • October 2016
  • September 2016
  • August 2016
  • July 2016
  • June 2016
  • April 2016
  • March 2016
  • February 2016
  • January 2016
  • December 2015
  • November 2015
  • October 2015
  • September 2015
  • June 2015
  • May 2015
  • April 2015
  • March 2015
  • February 2015
  • January 2015
  • December 2014
  • November 2014
  • October 2014
  • September 2014
  • August 2014
  • July 2014
  • June 2014
  • May 2014
  • April 2014
  • March 2014
  • February 2014
  • January 2014
  • December 2013
  • November 2013
  • October 2013
  • September 2013
  • August 2013

Your Twitter Feed

Tweets by Texas ScholarWorks

Recent Posts

  • Top downloads from Texas ScholarWorks – June 2025
  • UT Libraries and TDL supporting new OA journal
  • Affordable Education Champion Profile: Dr. Jonathan Perry
  • Top downloads from Texas ScholarWorks – May 2025
  • Top downloads from Texas ScholarWorks – April 2025

Footer

LINKS SECTION ONE

Links or other information
Link
Link
Link
Link
Link
Link
Link
Link
Link
Link
Link

LINKS SECTION TWO

Links or other information
Link
Link
Link
Link
Link
Link
Link
Link
Link
Link
Link

LINKS SECTION THREE

Links or other information
Link
Link
Link
Link
Link
Link
Link
Link
Link
Link
Link
ITS

Address Link
Austin, TX 78712
512-555-5555
Email Address Here

Donate

        

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2025