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1. Introduction

Policies that change future mortality rates (like climate mitigation) or
change future fertility rates (like public education) not only change the
quality of lives in the future but also who will live in the future. Our
global population has quadrupled in size over the past hundred years and
is projected to peak then shrinkwithin the lifetime of children born today,
with uncertain consequences.1 Hence evaluating economic policies re-
quires assessing both social risk and variable population. A standard prin-
ciple for economic policy evaluation is Expectational TotalUtilitarianism,
which maximizes the expected value of the sum of individuals’ lifetime
well-being. Despite the prominent use in public economics of both ad-
ditive utilitarianism and expectation-taking under risk, these methods
continue to be questioned in welfare economics, in part because existing
axiomatic justifications make seemingly strong assumptions (Fleurbaey,
2010; Golosov et al., 2007).

We provide a new axiomatic path to Generalized Expectational Total
Utilitarianism, which is a set of social welfare functions, introduced
by Blackorby, Bossert, and Donaldson (1998), of which Expectational
Total Utilitarianism is the most straightforward case. Our result builds
on a new combination of weak assumptions that yields, first, in a
fixed-population theorem, Generalized Expectational Fixed-Population
Utilitarianism, and second, in a variable-population theorem, Gen-
eralized Expectational Total Utilitarianism.2 The variable-population
setting, we show, allows us to eliminate a contentious assumption that
the fixed-population setting requires.

In particular, our result extends Harsanyi’s aggregation theorem to
variable populations but does not assume Expected Utility Theory either
for society or for individuals. Instead, we show that two dimensions of
weak dominance (one over risky states and the other over individuals)
characterize a social welfare function with two dimensions of additive
separability. So social expected utility emerges merely from social

1 For two recent overviews of the economists’ emerging understanding and open
questions about low fertility, see Kearney et al. (2022) and Doepke et al. (2022). For
possible macroeconomic implications of depopulation, see Jones (2022).

2 An active current theoretical literature in welfare economics has been exploring
additive separability over two dimensions, including Fleurbaey (2009), Mongin and Pi-
vato (2015), McCarthy et al. (2020), and Spears and Zuber (2022). We discuss related
prior literature in more depth in our conclusion section.
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Table 1: Motivating example: The only affected person is sure to exist in
both prospects and is stochastically better-off in 𝑔∗

prospect 𝑓∗ prospect 𝑔∗
states: Ann Bob Ann Bob
𝑠1 1 1 1 9
𝑠2 𝛺 7 𝛺 1

statewise dominance (in the context of our other axioms). Moreover,
additively-separable utilitarianism arises merely from individual stochas-
tic dominance, which is only assumed for lives certain to exist; this is
crucial because it means that our core variable-population axiom does
not compare life against non-existence. Further, without assuming
complete individual preferences, we derive that the social order respects
individual-level expected utility.

We introduce a new axiom, Stochastic Dominance for Sure Individ-
uals, which is at the core of our new results. To understand the axiom,
consider the example in Table 1, where columns are individuals, rows are
equiprobable states, and for the purposes of this example, 𝛺 represents
an individual’s non-existence in a state.3

The principle behind our result onlymakes comparisons for individu-
als who are sure to exist and, even for those individuals, only uses stochas-
tic dominance. In this comparison of 𝑓∗ and 𝑔∗, Ann is not sure to exist
in either prospect. But she is altogether unaffected by the social choice
of 𝑓∗ or 𝑔∗: her utility conditional-on-existence does not differ between
her prospects, nor her probability of existence, nor even the state inwhich
she exists. Bob is the only person sure to exist. Given the equal probabil-
ity of the two states, prospect 𝑔∗ stochastically dominates prospect𝑓∗ for
him. Our principle says that, in this situation, 𝑔∗ is better than 𝑓∗. An
egalitarian, however, might say that 𝑓∗ is better than 𝑔∗, if stochastically
“levelling down” Bob is a price worth paying to ensure ex-post equality

3 This example was first introduced in the philosophy literature, as a counterexample
against Expectational Average Utilitarianism, by Gustafsson and Spears (2022); their
informal paper does not include any characterization results. Gustafsson and Spears
emphasize that their counterexample uses only positive lifetime utilities, so unlike other
classic objections to Average Utilitarianism and to other non-separable approaches to
population ethics, their counter-example does not depend upon a meaningful zero for
utility nor upon the plausible existence of lives not worth living.
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(Myerson 1981, Parfit n.d., ch. 1; 1995, p. 17).
Our basic principle says that a prospect is better if it can be shown,

without comparing existence to non-existence, to be better for somebody
sure to exist and worse for nobody, where “better for” merely means in
the sense of stochastic dominance, which is an incomplete ranking. And,
in fact, our principle weakens stochastic dominance to only apply if states
can be permuted the same way for all sure-to-exist individuals. Our new
principle is consistent with egalitarian (or any other) choice in Myerson’s
counter-example to utilitarianism (which we introduce in Section 3 and
discuss further with our principle in Section 4).

But notice that Expectational Average Utilitarianism, Expectational
Maximin, and Expectational Rank-Discounted Utilitarianism4 would
each choose 𝑓∗ over 𝑔∗ in Table 1. And so would a non-expectation-
taking rule that evaluates outcomes according to Total Utilitarianism
but then uses maximin for social risk, choosing the prospect with the
highest least-valuable state.5 Our principle is violated by each of these
alternative approaches to variable-population social choice under risk.
So our principle offers a new foundation for Generalized Expectational
Total Utilitarianism, grounded in a simple axiom that is in the spirit of
respecting Pareto improvements.

Our paper begins, after introducing our framework, with a theorem
for a fixed-population setting. This theorem requires an axiom (that we
call Compensation) that can be dropped in our second theorem, which
is in a variable-population setting. In this way, we apply the insight of
Blackorby and Donaldson (1984), who showed that variable population
provides a second axiomatic path to additive utilitarianism.More broadly,
we demonstrate what can be achieved by combining Blackorby and Don-
aldson’s approach with Harsanyi’s result, which is a standard basis of util-
itarian welfare economics. Our result shows that Harsanyi’s assumptions
can be considerably weakened in a variable-population setting — which

4 Expectational Average Utilitarianism maximizes the expectation of the average of
lifetime utility among people born. Expectational Maximin maximizes the expectation
of the utility of the worst-off person born. See Blackorby et al. (2005) for an overview
of alternative approaches to population ethics. Expectational Rank-Discounted Utilitar-
ianism would maximize the expectation of ∑𝑟 𝛽

𝑟𝑢[𝑟], where 𝑢[𝑟] orders individuals by
rank 𝑟 from worst-off; see Asheim and Zuber (2016).

5 That is, min𝑠 (∑𝑖 𝑢𝑖𝑠). There is literature in decision theory proposing to maximize
the minimal expected utility using a set of probability, in particular Gilboa and Schmei-
dler (1989).
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is also the setting that is pragmatically needed for economic policy assess-
ments.

After presenting our main results, we show that they can be rein-
terpreted to apply to further economic settings and questions with two
dimensions of value. Macroeconomists, for one example, canonically
use time-separable social objective functions that add a value for each
time period, which in turn is found by adding a period utility for each
individual: ∑𝑡 𝛼𝑡 ∑𝑖 𝑢𝑖𝑡 for individuals 𝑖 and times 𝑡. Although our
main result considers risky states and individuals, our result can also
be applied to time periods and individuals. So our results offer a new
axiomatic justification for this practice in the macroeconomic literature.
For example, we provide a microfoundation for Klenow, et al.’s (2022)
recent growth accounting model that incorporates population growth
while assuming a Total Utilitarian perspective: They conclude that, even
though per-person living standards have improved radically, over the
past decades population growth has accounted for even more of the
vast improvements in aggregate well-being. Climate economics, such
as Nordhaus’ (2017) DICE and RICE models, also uses this functional
form for optimizing macroeconomic climate policy. We provide a new
microfoundation for this standard tool in normative macroeconomics.

In another application, we show that our formal result can be reinter-
preted to propose that a prudent individual making risky decisions about
a life of unknown length and per-period utility should maximize the ex-
pected sum of per-period utility over time, ∑𝑠 𝛼𝑠 ∑𝑡 𝑢𝑠𝑡 for risky states
𝑠 and time periods 𝑡. This application would exclude, for example, risk
aversion over the length of the person’s life.

2. Framework

Let ℕ denote the set of positive integers, 𝑁 the set of non-empty finite
subsets ofℕ, ℝ the set of real numbers, and ℝ++ the set of positive real
numbers. For a set 𝐷 and any 𝑛 ∈ ℕ, 𝐷𝑛 is the 𝑛-fold Cartesian product
of𝐷. Also, for any two sets𝐷 and𝐸,𝐷𝐸 denotes the set ofmappings from
𝐸 into𝐷.

The set of potential individuals who may or may not exist is 𝐼. We
will consider two cases: a fixed-population case where 𝐼 = {1,⋯ , 𝑛} for
some finite 𝑛 and individuals always exist; and a variable-population case
where 𝐼 = ℕ and only a finite subset of individuals exist in any realized
outcome. In the variable-population case, since 𝐼 = ℕ, it holds that 𝑁
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is also the set of all possible realized populations of individuals, meaning
the set of all subsets of 𝐼. That is, in any outcome, 𝑁 is the population
that exists. So 𝑁 ∈ 𝑁 in the variable-population case and 𝑁 = 𝐼 in the
fixed-population case.

We consider a welfarist framework where the only information neces-
sary for social decisions is the utility levels of people alive in a certain state
of affairs. An outcome’s welfare information is given by 𝑢 = (𝑢𝑖)𝑖∈𝑁 ∈ ℝ𝑁,
where 𝑁 is the population, and 𝑢𝑖 ∈ ℝ is, for each existing individual 𝑖,
the lifetime utility experienced by 𝑖. We denote 𝑈 the set of outcomes;
the exact definition will be different in the fixed-population and variable-
population cases.

