The Effects of Aerobic, Resistance, and HIIT Exercise on Testosterone and Cortisol

BY: NICK LANPHER

FACULTY ADVISORS: ROBERT A JOSEPHS

and JASPER A. J. SMITS

THE UNIVERSITY OF TEXAS AT AUSTIN

Overview

- Background information
 - Hormones
 - **×** Cortisol
 - **Testosterone**
 - Types of exercise
- Why does this all matter?
- Hypotheses
- Study Design & Procedure
- Data Analysis
- Expected Outcomes & Alternatives

Cortisol

- Hypothalamic-Pituitary-Adrenal (HPA) axis
- Stress hormone
 - o 'Fight or Flight'
- Exercise as a stressor

Cortisol x Exercise

Aerobic exercise

o Intermittent cycling, salivary-cortisol increase (J.P. Hough et al., 2011)

Resistance exercise

o 1 rep max for 3 exercises, large variability in salivary-cortisol (Ghigiarelli et al., 2013)

HIIT

Initial data shows salivary-cortisol increase

Testosterone

- Hypothalamic-Pituitary-Gonadal (HPG) axis
- Testosterone increases:
 - Mating efforts
 - After a competitive win
 - During aggressiveness
- Dual-hormone hypothesis
 - HPA mediates HPG levels
- Side Note: Hormone level delay in saliva

Testosterone x Exercise

Aerobic exercise

O Increase in salivary-testosterone after cycling intervals (J.P. Hough et al., 2011)

• Resistance exercise

O After 1 rep max, salivary-testosterone increase (Ghigiarelli et al., 2013)

HIIT

No testosterone evidence

Why does this all matter?

- Anxiety
 - Exercise as a treatment
 - Hormone effects
- Age related disorders

Study Design

Hypotheses:

- o H1: ♥pre-ex C & ↑ pre-ex T →larger T increase after resistance than aerobic
- O H2: Under the same conditions (♥ pre-ex C & ↑ pre-ex T) → largest T increase after HIIT, as compared to aerobic and resistance
- o H3: ↑pre-ex C & both ↑/ T → No effect for all three exercise styles

Study Design

Independent Variables

- Types of exercise
 - × Aerobic
 - **x** Resistance
 - ▼ High Intensity Interval Training (HIIT)

Dependent Variables

- o Post-exercise hormone levels
 - Salivary-testosterone
 - Salivary-cortisol

Methods Overview

Participants

- o 100 undergraduate males
- SONA recruitment

Hormone measurement

- o 1.8 mL of saliva
- O Hormone fluctuations (Touitou & Haus, 2000)

Procedure

- Obtain consent
- Pre-exercise saliva sample & resting heart rate taken
- 3 minute directed stretch
- Perform the exercise
 - o Aerobic / Resistance / HIIT
- 3-5 minute cool-down
- Post-exercise saliva samples taken

Exercise Modalities

Aerobic

- Stationary Bike
- o 5 minute slow warm-up
- o 25 minutes at 65-75% VO₂max

Resistance

- o 4 Weightlifting exercises (Ghigiarelli, Sell, Raddock, & Taveras, 2013)
 - Bench press, Back squat, Seated row, and Leg press
- o 8-10 reps each at 70% 1 rep max, 3 sets each

HIIT

In-progress

Data Analysis

- Descriptive statistics for all dependent variables
- Analysis of variance (ANOVAs)
 - Hormones x Exercise conditions

Expected Outcomes

- T increase from HIIT = largest
- T increases between pre → post for all exercises
- If C is high, then no effect on T
- After HIIT, Cortisol increase
- Alternatives,
 - Exercise has no effect on testosterone and cortisol
 - $\circ \uparrow$ pre-ex C $\rightarrow \uparrow$ post-ex T