CORTICOSTRIATAL PLASTICITY AFTER MIDDLE CEREBRAL ARTERY OCCLUSION

NAOMI COHEN
ADVISOR: DR. THERESA JONES
GRADUATE STUDENT ADVISOR: KRISTAL SCHAAVALENZUELA
Stroke is 5th leading cause of death (American Heart Association, 2017)

A leading cause of long term disability (Yang et al., 2017)

What is a stroke? (American Heart Association, 2017)

- Ischemic 85%
 - Cause by a clot
- Hemorrhagic 15%
 - Caused by a bleed
Physical rehabilitation is primary treatment in humans
- Produces neuroplastic changes in rat models

Rehabilitation affects functional outcome
- Timeline - too early, too late
- Lateralization
- “good” (non-paretic) vs. “bad” (paretic) limb
Motor Cortex-essential for planning, control and execution of motor functions

Striatum- input from motor cortex to basal ganglia

Corticostriatal projections

Lateralized damage
- Middle cerebral artery occlusion (MCAo)
 - Large lesions = bigger functional change
 - Most common type of ischemia in humans
- Corticostriatal connections
 - Damaged by stroke
 - Striatum denervated (no longer receives information from motor cortex)

- Found in ipsilesional striatum after stroke, originated in contralesional cortex
- One study correlated function with behavioral measures (Rosenzweig and Carmichael 2013)
 - Damage to corticostriatal axons positively correlated with motor impairment

What is not known
- Above study has not been replicated
- Effects of rehabilitative training?
STUDY OVERVIEW

- Induce MCAo
- Rehabilitative training
- Tracer
- Quantify axons
Behavioral Methods:

- Male Long Evans Rats (3-12 months)
- Rats learn reach task (3-4wks)
- Induce stroke
 - Occlude middle cerebral artery for 60 minutes
- Rehab groups
 - Standard, control, non-paretic, delayed
- Tracer
METHODS

Histology Methods

- Sections
- Immunohistochemistry
- Slides
- Microscopy and axon quantification

(Riban and Chesselet, 2006)
Two options for data analysis.

- Compare standard rehab to control and non-paretic rehab to delayed rehab, treating the two as separate experiments.
- Compare all four groups using an ANOVA test.

Paretic limb - “bad” or affected limb

Non-paretic limb - “good” or unaffected limb

MCAo - middle cerebral artery occlusion (type of stroke)

Ipsilesional - side of the lesion

Contralesional - opposite from the lesion
** EXPECTATIONS **

- **Paretic limb** - “bad” or affected limb
- **Non-paretic limb** - “good” or unaffected limb
- **MCAo** - middle cerebral artery occlusion (type of stroke)
- **Ipsilesional** - side of the lesion
- **Contralesional** - opposite from the lesion

Diagram:
- Motor cortex
- Lesion
- Striatum
- Axons

Graph:
- Control
- Standard
- Delayed
- Non-paretic

Legend:
- Ipsilesional
- Contralesional
ALTERNATIVES

- Standard rehab group - no increase in ipsilesional or contralesional projections
- Non-paretic rehab group and delayed rehab group - no increase in ipsilesional or contralesional projections
- Control - no increase in contralesional projections

Paretic limb - “bad” or affected limb
Non-paretic limb - “good” or unaffected limb
MCAo - middle cerebral artery occlusion (type of stroke)
Ipsilesional - side of the lesion
Contralesional - opposite from the lesion