For each 𝑢, we denote𝑁(𝑢) the set of individuals alive in 𝑢, and 𝑛(𝑢)
the number of individuals alive in 𝑢. For two any outcomes 𝑢 and 𝑣 such
that 𝑁(𝑢) ∩ 𝑁(𝑣) = ∅ (that is, 𝑢 and 𝑣 are distributions of utility for
two disjoint populations), we denote 𝑢𝑣 the outcome where the two pop-
ulations are merged. Formally, it is the outcome 𝑤 such that 𝑁(𝑤) =
𝑁(𝑢) ∪ 𝑁(𝑣), 𝑤𝑖 = 𝑢𝑖 for all 𝑖 ∈ 𝑁(𝑢), and 𝑤𝑗 = 𝑢𝑗 for all 𝑗 ∈ 𝑁(𝑣).

We assume that it is not always known for sure what the final utility
vector will be nor what set of individuals will exist. For now, we assume
that there is a fixed, finite set of states of theworld 𝑆 = {1,⋯ ,𝑚}, with𝑚 ≥
2, where all states are equally probable so that each state has probability 1𝑚 .
A “supplementarymaterial” appendix discusses the extension to themore
general cases. Note that we are in a framework where probabilities are
given and/or individuals have the same beliefs (an “objective” probability
framework).

A social prospect 𝑓 is a function from 𝑆 to 𝑈. For 𝑠 ∈ 𝑆, 𝑓(𝑠) is there-
fore the outcome induced by the prospect 𝑓 in state 𝑠. We let 𝐹 = 𝑈𝑆 be
the set of functions from 𝑆 to 𝑈. For an outcome 𝑢 ∈ 𝑈, we abuse nota-
tion and also denote 𝑢 the sure social prospect 𝑓 such that 𝑓(𝑠) = 𝑢 in all
𝑠 ∈ 𝑆.

For any outcome 𝑢 ∈ 𝑈, whenever 𝑖 ∈ 𝑁(𝑢), 𝑢𝑖 ∈ ℝ denotes the utility
of individual 𝑖. For a prospect𝑓 ∈ 𝐹, whenever 𝑖 ∈ 𝑁(𝑓(𝑠)),𝑓𝑖(𝑠) denotes
the utility of individual 𝑖 in state of the world 𝑠 ∈ 𝑆. For an individual 𝑖 ∈ 𝐼
and a social prospect 𝑓 ∈ 𝐹, we let 𝑆𝑖(𝑓) = {𝑠 ∈ 𝑆|𝑖 ∈ 𝑁(𝑓(𝑠))} be the
set of states of the world where individual 𝑖 exists. In the fixed-population
case, we have 𝑆𝑖(𝑓) = 𝑆 for all individuals and prospects. But this may not
be case in the variable-population case: In that case a potential individual
may not exist in some (or any) state of the world.

Consider an individual 𝑖 ∈ 𝐼 and a social prospect 𝑓 ∈ 𝐹 such that
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𝑆𝑖(𝑓) = 𝑆, meaning that the individual exists for sure in all states of
the world. Given objective probabilities of states, we can define the in-
dividual prospect for 𝑖 that is associated with 𝑓. We write such an in-
dividual prospect using the associated cumulative distribution function
𝑞𝑓𝑖 ∶ ℝ → [0, 1], with 𝑞𝑓𝑖 (𝑧) =

|{𝑠∈𝑆|𝑓𝑖(𝑠)≤𝑧}|
𝑚 ; 𝑞𝑓𝑖 (𝑧) is the probability that

individual 𝑖 obtains a level of wellbeing level that is at most 𝑧. Notice that
probabilities are formed as fractions of the set of equiprobable states.

The task of our paper is to characterize a social preorder ≿ on 𝐹. That
≿ is a preorder means that it is a reflexive and transitive binary relation.
In particular, the preorder ≿ is not directly assumed by our axioms to be
complete on 𝐹, although both of our theorems derive completeness on 𝐹
from the combination of our axioms. Throughout the paper we assume
completeness only on sure prospects, as stated in our first axiom:

Completeness for Sure Prospects For all 𝑢, 𝑣 ∈ 𝑈, either 𝑢 ≿ 𝑣, or
𝑣 ≿ 𝑢, or both.

Completeness for Sure Prospects is not contentious within the literature
for same-population cases. It is more contentious in the philosophical
population-ethics literature. Completeness, in that case, would hold that
populations with different sizes are always comparable. Some authors
argue that variable-population completeness may not hold because we
do not know the critical-level.6 But approaches with incompleteness
are typically subject to time-consistency problems or money pump
arguments (Hammond, 1988; Gustafsson, 2022). Variable-population
incompleteness would also have deeply unattractive practical and
normative implications, such as that climate mitigation policy is not
preferable to large global temperature increases, because different sets
of people would exist.7 Ordinary economic analysis and policy-making
routinely (if implicitly) assume that outcomes with different populations
can be compared; we follow that tradition.

3. Fixed-population results

Weassume in this section that the population is a fixed set of𝑛 individuals,
𝐼 = {1,⋯ , 𝑛} with 𝑛 ≥ 3. The set 𝑈 of outcomes is 𝑈 = ℝ𝐼. In a slight

6 See the literature on range critical level: Blackorby et al. 1996, Rabinowicz 2009,
and Gustafsson 2020.

7 This observation is an application of Parfit’s (1984, p. 362) Depletion case in the
philosophical population-ethics literature.
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abuse of notation, it will sometimes be useful to consider subsets of 𝐼,
whichwewill call𝑁 in this section, and to consider the utility distribution
of the subpopulation within𝑁 that is an element of ℝ𝑁.

Our first results are based on two dominance principles, one for soci-
ety and one for individuals. In our social dominance principle, the nota-
tion 𝑓(𝑠) ≿ 𝑔(𝑠)means “if ≿ faced a binary choice between the outcome
of 𝑓 in 𝑠 occurring for sure (that is, in every state), or the outcome of 𝑔
in 𝑠 occurring for sure, then ≿ would prefer the former to the latter.”

Social Statewise Dominance For all 𝑓, 𝑔 ∈ 𝐹, if 𝑓(𝑠) ≿ 𝑔(𝑠) for all
𝑠 ∈ 𝑆, then 𝑓 ≿ 𝑔. If in addition there exists 𝑠 ∈ 𝑆 such that
𝑓(𝑠) ≻ 𝑔(𝑠), then 𝑓 ≻ 𝑔.

Social Statewise Dominance is a very weak rationality principle for social
decision making. It means that if we are sure that a social prospect would
be better than another under any state, then we should prefer it.

Our individual dominance principle uses our notation for individual
prospects. For two social prospects 𝑓, 𝑔 ∈ 𝐹 and an individual 𝑖 such that
𝑆𝑖(𝑓) = 𝑆𝑖(𝑔) = 𝑆, 𝑞

𝑓
𝑖 stochastically dominates 𝑞𝑔𝑖 if and only if 𝑞𝑓𝑖 (𝑧) ≤

𝑞𝑔𝑖 (𝑧) for all 𝑧 ∈ ℝ and 𝑞𝑓𝑖 (𝑧′) < 𝑞
𝑔
𝑖 (𝑧′) for some 𝑧′ ∈ ℝ. If 𝑞𝑓𝑖 = 𝑞

𝑔
𝑖 , then

𝑞𝑓𝑖 and 𝑞
𝑔
𝑖 correspond to the same individual prospect.

Individual Stochastic Dominance For all 𝑓, 𝑔 ∈ 𝐹, if
𝑞𝑓𝑖 (𝑧) ≤ 𝑞

𝑔
𝑖 (𝑧) for all 𝑧 ∈ ℝ and 𝑖 ∈ 𝐼 then 𝑓 ≿ 𝑔. If in addition

there exists 𝑗 ∈ 𝐼 and 𝑧′ ∈ ℝ such that 𝑞𝑓𝑗 (𝑧′) < 𝑞
𝑔
𝑗 (𝑧′), then

𝑓 ≻ 𝑔.

Individual Stochastic Dominance can be interpreted as a weak ex-ante
Pareto principle: If a prospect is better than another for all individuals
(in the sense of first-order stochastic dominance), then it is also socially
better. In that sense, it is in the lineage ofHarsanyi’s foundational result on
social aggregation under risk (Harsanyi, 1955). Note, however, that Indi-
vidual Stochastic Dominance is weaker than the usual ex-ante principles
for two reasons: because it is compatible with non-expected utility assess-
ments of individual prospects, and because it is only an incomplete rank-
ing of individual prospects. An interpretation is that the social ranking
needs not always respect individual preferences, but instead only respects
the part of individual preferences, if any, which is compatible with first-
order stochastic dominance.
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Table 2: Myerson’s objection to utilitarianism: Equal indivdiual prospects
can yield unequal outcomes

prospect 𝑓∗∗ prospect 𝑔∗∗
states: Ann Bob Ann Bob
𝑠1 1 1 1 0
𝑠2 0 0 0 1

We recognize that the Individual Stochastic Dominance principle
itself has important and controversial normative implications for ex-post
fairness. To show this, let us reframe our introductory example into the
fixed-population example in Table 2, which is originally due to Myerson
(1981).8 Continue to assume that the two states are equally probable.
So both individuals face the same individual prospect in 𝑓∗∗ and 𝑔∗∗.
Accordingly, Individual Stochastic Dominance implies that those two
prospects must be indifferent. But several authors have argued that
society may prefer prospect 𝑓∗∗ because it does not imply any inequality
ex post (Fleurbaey, 2010). We acknowledge this implication for our
fixed-population result, but note that our variable-population individual
dominance axiom, introduced below, avoids it.

The conflict with the intuition behind Table 2 emerges, in fact, from
the Anteriority axiom, which is weaker than Individual Stochastic Dom-
inance and which says that the social preorder only depends on which
prospect each individual faces, that is:

Anteriority If 𝑞𝑓𝑖 (𝑧) = 𝑞
𝑔
𝑖 (𝑧) for all 𝑧 ∈ ℝ and all 𝑖 ∈ 𝐼 then

𝑓 ∼ 𝑔.

McCarthy et al. (2020) have argued that Anteriority expresses a weak
sense in which the social preorder is ex ante. So, our characterization re-
sults can be seen as attractive to people endorsing a weak ex-ante view, or
as additional arguments for people who resist that view.

Our first result is to show that those two dominance principles, to-
gether with Completeness for Sure Prospects, imply the following sepa-
rability property for sure prospects:

Separability for Sure Prospects For any𝑁 ⊂ 𝐼, for any 𝑢, 𝑣 ∈ ℝ𝑁
and 𝑤, �̂� ∈ ℝ𝐼⧵𝑁, 𝑢𝑤 ≿ 𝑣𝑤 if and only if 𝑢�̂� ≿ 𝑣�̂�.

8 See also Broome 1991, p. 185.
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Lemma 1. If the social ordering ≿ satisfies Completeness for Sure Prospects,
Social Statewise Dominance and Individual Stochastic Dominance, then it
satisfies Separability for Sure Prospects.

Proof. The proof is by contradiction. Assume that 𝑁 ⊂ 𝐼, 𝑢, 𝑣 ∈ ℝ𝑁
and 𝑤, �̂� ∈ ℝ𝐼⧵𝑁 are such that 𝑢𝑤 ≿ 𝑣𝑤 but 𝑣�̂� ≻ 𝑢�̂�. Consider the
three following prospects 𝑓, 𝑔, and ℎ (where each row gives the vector of
utilities in a specific state of the world):

state: 𝑓 𝑔 ℎ
1 𝑢𝑤 𝑣𝑤 𝑢𝑤
2 𝑢�̂� 𝑢�̂� 𝑣�̂�
3 𝑢𝑤 𝑢𝑤 𝑢𝑤
⋯ ⋯ ⋯ ⋯
𝑚 𝑢𝑤 𝑢𝑤 𝑢𝑤

By Social Statewise Dominance, given that 𝑢𝑤 ≿ 𝑣𝑤, we must have
𝑓 ≿ 𝑔. By Social StatewiseDominance, given that 𝑣�̂� ≻ 𝑢�̂�, wemust have
ℎ ≻ 𝑓. Hence, by transitivity, we should have ℎ ≻ 𝑔. But it is the case that
𝑞𝑔𝑖 (𝑧) = 𝑞ℎ𝑖 (𝑧) for all 𝑧 ∈ ℝ and 𝑖 ∈ 𝐼, so that Individual Stochastic Dom-
inance requires 𝑔 ∼ ℎ, a contradiction. Completeness for Sure Prospects
implies that, if we do not have 𝑣�̂� ≻ 𝑢�̂�, we must have 𝑢�̂� ≿ 𝑣�̂�. y

Note that for this first result, we do not need the full force of Individ-
ual Stochastic Dominance, but only Anteriority.

Lemma 1 is already a big step towards additive separability, be-
cause we now have a strong separability condition. But to obtain
our fixed-population main result, we need two additional technical
properties.

Continuity For all 𝑢 ∈ 𝑈, the sets {𝑣 ∈ 𝑈|𝑢 ≿ 𝑣} and
{𝑣 ∈ 𝑈|𝑣 ≿ 𝑢} are closed.

Compensation For any 𝑢 ∈ 𝑈 and 𝑖 ∈ 𝐼, there exists 𝑧 ∈ ℝ such
that, if 𝑣 ∈ 𝑈 is defined by 𝑣𝑖 = 𝑧 and 𝑣𝑗 = 0 for all 𝑗 ≠ 𝑖, then
𝑢 ∼ 𝑣.

Compensation means that we can compensate losses or gains (from
0) of all but one individuals by adjusting the welfare level of the last in-
dividual. Such a property is sometimes named Solvability in the litera-
ture (see for instance Pivato and Tchouante, 2022). Although Compen-
sation may intuitively appear utilitarian, it is consistent with views that
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are sensitive to distribution, such as equally-distributed-equivalent egal-
itarianism (𝜙−1 ( 1𝑛 ∑𝑖 𝜙(𝑢𝑖))) and rank-discounted generalized utilitar-
ianism (∑[𝑟] 𝛽

𝑟𝜙(𝑢𝑟), where [𝑟] indicates rank from worst-off), if 𝜙 is an
unbounded positive transformation.

Theorem 1. If the social ordering ≿ satisfies Completeness for Sure Pro-
spects, Social StatewiseDominance, Individual StochasticDominance, Con-
tinuity and Compensation then there exist continuous and increasing func-
tions 𝜙𝑖 ∶ ℝ → ℝ such that:

𝑓 ≿ 𝑔⟺∑
𝑠∈𝑆

1
𝑚∑
𝑖∈𝐼
𝜙𝑖(𝑓𝑖(𝑠)) ≥ ∑

𝑠∈𝑆

1
𝑚∑
𝑖∈𝐼
𝜙𝑖(𝑔𝑖(𝑠)).

An impartiality axiom would replace 𝜙𝑖 with a shared 𝜙.
The proof is in the Appendix. It has two steps that we describe here

informally. The first step is to derive additive separability within a state
(or for sure prospects). It relies on Separability for Sure Prospects, using
Lemma 1, and on the theorem by Debreu (1960) on additive representa-
tions. The second step is to construct the across-state additivity of social
expected utility. Informally, this is done by combining the use of the ad-
ditive formula within a state and Stochastic Dominance for Sure Individ-
uals to move the consequences of other states all into one state. This is
illustrated by the following two-by-two example (which disregards 𝜙 for
illustration), where columns are individuals, rows are two equiprobable
risky states (𝑠1 and 𝑠2), and 𝑥, 𝑦, 𝑧, and 𝑤 are real lifetime utilities:

𝑠1
𝑠2
[ 𝑥 𝑦𝑤 𝑧 ] ∼ [

𝑥 + 𝑦 0
0 𝑤 + 𝑧 ] ∼ [

𝑥 + 𝑦 𝑤 + 𝑧
0 0 ] ∼ [

𝑥 + 𝑦 + 𝑤 + 𝑧 0
0 0 ] .

The first equivalence uses Social Statewise Dominance and the additive
structure within states. The second equivalence uses Stochastic Domin-
ance for Sure Individuals. The third equivalence again uses Social State-
wise Dominance and the additive structure within states.

Two remarks can be made on Theorem 1. First, we do not have a
full equivalence result. This is because, to satisfy Compensation, the 𝜙𝑖
functions have to satisfy conditions that are hard to write but not very
interesting. It is clear that if ≿ is represented by the expected value of a
generalized utilitarian function then it also satisfies all the principles ex-
cept Compensation. Second, we can derive the result with even weaker
principles. As explained before, Lemma 1 only requires Anteriority. Sim-
ilarly, our full proof only requires Anteriority and a Pareto-like property
on alternatives that is implied by Individual Stochastic Dominance (this
is detailed in the proof). So Theorem 1 can be reformulated using Anteri-
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ority and this Pareto-like property in place of Individual Stochastic Dom-
inance. However, we present Individual Stochastic Dominance because it
foreshadows our variable-population theorem.

4. Variable-population results

Theorem 1 is a powerful weakening of the Harsanyi approach. But fixed-
population utilitarianism leaves open the question of how to expand to
variable-population questions — which are the real-world questions of
much actual economic policy decision-making. Blackorby et al. (2005)
detail many variable-population social welfare functions (such as Aver-
age Utilitarianism or Number-Dampened Utilitarianism) that simplify
to fixed-population utilitarianism in fixed-population cases. This section
shows how social and individual dominance further narrow down the
possibilities for utilitarianism in a variable-population setting. We show
that our axioms imply a specific family of generalized utilitarianisms for
variable-population cases, namely, Generalized Expectational Total Utili-
tarianism.

Additionally, we can take advantage of the variable-population set-
ting — which has its own “existence independence” route to additive sep-
arability, due to Blackorby and Donaldson (1984) — to weaken our as-
sumptions. In particular, our individual dominance axiom in the variable-
population setting is consistent with making the egalitarian choice that
𝑓∗∗ ≻ 𝑔∗∗ in Table 2. Moreover, in the fixed-population case, we use the
Compensation principle, but this may not be obviously appealing from
the ethical viewpoint. By moving to the variable-population case, we will
be able to instead use the principles of Anonymity andWeak critical level,
which are widely accepted in the variable-population welfare economics
literature.

In this section, the set of potential individuals who may or may not
exist is 𝐼 = ℕ. In an alternative, only a non empty finite population𝑁 ∈
𝑁 exists. We thus define 𝑈 = ⋃𝑁∈𝑁 ℝ

𝑁 as the set of possible outcomes
when at least one individual exists.

This section requires additional notation to refer to people who may
or may not exist. For each 𝑢 ∈ 𝑈, we denote 𝑁(𝑢) the set of individuals
alive in 𝑢, and 𝑛(𝑢) the number of individuals alive in 𝑢. For each popu-
lation𝑁 ∈ 𝑁, 𝑈𝑁 = {𝑢 ∈ 𝑈|𝑁(𝑢) = 𝑁} is the set of outcomes such that
the population is𝑁.

We adopt six principles that are properties of the social preorder ≿.
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Completeness for Sure Prospects and Social Statewise Dominance are the
same as in the previous sections. We first have three principles that we
expect to be uncontroversial in the economics literature.

Anonymity for Sure Outcomes For all 𝑢, 𝑣 ∈ 𝑈, if 𝑛(𝑢) = 𝑛(𝑣) and
there exists a bijection 𝜋 ∶ 𝑁(𝑢) → 𝑁(𝑣) such that 𝑢𝑖 = 𝑣𝜋(𝑖) for
all 𝑖 ∈ 𝑁(𝑢), then 𝑢 ∼ 𝑣.

Same-Population Continuity for Sure Outcomes For all𝑁 ∈ 𝑁,
for all 𝑢 ∈ 𝑈𝑁, the sets {𝑣 ∈ 𝑈𝑁|𝑢 ≿ 𝑣} and {𝑣 ∈ 𝑈𝑁|𝑣 ≿ 𝑢} are
closed.

Minimal Critical Level There exists 𝑧 ∈ ℝ+, 𝑢 ∈ 𝑈, and
𝑗 ∈ (𝐼 ⧵ 𝑁(𝑢)) such that, if 𝑣 is defined by𝑁(𝑣) = 𝑁(𝑢) ∪ {𝑗},
𝑣𝑖 = 𝑢𝑖 for all 𝑖 ∈ 𝑁(𝑢) and 𝑣𝑗 = 𝑧, then 𝑢 ∼ 𝑣.

Notice that Anonymity and Same-population continuity only apply
to comparisons among sure outcomes. Minimal Critical Level only as-
serts the existence of one instance of variable-population comparability.
Minimal Critical Level assumes a weak comparability between existence
and non-existence, but we have already assumed this by assuming a com-
plete social ordering of sure variable-population outcomes. In this con-
text, minimal critical level merely rules out the implausible cases that
adding a life is always worse or always better, no matter how good or bad.

The heart of our variable-population characterization is our stochas-
tic dominance axiom for individuals: StochasticDominance for Sure Indi-
viduals. This axiom formalizes the principle behind ourmotivating exam-
ple in Table 1. To adapt Individual Stochastic Dominance to the variable-
population setting, we apply the principle only to individuals who are
sure to exist — like Bob is in Table 1’s motivating example. Additionally,
this axiom only applies when states of the world where not-sure-to-exist
individuals exist and their utilities conditional on existence are left un-
changed.9

9 We thank Marcus Pivato for suggesting this formulation of the Stochastic Domin-
ance for Sure Individuals principle.
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Stochastic Dominance for Sure Individuals For all 𝑓, 𝑔 ∈ 𝐹, if:

(i) 𝑆𝑖(𝑓) = 𝑆𝑖(𝑔) for all 𝑖 ∈ 𝐼;

(ii) for all 𝑗 ∈ 𝐼 such that 𝑆𝑗(𝑓) ∉ {∅, 𝑆}, there exists 𝑥𝑗 ∈ ℝ
such that 𝑓𝑗(𝑠) = 𝑔𝑗(𝑠) = 𝑥𝑗 for all 𝑠 ∈ 𝑆𝑗(𝑓);

(iii) there exists a bijection 𝜎 ∶ 𝑆 → 𝑆 such that for all 𝑘 ∈ 𝐼 such
that 𝑆𝑘(𝑓) = 𝑆 and all 𝑠 ∈ 𝑆, 𝑓𝑘(𝜎(𝑠)) ≥ 𝑔𝑘(𝑠);

then 𝑓 ≿ 𝑔.
If in addition there exists 𝑙 ∈ 𝐼 such that 𝑆𝑙(𝑓) = 𝑆 and 𝑠′ ∈ 𝑆 such
that 𝑓𝑙(𝜎(𝑠′)) > 𝑔𝑙(𝑠′) then 𝑓 ≻ 𝑔.

This axiom, Stochastic Dominance for Sure Individuals, has three im-
portant features:

• In condition (i), individuals exist in the same states of the world
in the two social prospects 𝑓 and 𝑔 being compared, which
equivalently means that in each state of the world the populations
existing with 𝑓 and 𝑔 are the same. The principle does not speak
to situations with different populations in a state of the world.

• In condition (ii), people who do not exist for sure either do not
exist at all, or they do not bear any risk and exist with the same
level of utility in 𝑓 and 𝑔. People who do not necessarily exist, in
the comparison between 𝑓 and 𝑔, are altogether unaffected.

• For people who are sure to exist, the condition (iii) entails that the
individual prospect they face in 𝑓 stochastically dominates the
one they face in 𝑔. That is, condition (iii) implies that
𝑞𝑓𝑖 (𝑧) ≤ 𝑞

𝑔
𝑖 (𝑧) for all 𝑧 ∈ ℝ for any individual 𝑖 exiting for sure.

But, in fact, condition (iii) is weaker than individual stochastic
dominance because the same permutation of states 𝜎 is used for
all individuals.

Notice, then, that Stochastic Dominance for Sure Individuals requires
that 𝑔∗ ≻ 𝑓∗ in the example from Table 1 but it permits any ranking
of 𝑓∗∗ and 𝑔∗∗ in Table 2, including the non-utilitarian judgment that
𝑓∗∗ ≻ 𝑔∗∗. We cannot conclude from Stochastic Dominance for Sure
Individuals that 𝑓∗∗ and 𝑔∗∗ in Table 2 are socially equivalent, because

13

Co-Monotonic



to obtain dominance we need to use different permutations of states for
Ann and Bob. Yet we can conclude for Table 1 that 𝑔∗ ≻ 𝑓∗ because only
Bob exists for sure so we can permute the outcome for Bob in states 1 and
2. These examples, therefore, distinguish Stochastic Dominance for Sure
Individuals fromAnteriority, because Anteriority would immediately im-
ply the utilitarian judgement that 𝑓∗∗ ∼ 𝑔∗∗.10 Indeed, although the rep-
resentation in Theorem 2 implies that 𝑓∗∗ ∼ 𝑔∗∗, no one axiom used in
our variable-population theorem individually requires this.

Our first result is that the restricted social ordering of sure prospects
must be a critical-level generalized utilitarian social ordering. Fundamen-
tally, we achieve additive separability from our axioms because, in our
variable population setting, Social Statewise Dominance and Stochastic
Dominance for Sure Individuals are sufficient for Blackorby et al.’s (2005)
axiom Existence independence.

Proposition 1. If ≿ satisfies Completeness for Sure Prospects, Anonymity
for Sure Outcomes, Same-Population Continuity for Sure Outcomes, Mini-
mal Critical Level, Social Statewise Dominance, and Stochastic Dominance
for Sure Individuals, then there exists a continuous and increasing function
𝜙 ∶ ℝ → ℝ and a number 𝑐 ∈ ℝ such that for all 𝑢, 𝑣 ∈ 𝑈, 𝑢 ≿ 𝑣 if and
only if ∑𝑖∈𝑁(𝑢) [𝜙(𝑢𝑖) − 𝜙(𝑐)] ≥ ∑𝑖∈𝑁(𝑣) [𝜙(𝑣𝑖) − 𝜙(𝑐)].

Proof. Let us first show that ≿ satisfies the following principle, Existence
Independence for Sure Prospects:

Existence Independence for Sure Prospects For all 𝑢, 𝑣, 𝑤 ∈ 𝑈,
𝑢𝑤 ≿ 𝑣𝑤 if and only if 𝑢 ≿ 𝑣.

The proof is by contradiction and is similar to that of Lemma 1. It is
obtained by considering the three prospects:

10 Anteriority, as written above, is not defined for variable-population cases. So con-
sider, further, a variable population extension of Anteriority which holds that two pro-
spects are equally good if each potential person faces the same individual distribution
of the probability of non existence and the same distribution of utility levels conditional
on existence (McCarthy et al., 2020). Such an Anteriority axiom would both hold that
Table 1’s 𝑔∗ ≻ 𝑓∗, like Stochastic Dominance for Sure Individuals, and that Table 2’s
𝑓∗∗ ∼ 𝑔∗∗. Such an Anteriority axiom is thus stronger than Stochastic Dominance for
Sure Individuals.
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𝑓 𝑔 ℎ
1 𝑢𝑤 𝑣𝑤 𝑢𝑤
2 𝑢 𝑢 𝑣
3 𝑢 𝑢 𝑢
⋯ ⋯ ⋯ ⋯
𝑚 𝑢 𝑢 𝑢

The next step is to recognize that, with Existence Independence, all re-
quirements of Theorem 6.10 of (Blackorby et al., 2005, p. 191) for Critical-
Level Generalized Utilitarianism (henceforth CLGU)11 are met, so ≿ re-
stricted to𝑈 is CLGU–which is the form obtained in the Proposition. y

We can then state our main result for this section:

Theorem 2. The following statements are equivalent:

(1) The social preorder ≿ satisfies Completeness for Sure Prospects,
Anonymity for Sure Outcomes, Same-Population Continuity for Sure
Outcomes, Minimal Critical Level, Social Statewise Dominance and
Stochastic Dominance for Sure Individuals.

(2) ≿ is a complete social order; there exists a continuous function
𝜙 ∶ ℝ → ℝ and a number 𝑐 ∈ ℝ such that for all 𝑓, 𝑔 ∈ 𝐹, 𝑓 ≿ 𝑔 if and
only if

∑
𝑠∈𝑆

1
𝑚[ ∑
𝑖∈𝑁(𝑓(𝑠))
[𝜙(𝑓𝑖(𝑠)) − 𝜙(𝑐)]] ≥ ∑

𝑠∈𝑆

1
𝑚[ ∑
𝑖∈𝑁(𝑔(𝑠))
[𝜙(𝑔𝑖(𝑠)) − 𝜙(𝑐)]].

The basic approach is to use the within-state additivity of CLGU to
construct the across-state additivity of social expected utility. Informally,
this is done first by using CLGU to have a separate set of individuals with
welfare different from 𝑐 in each state of the world. Then we use Stochastic
Dominance for Sure Individuals tomove the consequences of other states
all into one state. Then we can apply CLGU to get an additive formula.
Consider the following example for intuition of the proof. There are four
possible individuals (in columns) and two equiprobable states (in rows);

11 In the background context of an anonymous social order, “[≿] satisfies continuity,
strong Pareto, weak existence of critical levels, and existence independence if and only
if [≿] is CLGU.”
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𝑥, 𝑦, 𝑧, and 𝑤 are real lifetime utilities:

[ 𝑥 𝑦 𝛺 𝛺𝛺 𝑤 𝑧 𝛺 ] ∼ [
𝑥 𝑦 𝑐 𝑐
𝛺 𝛺 𝑤 𝑧 ] ∼ [

𝑥 𝑦 𝑤 𝑧
𝛺 𝛺 𝑐 𝑐 ] .

The first equivalence uses CLGU from Proposition 1 in each state of the
world (and then Social Statewise Dominance). The second equivalence
uses Stochastic Dominance for Sure Individuals (the last two individuals).
We can then use the additive formula of Generalized Expectational Total
Utilitarianism applied to the first state of the last prospect. The full proof
is presented in the Appendix.

Notice that Stochastic Dominance for Sure Individuals is indepen-
dent of the other axioms of Theorem 2, because the other axioms are each
consistent with Expectational Average Utilitarianism, but Stochastic
Dominance for Sure Individuals is not. The next logical weakening
of Stochastic Dominance for Sure Individuals would be to weaken
shared-permutation stochastic dominance to statewise dominance, but
this would not be sufficient for Theorem 2, which suggests that Stochastic
Dominance for Sure Individuals may be the weakest axiom that can
narrow variable-population utilitarianism to Generalized Expectational
Total Utilitarianism.

5. Further applications

In this section, we note that our formal result can be usefully reinter-
preted if the dimensions and utility-bearers are understood in different
ways.12 We give an example for macroeconomics and another for individ-
ual rational choice. Where our main setting uses risky states and individ-
uals as the two dimensions, our applications below use, first, time periods
and individuals and, second, time periods and risky states.

5.1 macroeconomic welfare accounting with time
separability: time periods and individuals

Macroeconomists typically use a social welfare function that is additively
separable across time periods and sums individual time-period-specific

12 Mongin and Pivato (2015) have made a similar observation, in surveying multi-
ple applications of their own result about two-dimensional separability, although their
result and applications are different.
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utility within time periods. This practice has two important implications:
that individual lifetime utility is also additively time-separable, and that
the implied population ethics is totalist. For example, the Nobel-winning
climate-economy model of Nordhaus (2017) (like other leading climate-
policy models) maximizes a social objective function ∑𝑡 𝛼𝑡 ∑𝑖 𝑢𝑖𝑡, for in-
dividuals 𝑖 and periods 𝑡 experiencing flow utility 𝑢𝑖𝑡, or more precisely
∑𝑡 𝛼𝑡𝐿𝑡�̄�𝑡, where 𝐿𝑡 is population size and �̄�𝑡 is averagewellbeing in 𝑡. Par-
ticularly relevantly to our paper, Klenow et al. (2022) use this functional
form (without time discount factors 𝛼𝑡) to conduct a growth accounting
exercise that decomposes aggregate growth into population growth and
improvements in per-person living standards.

These conventions invite the question: How can this social objective
function be normatively justified?Our Theorem 1 provides a justification,
if cells are reinterpreted as individual-by-time flows of utility, risky states
are reinterpreted as discrete time periods (ignoring risk for this applica-
tion), and potential individuals have lives composed of a variable number
of time periods.

• Our Social Statewise Dominance axiom would become Social
periodwise dominance, holding that an intertemporal allocation
𝑓 is better than another 𝑔 if each time period of 𝑓 would be better,
if made permanent, than the corresponding time period of 𝑔, if
made permanent.

• Our Stochastic Dominance for Sure Individuals would become
Temporal dominance for fixed-longevity individuals, holding that
an intertemporal allocation 𝑓 is better than another 𝑔 if

– every person who only lives for some (but not all)
populated time periods is unaffected by a choice between 𝑓
and 𝑔, and

– every person who lives throughout the entire span of
populated time has a lifelong distribution of period
well-being in 𝑓 that dominates that person’s lifelong
distribution of well-being in 𝑔.

These, combined with the technical axioms, would yield additivity
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across and within time periods.13 So this result can justify Klenow, et al.’s
(2022) Total Utilitarian growth accounting, with the same sort of weak
axioms that justify our result.14 To be sure, various intuitions (including
a taste for “pattern goods” such as flat or increasing utility profiles
over time) might lead an economist to reject Temporal dominance
for fixed-longevity individuals, but such economists would already
have rejected macroeconomists’ entire time-separable project. This is
formally analogous to, in our original social risk setting, a concern for
egalitarianism that might bring about a rejection of utilitarianism and
our axioms that characterize it.

5.2 individual decision-making for a lifetime of risky
length and per-period utility: time periods and
risky states

Consider an individual’s rational choice over a risky temporal distribu-
tion of state-specific period flows of utility, 𝑢𝑠𝑡, where 𝑠 are risky states
and 𝑡 are time periods when the individual may or may not be alive and,
if so, would experience a flow utility. Reinterpreting our model of social
risky choice as amodel of individual risky choice, with 𝑖 in ourmodel now
becoming periods 𝑡 in a life of unknown length, results in the decision cri-
terion thatmaximizes the expectation of the sumof period-specific utility
flows over a lifetime: ∑𝑠

1
𝑚 ∑𝑡 𝑢𝑠𝑡.

• Our Social Statewise Dominance axiom would become Individual
statewise dominance, but its interpretation would otherwise be
similar to the interpretation of statewise dominance in our main
setting, holding that a risky intertemporal allocation 𝑓 is better
than another 𝑔 if each state of 𝑓 would be better, if received for
certain, than the corresponding state of 𝑔, if received for certain.

• Our Stochastic Dominance for Sure Individuals would become

13 Pure social time preference could be accommodated by period weights which
would be analogous to probabilities in our interpretation. Note that Blackorby et al.
(1995), in an early contribution to population ethics, also derive additive separability
from lives born at different times, but consider only lifetime utilities, not period-specific
utility flows.

14 In fact, because they compare time periods with other time periods, without inte-
grating over time and without time discounting, our Proposition 1 is sufficient to justify
their approach.

18



Stochastic dominance for fixed-longevity outcomes, holding that
a risky intertemporal allocation 𝑓 is better than another 𝑔 if

– every time period in which the decision-maker is not
certain to live is unaffected by a choice between 𝑓 and 𝑔,
and

– every time period in which the decision-maker is certain to
live has a period-specific lottery of well-being in 𝑓 that
dominates that period’s lottery of well-being in 𝑔.

This would be a novel justification of individual-level expected utility and
of evaluating lifetime utility as the sum of period utility flows. As in the
macroeconomic interpretation, the axioms rule out certain pattern goods.
So whether or not this application makes normative sense for a prudent
decision-maker may depend upon your interpretation of personal iden-
tity over a lifetime and whether lifetime pattern goods make sense and
are valuable.

6. Discussion and conclusion

6.1 extension to more general probability distributions

Until now, we have assumed that we have a finite number 𝑚 of states of
the world, all of them having the same probability 1/𝑚 to occur. In this
section, we show that the results very easily extend to a case with states
of the world whose probability of occurrence is a rational number.

Assume that there exists an infinite set of states of the world 𝑆, with
typical element 𝑠 ∈ 𝑆. We denote with 𝛴 a 𝜎-algebra over 𝑆. So, (𝑆, 𝛴) is
a measurable space, and we assume that there is a probability measure 𝑃
on this measurable space. We define social prospects as measurable func-
tions from 𝑆 to 𝑈 and assume that we only look at simple prospects, that
is prospects such that only finitely many outcomes in 𝑈 have a positive
probability to be obtained. More technical details are provided in Supple-
mentary materials, but here we just sketch how the extension works.

We need to make the following richness assumption:

Furthermore, for any𝑚 ∈ ℕ, there exists a partition of 𝑆 into
𝑚 measurable events, (𝐸1,⋯ , 𝐸𝑚) such that 𝑃(𝐸𝑘) = 1/𝑚
for all 𝑘 ∈ {1,⋯ ,𝑚}.
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Social prospects that take values in the partition (𝐸1,⋯ , 𝐸𝑚) are formally
similar to social prospects on 𝑚 equiprobable states of the world, which
is the framework we have studied. So, all our results extend to that case,
whatever the number𝑚 ≥ 2.What we can prove next, is: first, that if prob-
abilities are rational numbers, we can match the prospects under consid-
eration to other prospects that take values on a partition with equiproba-
ble events and which are socially indifferent to the initial prospects; sec-
ond, when probabilities are not rational numbers, we can add a property
of continuity based on convergence in probability to extend our results.

Remark that all our axiom straightforwardly extend to the more gen-
eral framework with infinitely many states, except for Individual Stochas-
tic Dominance and Stochastic Dominance for Sure Individuals. For In-
dividual Stochastic Dominance, we only have to adjust the definition of
the cumulative distribution functions 𝑞𝑓𝑖 . Specifically, we define the in-
dividual cumulative distribution function associated to a prospect, 𝑞𝑓𝑖 ∶
ℝ → [0, 1], by 𝑞𝑓𝑖 (𝑧) = 𝑃({𝑠 ∈ 𝑆|𝑓𝑖(𝑠) ≤ 𝑧}) for any 𝑧 ∈ ℝ. Using this
new definition in the formulation of Individual Stochastic Dominance is
sufficient for our purpose.

The formulation of Stochastic Dominance for Sure Individuals is
more complex. It must be adapted in the following way:

Stochastic Dominance for Sure Individuals For all 𝑓, 𝑔 ∈ 𝐹, if:

(i) 𝑆𝑖(𝑓) = 𝑆𝑖(𝑔) for all 𝑖 ∈ 𝐼;

(ii) for all 𝑗 ∈ 𝐼 such that 𝑆𝑗(𝑓) ∉ {∅, 𝑆}, there exists 𝑥𝑗 ∈ ℝ
such that 𝑓𝑗(𝑠) = 𝑔𝑗(𝑠) = 𝑥𝑗 for all 𝑠 ∈ 𝑆𝑗(𝑓);

(iii) there exists ℓ ∈ ℕ and two partitions {𝐸1,⋯ , 𝐸ℓ} and
{�̃�1,⋯ , �̃�ℓ} such that 𝑃(𝐸𝑟) = 𝑃(�̃�𝑟) for each 𝑟 ∈ {1,⋯ , ℓ},
and for all 𝑘 ∈ 𝐼 such that 𝑆𝑘(𝑓) = 𝑆 and 𝑟 ∈ {1,⋯ , ℓ},
𝑓𝑘(𝑠) ≥ 𝑔𝑘(𝑠′) whenever 𝑠 ∈ 𝐸𝑟 and 𝑠′ ∈ �̃�𝑟;

then 𝑓 ≿ 𝑔.
If in addition there exists ℎ ∈ 𝐼 such that 𝑆ℎ(𝑓) = 𝑆 and
𝑟′ ∈ {1,⋯ , ℓ} such that 𝑓ℎ(𝑠) > 𝑔ℎ(𝑠′) for all 𝑠 ∈ 𝐸𝑟′ and 𝑠′ ∈ �̃�𝑟′
then 𝑓 ≻ 𝑔.

The difficulty in the formulation is that we cannot just permute states,
we need to make sure that we preserve the measure of each outcome.
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Hence, we need to associate each event 𝐸𝑟 to another event �̃�𝑟 of same
measure and make sure that each concerned individual 𝑖 obtain a better
outcome with 𝑓 on 𝐸𝑟 than with 𝑔 on �̃�𝑟.

6.2 related literature

Our paper joins a recent literature that has characterized objective func-
tions with two dimensions of value. A theme of this literature is that sep-
arability in one dimension creates pressure for separability in another.
None of these papers connect axioms as weak as ours to a conclusion
as strong as ours.

Harsanyi’s (1955) aggregation theorem is recognized as a foundation
of utilitarian welfare economics, which is widely used throughout
macroeconomics and public economics. As Fleurbaey (2009) sum-
marized, Harsanyi showed that “in the presence of risk, weighted
utilitarianism is the only criterion that satisfies the ex-ante Pareto prin-
ciple and can be written as the expected value of social welfare,” where
ex-ante Pareto, in Harsanyi’s case, meant assuming complete individual
expected utilities. Harsanyi’s result has received much attention and has
been weakened in several directions. Fleurbaey (2009), in a founding
contribution to this recent literature, weakens Harsanyi’s assumptions
in a setting of fixed-population social risk. Fleurbaey uses a weak
dominance axiom like ours for social risk, but maintains an assumption
of expectation-taking for individual ex-ante Pareto. In an uncertainty
framework à la Savage, without objective probabilities, Mongin and
Pivato (2015) obtained the Harsanyi’s result with assumptions akin to
statewise dominance for the social ordering and ex-ante Pareto for
individuals, without assuming that individuals maximize an expected
utility. A similar result is obtained by Zuber (2016) in an uncertainty
framework à la Anscombe–Aumann. Li et al. (2023) recall the generality
of this result that applies also to the context of risk and time or time and
individuals as explained above. One way that all of these axiomatizations
are stronger than ours is in requiring an individual order, where our
axiom for individuals requires only dominance; also we do not assume a
complete social ordering of all prospects.

Another contribution is the paper by McCarthy et al. (2020). They
consider a framework with objective probabilities and use the property
of Anteriority, which is related to our properties of Individual Stochas-
tic Dominance and Stochastic Dominance for Sure Individuals. They ob-
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tain a “quasi-utilitarian” result with axioms that are similar to ours. But
it must be clarified that their result is not exactly utilitarian in the sense
that we use here. What they get is that the society should evaluate social
prospects as if one of the individuals in the society was facing an “aver-
age prospect”, in the sense that she faces the prospect of each individual
with equal probability. To clarify the difference, assume that individuals
assess prospects only on the basis of first order stochastic dominance (to
be consistent with our axioms). Consider a society with two individuals
and two prospects: in one prospect the two individuals get utility 1/2 for
sure, in the other prospect one individual gets utility 1 for sure and the
other gets 0 for sure. McCarthy et al. (2020) require that we assess these
prospects like an individual would do if she compared a sure outcome of
1/2 with the lottery of having 0 or 1 with equal probability. Given that
the individual uses first order stochastic dominance, these two prospects
cannot be compared. On the contrary, our approach can compare them
and will prefer the former to the latter if 𝜙(1/2) > 12𝜙(0) +

1
2𝜙(1)— for

instance when 𝜙 is concave. McCarthy et al. (2020) could obtain this re-
sult by further assuming that individuals maximize an expected utility —
which we do not assume.

Harsanyi (1955) only considered a fixed-population case. We show
that the axioms leading to Harsanyi’s result can be significantly weak-
ened in a variable-population setting. There exist other extensions of
Harsanyi’s to the variable population framework. A founding result
is by Blackorby et al. (1998) but they assume social expected utility
as well as some utility independence for unconcerned individuals (or
individual-level expected utility). Other, more recent, papers do combine
the logic of two dimensions with variable population. Spears and Zuber
(2022), for example, extend Harsanyi’s result to variable population, but
maintain an assumption of social expected utility throughout. McCarthy
et al. (2020) that we mentioned above is a recent contribution with wide
mathematical generality, including the variable-population case. Their
variable-population results differ from ours in assuming an axiom that
they call Omega Independence that contains a comparison of existence
in a risky outcome to non-existence. As explained above, they also do
not get a generalized utilitarian criterion in the sense that we use here.
Finally, Thomas (2022) offers an overview of the relationship between
separability and additivity for the philosophical population-ethics
literature. Thomas makes use of the Anteriority axiom that we have
discussed.
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6.3 concluding remarks

Any axiomatization of a social welfare function can be read as an argu-
ment for that approach or as a warning of what the approach entails, de-
pending upon one’s perspective. To a reader who shares our interpreta-
tion that our axioms are weak and normatively attractive, our result raises
the theoretical cost of departing either from additively-separable utilitar-
ianism or from social expectation-taking. We note again that none of the
axioms in our variable-population theorem is individually inconsistent
with the egalitarian choice that 𝑓∗∗ ≻ 𝑔∗∗ in Table 2.
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A. Proof of Theorem 1

Proof. The proof has two steps.
Step 1: an additive representation for ≿ for sure prospects. By Com-
pleteness for sure prospects, we know that ≿ is a complete pre-order for
sure prospects. By Lemma 1, ≿ satisfies Separability for Sure Prospects. By
the definition of ≿ and Continuity, it is also continuous. By definition of
≿ and Individual stochastic dominance, it is easily shown that ≿ satisfies
the following Pareto-like property (mentioned in the text on page 10):

for any 𝑢, 𝑣 ∈ ℝ𝐼 if 𝑢 ≥ 𝑣 and 𝑢 ≠ 𝑣, then 𝑢 ≻ 𝑣,

where ≥means at least as good for each person and better for one person.
Hence, by the well-known result of Debreu (1960), there exist continuous
and increasing functions 𝜙𝑖 ∶ ℝ → ℝ such that, for all 𝑢, 𝑣 ∈ 𝑈,

𝑢 ≿ 𝑣⟺∑
𝑖∈𝐼
𝜙𝑖(𝑢𝑖) ≥ ∑

𝑖∈𝐼
𝜙𝑖(𝑣𝑖).

Without loss of generality, we can normalize the 𝜙𝑖 functions so that
𝜙𝑖(0) = 0 and ∑𝑖∈𝐼 𝜙𝑖(1) = 1.
Step 2: an expected utility representation.Consider any𝑓, 𝑔 ∈ 𝐹. Let us
first construct ̂𝑓(1), ̂𝑔(1) ∈ 𝐹 in the following way, using Compensation:
̂𝑓(1)1 (1) = 𝑧(1) and ̂𝑔

(1)
1 (1) = ̄𝑧(1) while ̂𝑓(1)𝑖 (1) = ̂𝑔

(1)
𝑖 (1) = 0 for all 𝑖 ≠ 1,

where 𝑧(1) and ̄𝑧(1) ∈ ℝ are such that ̂𝑓(1)(𝑠) ∼ 𝑓(𝑠) and ̂𝑔(1)(𝑠) ∼ 𝑔(𝑠)

23



(we know that such 𝑧(1) and ̄𝑧(1) exist by Compensation). For each 𝑠 >
1, ̂𝑓(1)(𝑠) = 𝑓(𝑠) and ̂𝑔(1)(𝑠) = 𝑔(𝑠) so that ̂𝑓(1) ∼ 𝑓 and ̂𝑔(1) ∼ 𝑔 by
Social statewise dominance. By Step 1, it is the case that 𝜙1( ̂𝑓

(1)
1 (1)) =

∑𝑖∈𝐼 𝜙𝑖(𝑓𝑖(1)) and 𝜙1( ̂𝑔
(1)
1 (1)) = ∑𝑖∈𝐼 𝜙𝑖(𝑔𝑖(1)).

The next move is to construct two sequences of prospects
̂𝑓(1),⋯ , ̂𝑓(𝑚) and ̂𝑔(1),⋯ , ̂𝑔(𝑚) with the following properties:

• 𝜙1( ̂𝑓
(𝑘)
1 (1)) = ∑𝑘𝑠=1 ∑𝑖∈𝐼 𝜙𝑖(𝑓𝑖(𝑠)), 𝜙1( ̂𝑔

(𝑘)
1 (1)) = ∑𝑘𝑠=1 ∑𝑖∈𝐼 𝜙𝑖(𝑔𝑖(𝑠)), and

̂𝑓(𝑘)𝑖 (1) = ̂𝑔
(𝑘)
𝑖 (1) = 0 for all 𝑖 > 1;

• ̂𝑓(𝑘)𝑖 (𝑠) = ̂𝑔
(𝑘)
𝑖 (𝑠) = 0 for all 𝑖 ∈ 𝐼 and 2 ≤ 𝑠 ≤ 𝑘;

• ̂𝑓(𝑘)(𝑠) = 𝑓(𝑠) and ̂𝑔(𝑘)(𝑠) = 𝑔(𝑠) for all 𝑠 > 𝑘;

• ̂𝑓(𝑘+1) ∼ ̂𝑓(𝑘) and ̂𝑔(𝑘+1) ∼ ̂𝑔(𝑘) for all 𝑘 = 1,⋯ ,𝑚 − 1.

Let us show that the construction is possible by recursion. Notice that
all the properties (except the last) are already satisfied by ̂𝑓(1) and ̂𝑔(1). Let
𝑘 ∈ {1,⋯ ,𝑚− 1} and assume that we have constructed ̂𝑓(𝑘). Let us show
that we can construct ̂𝑓(𝑘+1) with the desired properties so that ̂𝑓(𝑘+1) ∼
̂𝑓(𝑘) (the proof is similar for ̂𝑔(1),⋯ , ̂𝑔(𝑚−1), and thus not repeated).

By Compensation, there exists a number ̃𝑧(𝑘+1) ∈ ℝ such that, if we
define ̃𝑢(𝑘+1) ∈ 𝑈 by ̃𝑢(𝑘+1)2 = ̃𝑧(𝑘+1) and ̃𝑢

(𝑘+1)
𝑗 = 0 for all 𝑗 ∈ 𝐼 ⧵ {2}, it is

the case that ̃𝑢(𝑘+1) ∼ ̂𝑓(𝑘)(𝑘 + 1). By construction and step 1, it is the case
that

𝜙2 ( ̃𝑢
(𝑘+1)
2 ) = ∑

𝑖∈𝐼
𝜙𝑖 ( ̂𝑓
(𝑘)
𝑖 (𝑘 + 1)) = ∑

𝑖∈𝐼
𝜙𝑖 (𝑓𝑖(𝑘 + 1)) . (1)

Define ̃𝑓(𝑘+1) by ̃𝑓(𝑘+1)(𝑘+1) = ̃𝑢(𝑘+1) and ̃𝑓(𝑘+1)(𝑠) = ̂𝑓(𝑘)(𝑠) for all 𝑠 ≠ 𝑘+
1. Social statewise dominance gives ̃𝑓(𝑘+1) ∼ ̂𝑓(𝑘). Next construct ̄𝑓(𝑘+1) in
the following way: ̄𝑓(𝑘+1)𝑖 (𝑠) = ̃𝑓

(𝑘+1)
𝑖 (𝑠) for all 𝑠 ∈ 𝑆 and 𝑖 ≠ 2; ̄𝑓(𝑘+1)2 (1) =

̃𝑓(𝑘+1)2 (𝑘+1), ̄𝑓
(𝑘+1)
2 (𝑘+1) = 0, while ̄𝑓(𝑘+1)2 (𝑠) = ̃𝑓

(𝑘+1)
2 (𝑠) for all 𝑠 ≠ 1, 𝑘+1.

Individual 2 faces the same individual prospect in ̄𝑓(𝑘+1) and ̃𝑓(𝑘+1), while
all other individuals are not affected. By Individual stochastic dominance,
̄𝑓(𝑘+1) ∼ ̃𝑓(𝑘+1), and by transitivity ̄𝑓(𝑘+1) ∼ ̂𝑓(𝑘).

The prospect ̄𝑓(𝑘+1) is such that ̄𝑓(𝑘+1)1 (1) = ̂𝑓
(𝑘)
1 (1), ̄𝑓

(𝑘+1)
2 (1) =

̃𝑓(𝑘+1)2 (𝑘 + 1) = ̃𝑢
(𝑘+1)
2 and ̄𝑓(𝑘+1)𝑖 (1) = 0 for all 𝑖 > 2. By Compensation,

there exists a number 𝑧(𝑘+1) ∈ ℝ such that, if we define �̄�(𝑘+1) ∈ 𝑈
by �̄�(𝑘+1)1 = 𝑧(𝑘+1) and �̄�

(𝑘+1)
𝑗 = 0 for all 𝑗 ∈ 𝐼 ⧵ {1}, it is the case that
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�̄�(𝑘+1) ∼ ̄𝑓(𝑘+1)(1). By construction and step 1, it is also the case that

𝜙1 (�̄�
(𝑘+1)
1 ) = ∑

𝑖∈𝐼
𝜙𝑖 ( ̄𝑓(𝑘+1)(1)) = 𝜙1 ( ̂𝑓

(𝑘)
1 (1))+𝜙2 ( ̃𝑢

(𝑘+1)
2 ) =

𝑘+1

∑
𝑠=1
∑
𝑖∈𝐼
𝜙𝑖(𝑓𝑖(𝑠)).

(Recall that 𝜙1 ( ̂𝑓
(𝑘)
1 (1)) = ∑𝑘𝑠=1 ∑𝑖∈𝐼 𝜙𝑖(𝑓𝑖(𝑠)) and 𝜙2 ( ̃𝑢

(𝑘+1)
2 ) =

∑𝑖∈𝐼 𝜙𝑖 (𝑓𝑖(𝑘 + 1)) – see Equation (1)). It suffices to define ̂𝑓(𝑘+1)

by ̂𝑓(𝑘+1)(1) = �̄�(𝑘+1) and ̂𝑓(𝑘+1)(𝑠) = ̄𝑓(𝑘)(𝑠) for all 𝑠 > 1 to ob-
tain ̄𝑓(𝑘+1) ∼ ̂𝑓(𝑘+1) by Social statewise dominance. By transitivity,
̂𝑓(𝑘) ∼ ̂𝑓(𝑘+1). It can be checked that ̂𝑓(𝑘+1) has all the aforementioned

features. Figure 1 describes the step between ̂𝑓(𝑘) and ̂𝑓(𝑘+1).
By our construction and transitivity, we have 𝑓 ∼ ̂𝑓(𝑚) and 𝑓 ∼ ̂𝑔(𝑚).

But ̂𝑓(𝑚) and ̂𝑔(𝑚) are such that ̂𝑓(𝑚)𝑖 (𝑠) = ̂𝑔
(𝑚)
𝑖 (𝑠) = 0 for all 𝑖 ∈ 𝐼 and 𝑠 > 1.

By Social statewise dominance and Completeness for sure prospects, we
know that ̂𝑓(𝑚) ≿ ̂𝑔(𝑚) ⟺ ̂𝑓(𝑚)(1) ≿ ̂𝑔(𝑚)(1). By transitivity, we also
have 𝑓 ≿ 𝑔⟺ ̂𝑓(𝑚)(1) ≿ ̂𝑔(𝑚)(1).

Figure 1: Construction of prospect ̂𝑓(𝑘+1) for 𝑘 ≥ 2

̂𝑓(𝑘) ̃𝑓(𝑘+1)
1 2 3 ⋯ 1 2 3 ⋯

1 ̂𝑓(𝑘)1 (1) 0 0 ⋯ ̂𝑓(𝑘)1 (1) 0 0 ⋯
2 0 0 0 ⋯ 0 0 0 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
𝑘 0 0 0 ⋯ 0 0 0 ⋯
𝑘 + 1 𝑓1(𝑘 + 1) 𝑓2(𝑘 + 1) 𝑓3(𝑘 + 1) ⋯ 0 ̃𝑓(𝑘+1)2 (𝑘 + 1) 0 ⋯
𝑘 + 2 𝑓1(𝑘 + 2) 𝑓2(𝑘 + 2) 𝑓3(𝑘 + 2) ⋯ 𝑓1(𝑘 + 2) 𝑓2(𝑘 + 2) 𝑓3(𝑘 + 2) ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

̄𝑓(𝑘+1) ̂𝑓(𝑘+1)
1 2 3 ⋯ 1 2 3 ⋯

1 ̂𝑓(𝑘)1 (1) ̃𝑓(𝑘+1)2 (𝑘 + 1) 0 ⋯ ̂𝑓(𝑘+1)1 (1) 0 0 ⋯
2 0 0 0 ⋯ 0 0 0 ⋯
𝑘 0 0 0 ⋯ 0 0 0 ⋯
𝑘 + 1 0 0 0 ⋯ 0 0 0 ⋯
𝑘 + 2 𝑓1(𝑘 + 2) 𝑓2(𝑘 + 2) 𝑓3(𝑘 + 2) ⋯ 𝑓1(𝑘 + 2) 𝑓2(𝑘 + 2) 𝑓3(𝑘 + 2) ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
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Using Step 1 and the definition of ̂𝑓(𝑚) and ̂𝑔(𝑚) we get:

𝑓 ≿ 𝑔 ⟺ ̂𝑓(𝑚)(1) ≿ ̂𝑔(𝑚)(1)
⟺ ∑

𝑖∈𝐼
𝜙𝑖 ( ̂𝑓
(𝑚)
𝑖 (1)) ≥ ∑

𝑖∈𝐼
𝜙𝑖 ( ̂𝑔
(𝑚)
𝑖 (1))

⟺ ∑
𝑠∈𝑆
∑
𝑖∈𝐼
𝜙𝑖 (𝑓𝑖(𝑠)) ≥ ∑

𝑠∈𝑆
∑
𝑖∈𝐼
𝜙𝑖 (𝑔𝑖(𝑠))

⟺ ∑
𝑠∈𝑆

1
𝑚∑
𝑖∈𝐼
𝜙𝑖 (𝑓𝑖(𝑠)) ≥ ∑

𝑠∈𝑆

1
𝑚∑
𝑖∈𝐼
𝜙𝑖 (𝑔𝑖(𝑠)) .

y

B. Proof of Theorem 2

Proof. It is straightforward to check that Generalized Expectational Total
Utilitarianism satisfies all of our six principles.

Let us show that the six principles imply Generalized Expectational
Total Utilitarianism. By Proposition 1, we know that there exists a con-
tinuous and increasing function 𝜙 ∶ ℝ → ℝ and a number 𝑐 ∈ ℝ
such that for all 𝑢, 𝑣 ∈ 𝑈, 𝑢 ≿ 𝑣 if and only if ∑𝑖∈𝑁(𝑢) [𝜙(𝑢𝑖) − 𝜙(𝑐)] ≥
∑𝑖∈𝑁(𝑣) [𝜙(𝑣𝑖) − 𝜙(𝑐)].

Consider any social prospect 𝑓 ∈ 𝐹. Let us construct the social pro-
spect ̃𝑓 ∈ 𝐹 with the following properties:

• There exists a collection of state-indexed populations𝑁1,⋯ ,𝑁𝑚 such
that: (i) |𝑁𝑠| = |𝑁(𝑓(𝑠))| for all 𝑠 ∈ 𝑆; (ii)𝑁𝑠

′
∩ 𝑁𝑠 = ∅ for all 𝑠′ ≠ 𝑠;

• 𝑁( ̃𝑓(𝑠)) = ⋃𝑠′∈𝑆𝑁
𝑠′ for all 𝑠 ∈ 𝑆;

• There exist bijections 𝜎𝑠 ∶ 𝑁𝑠 → 𝑁(𝑓(𝑠)) such that ̃𝑓𝑖(1) = 𝑓𝜎𝑠(𝑖)(𝑠) for
all 𝑖 ∈ 𝑁𝑠;

• ̃𝑓𝑖(𝑠) = 𝑐 for all 𝑖 ∈ 𝑁 ( ̃𝑓(𝑠)) when 𝑠 ∈ {2,⋯ ,𝑚}.

Social prospect ̃𝑓 is a prospect where all utility levels of all states of
the world have been moved to state 1 (by creating new people), and all
individuals have level 𝑐 or do not exist in other states of the world. We
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want to show that 𝑓 ∼ ̃𝑓. Notice that, by the definition of ̃𝑓:

∑
𝑖∈𝑁( ̃𝑓(1))

[𝜙 ( ̃𝑓𝑖(1)) − 𝜙(𝑐)] = ∑
𝑠∈𝑆
∑
𝑗∈𝑁𝑠
[𝜙 ( ̃𝑓𝑗(1)) − 𝜙(𝑐)]

= ∑
𝑠∈𝑆
∑
𝑗∈𝑁𝑠
[𝜙(𝑓𝜎𝑠(𝑗)(𝑠)) − 𝜙(𝑐)]

= ∑
𝑠∈𝑆
∑
𝑘∈𝑁(𝑓(𝑠))

[𝜙 (𝑓𝑘(𝑠)) − 𝜙(𝑐)].

To show that𝑓 ∼ ̃𝑓, let us construct two sequences of social prospects
( ̂𝑓(1),⋯ , ̂𝑓(𝑚)) and ( ̃𝑓(1),⋯ , ̃𝑓(𝑚)) in the following way.

We have ̂𝑓(1) = ̃𝑓(1), defined as follows: 𝑁( ̃𝑓(1)) (1) = ⋃𝑠′∈𝑆𝑁
𝑠′ ,

̃𝑓(1)𝑖 (1) = 𝑓𝜎1(𝑖)(1) for all 𝑖 ∈ 𝑁1, and ̃𝑓(1)𝑗 (1) = 𝑐 for all 𝑗 ∈
(𝑁 ( ̃𝑓(1)) (1) ⧵ 𝑁1); for all 𝑠 ≥ 2,𝑁( ̃𝑓(1)) (𝑠) = 𝑁𝑠 and ̃𝑓(1)𝑖 (𝑠) = 𝑓𝜎1(𝑖)(𝑠)
for all 𝑖 ∈ 𝑁𝑠.

For any 𝑘 ∈ {2,⋯ ,𝑚}:

• 𝑁( ̂𝑓(𝑘)(1)) = 𝑁 ( ̃𝑓(𝑘)(1)) = ⋃𝑘𝑠′=1𝑁
𝑠′ ; ̂𝑓(𝑘)𝑖 (1) = ̃𝑓

(𝑘)
𝑖 (1) = 𝑓𝜎𝑠(𝑖)(𝑠) for

all 𝑖 ∈ 𝑁𝑠 and 𝑠 < 𝑘; ̂𝑓(1)𝑗 (1) = 𝑐 and ̃𝑓
(1)
𝑗 (1) = 𝑓𝜎𝑘(𝑗)(𝑘) for all 𝑗 ∈ 𝑁𝑘;

• For all 1 < 𝑠 < 𝑘,𝑁( ̂𝑓(𝑘)(𝑠)) = 𝑁 ( ̃𝑓(𝑘)(𝑠)) = 𝑁𝑘, and
̂𝑓(𝑘)𝑖 (𝑠) = ̃𝑓

(𝑘)
𝑖 (𝑠) = 𝑐 for all 𝑖 ∈ 𝑁𝑘;

• 𝑁( ̂𝑓(𝑘)(𝑘)) = 𝑁 ( ̃𝑓(𝑘)(𝑘)) = 𝑁𝑘, ̂𝑓(𝑘)𝑖 (𝑘) = 𝑓𝜎𝑘(𝑖)(𝑘) and ̃𝑓
(𝑘)
𝑖 (𝑘) = 𝑐 for

all 𝑖 ∈ 𝑁𝑘;

• For all 𝑠 > 𝑘,𝑁( ̂𝑓(𝑘)(𝑠)) = 𝑁 ( ̃𝑓(𝑘)(𝑠)) = 𝑁𝑘 ∪ 𝑁𝑠,
̂𝑓(𝑘)𝑖 (𝑠) = ̃𝑓

(𝑘)
𝑖 (𝑠) = 𝑐 for all 𝑖 ∈ 𝑁𝑘, and ̂𝑓(𝑘)𝑗 (𝑠) = ̃𝑓

(𝑘)
𝑗 (𝑠) = 𝑓𝜎𝑠(𝑗)(𝑠) for

all 𝑗 ∈ 𝑁𝑠.

Figure 2 illustrates those social prospects.
By Statewise dominance, ̃𝑓(𝑘) ∼ ̂𝑓(𝑘+1) for any 𝑘 ∈ {1,⋯ ,𝑚 − 1};

indeed, ̃𝑓(𝑘) and ̂𝑓(𝑘+1) differ only in each state of the world (except state
1 where they are identical) by the existence of people with utility level 𝑐.
By Proposition 1 and CLGU with critical-level 𝑐, they are thus equivalent
in each state of the world. On the other hand, ̃𝑓(𝑘) ∼ ̂𝑓(𝑘) for any 𝑘 ∈ 𝑆
by Stochastic dominance for sure individuals. Indeed, only individuals
in 𝑁𝑘 face different prospects, but they live for sure and their utility is
permuted from state 1 to state 𝑘.
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Figure 2: Construction of prospects ̂𝑓(𝑘) and ̃𝑓(𝑘) for 𝑘 ≥ 2. Like in the
main text, 𝛺 denotes non-existence, here appplied to a group of persons.

̂𝑓(𝑘)

𝑁1 ⋯ 𝑁𝑘−1 𝑁𝑘 𝑁𝑘+1 𝑁𝑘+2 ⋯
1 (𝑓𝑖(1))𝑖∈𝑁1 ⋯ (𝑓𝑖(𝑘 − 1))𝑖∈𝑁𝑘−1 𝑐 𝛺 𝛺 ⋯
2 𝛺 ⋯ 𝛺 𝑐 𝛺 𝛺 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
𝑘 − 1 𝛺 ⋯ 𝛺 𝑐 𝛺 𝛺 ⋯
𝑘 𝛺 ⋯ 𝛺 (𝑓𝑖(𝑘))𝑖∈𝑁𝑘 𝛺 𝛺 ⋯
𝑘 + 1 𝛺 ⋯ 𝛺 𝑐 (𝑓𝑖(𝑘 + 1))𝑖∈𝑁𝑘+1 𝛺 ⋯
𝑘 + 2 𝛺 ⋯ 𝛺 𝑐 𝛺 (𝑓𝑖(𝑘 + 2))𝑖∈𝑁𝑘+2 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

̃𝑓(𝑘)

𝑁1 ⋯ 𝑁𝑘−1 𝑁𝑘 𝑁𝑘+1 𝑁𝑘+2 ⋯
1 (𝑓𝑖(1))𝑖∈𝑁1 ⋯ (𝑓𝑖(𝑘 − 1))𝑖∈𝑁𝑘−1 (𝑓𝑖(𝑘))𝑖∈𝑁𝑘 𝛺 𝛺 ⋯
2 𝛺 ⋯ 𝛺 𝑐 𝛺 𝛺 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
𝑘 − 1 𝛺 ⋯ 𝛺 𝑐 𝛺 𝛺 ⋯
𝑘 𝛺 ⋯ 𝛺 𝑐 𝛺 𝛺 ⋯
𝑘 + 1 𝛺 ⋯ 𝛺 𝑐 (𝑓𝑖(𝑘 + 1))𝑖∈𝑁𝑘+1 𝛺 ⋯
𝑘 + 2 𝛺 ⋯ 𝛺 𝑐 𝛺 (𝑓𝑖(𝑘 + 2))𝑖∈𝑁𝑘+2 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

We thus obtain the chain of equivalences ̃𝑓1 ∼ ̂𝑓(2) ∼ ̃𝑓(2) ∼ ⋯ ∼
̃𝑓(𝑚−1) ∼ ̂𝑓(𝑚). In addition, 𝑓 ∼ ̃𝑓(1) and ̂𝑓(𝑚) ∼ ̃𝑓 by Statewise domin-

ance (they differ only in each state of the world by the set of people with
certain utility levels, and/or a number of people at critical-level 𝑐). So, by
transitivity 𝑓 ∼ ̃𝑓.

Consider any 𝑓 and 𝑔 ∈ 𝐹. By the arguments above, there exist ̃𝑓 and
̃𝑔 such that (where 𝜙 and 𝑐 are given by Proposition 1):

• 𝑓 ∼ ̃𝑓 and 𝑔 ∼ ̃𝑔;

• ∑𝑖∈𝑁( ̃𝑓(1)) [𝜙 ( ̃𝑓𝑖(1)) − 𝜙(𝑐)] = ∑𝑠∈𝑆 ∑𝑗∈𝑁(𝑓(𝑠)) [𝜙 (𝑓𝑗(𝑠)) − 𝜙(𝑐)];

• ∑𝑖∈𝑁( ̃𝑔(1)) [𝜙 ( ̃𝑔𝑖(1)) − 𝜙(𝑐)] = ∑𝑠∈𝑆 ∑𝑗∈𝑁(𝑔(𝑠)) [𝜙 (𝑔𝑗(𝑠)) − 𝜙(𝑐)]; and

• for all 𝑠 ∈ {2,⋯ ,𝑚}, ̃𝑓𝑖(𝑠) = 𝑐 for all 𝑖 ∈ 𝑁( ̃𝑓(𝑠)) and ̃𝑔𝑗(𝑠) = 𝑐 for all
𝑗 ∈ 𝑁( ̃𝑔(𝑠)).

By Proposition 1, ̃𝑓(𝑠) ∼ ̃𝑔(𝑠) for all 𝑠 ∈ {2,⋯ ,𝑚}, so that, by State-
wise dominance and completeness for sure prospects ̃𝑓 ≿ ̃𝑔 ⟺ ̃𝑓(1) ≿
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̃𝑔(1). Gathering all the results, we obtain:

𝑓 ≿ 𝑔 ⟺ ̃𝑓 ≿ ̃𝑔
⟺ ̃𝑓(1) ≿ ̃𝑔(1)
⟺ ∑

𝑖∈𝑁( ̃𝑓(1))

[𝜙 ( ̃𝑓𝑖(1)) − 𝜙(𝑐)] ≥ ∑
𝑗∈𝑁( ̃𝑔(1))

[𝜙 ( ̃𝑔𝑗(1)) − 𝜙(𝑐)]

⟺ ∑
𝑠∈𝑆
∑
𝑖∈𝑁(𝑓(𝑠))
[𝜙 (𝑓𝑖(𝑠)) − 𝜙(𝑐)] ≥ ∑

𝑠∈𝑆
∑
𝑗∈𝑁(𝑔(𝑠))
[𝜙 (𝑔𝑗(𝑠)) − 𝜙(𝑐)]

⟺ ∑
𝑠∈𝑆

1
𝑚[ ∑
𝑖∈𝑁(𝑓(𝑠))
[𝜙 (𝑓𝑖(𝑠)) − 𝜙(𝑐)]] ≥ ∑

𝑠∈𝑆

1
𝑚[ ∑
𝑗∈𝑁(𝑔(𝑠))
[𝜙 (𝑔𝑗(𝑠)) − 𝜙(𝑐)]].
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