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1 Introduction

Policies that change future mortality rates (like climate mitigation) or change

future fertility rates (like public education) not only change the quality of lives

in the future but also who will live in the future. Humanity’s global popula-

tion has quadrupled over the past hundred years and is projected to peak then

shrink within the lifetime of children born today — with uncertain consequences.1

Hence, to evaluate economic policies, we need to assess both social risk and vari-

able population. A standard principle for economic policy evaluation is Expected

Total Utilitarianism, which maximizes the expected value of the sum of individ-

uals’ transformed lifetime well-being.2 Despite the prominent use in public eco-

nomics of both additive utilitarianism and expectation-taking under risk, these

methods continue to be questioned in welfare economics, in part because exist-

ing axiomatic justifications make arguably strong assumptions (Fleurbaey, 2010;

Golosov et al., 2007).

We provide a new axiomatic path to Expected Total Utilitarianism. Our re-

sult builds upon a new combination of weak assumptions that yields additive

separability in the dimensions of states of the worlds and individuals.3 Results

are obtained both in the fixed-population setting of Harsanyi’s foundational ag-

1For two recent overviews of economists’ emerging understanding and open questions about
low fertility, see Kearney et al. 2022 and Doepke et al. 2022. For possible macroeconomic
implications of depopulation, see Jones 2022.

2For simplicity, we use the (strictly speaking) improper label “Expected Total Utilitarian-
ism”throughout the text. What we have in mind is looking at the expected value of a sum of
transformed utilities (where, in the variable case, the transformation implicitly includes setting
a critical-level of utilities such that adding an individual to a population is good if and only if
her utility is above that level). In a fixed-population case, and a different framework, Grant et al.
(2010) named this approach Generalized Utilitarianism. In a variable-population framework,
Blackorby et al. (1998) introduced this criterion under the label Expected-Utility Critical-Level
Generalized Utilitarianism. Spears and Zuber (2023) used the label Expected Critical-Level
Generalized Utilitarianism. A more proper label would be Generalized Expectational Total
Utilitarianism

3An active current theoretical literature in welfare economics has been exploring additive
separability over two dimensions, including Fleurbaey 2009, Mongin and Pivato 2015, McCarthy
et al. 2020, Spears and Zuber 2023, and Li et al. 2023. We discuss related prior literature in
more depth in our conclusion section.
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gregation theorem for utilitarianism (Harsanyi, 1955), and in a variable-popu-

lation setting. By comparing these two theorems, we show that the variable-

population setting allows us to avoid contentious assumptions that the fixed-

population setting requires to characterize Expected Total Utilitarianism.

We introduce a new, weakened version of individual stochastic dominance. Us-

ing it, our variable-population characterization offers several striking advantages

over prior characterizations of Expected Total Utilitarianism in the literature:

• Dominance axioms, not expectation-taking. Our approach does not

assume Expected Utility Theory either for society or for individuals. In-

stead, we show that two dimensions of weak dominance (one over risky

states and the other over individuals) characterize a social welfare func-

tion with two dimensions of additive separability. So social expected utility

emerges merely from social statewise dominance (in the context of our other

axioms).

• Additivity from individual stochastic dominance. Moreover, gener-

alized utilitarianism arises merely from our version of individual stochastic

dominance, which is only assumed to compare lives certain to exist ; this is

crucial because it means that our core variable-population axiom does not

compare life against non-existence.

• Individual expected utility without assuming individual complete-

ness. Finally, without assuming complete individual preferences, we derive

that the social order respects individual-level expected utility.

The new axiom that we introduce, called Correlated Stochastic Dominance for

Sure Individuals, is at the core of our new results. To explain the axiom, we

present two examples. The first example distinguishes Expected Total Utili-

tarianism from approaches to population ethics that are not additively separa-

ble. The second example distinguishes Expected Total Utilitarianism from fixed-

population egalitarian criteria.

For the first example, consider Table 1, where columns are individuals, rows
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are equiprobable states, and for the purposes of this example, Ω represents an

individual’s non-existence in a state.4

Table 1: First motivating example: The only affected person is sure to exist in
both prospects and is stochastically better-off in g∗

prospect f ∗ prospect g∗

state Ann Bob Ann Bob

s1 1 1 1 9
s2 Ω 7 Ω 1

Our approach distinguishes between individuals who are sure to exist in any

state and individuals who may or may not exist, depending on which state is

realized. In Table 1’s comparison of f ∗ and g∗, Ann is not sure to exist in

either prospect. But she is altogether unaffected by the social choice of f ∗ or

g∗: her utility conditional-on-existence does not differ between her prospects, nor

her probability of existence, nor even the state in which she exists. Bob is the

only person in Table 1 who is sure to exist. Given the equal probability of the

two states, prospect g∗ stochastically dominates prospect f ∗ for him. Our new

principle says that, in this situation, g∗ is better than f ∗.

The starting point for our new principle is an intuition of Individual Stochastic

Dominance: A prospect is better if it can be shown, without comparing existence

to non-existence, to be better for somebody sure to exist and worse for nobody,

where “better for” merely means in the sense of stochastic dominance, which

is an incomplete ranking. In this case, that’s g∗. Notice, however, that look-

ing at the expected value of average utility, or the expected value of minimal

utility, would each imply choosing f ∗ over g∗ in Table 1. And so would a non-

expectation-taking rule that evaluates outcomes according to the sum of utilities

4This example was first introduced in the philosophy literature, as a counterexample against
using the expected value of average utility, by Gustafsson and Spears (2022); their informal pa-
per does not include any characterization results. Gustafsson and Spears emphasize that their
counterexample uses only positive lifetime utilities, so unlike other classic objections to Aver-
age Utilitarianism and to other non-separable approaches to population ethics, their counter-
example does not depend upon a meaningful zero for utility nor upon the plausible existence
of lives not worth living.
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but then uses maximin for social risk, choosing the prospect with the highest

least-socially-valuable state.5 Therefore, the example in Table 1 differentiates

each of these alternative approaches to variable-population social choice under

risk from Expected Total Utilitarianism.

Table 2: Second motivating example: Equal individual prospects can yield un-
equal outcomes

prospect f ∗∗ prospect g∗∗

state Ann Bob Ann Bob

s1 1 1 1 0
s2 0 0 0 1

Principles for social choice that evaluate each individual’s ex-ante prospect —

like Individual Stochastic Dominance does — are controversial in the normative

literature, because of the implications for ex-post fairness (Myerson 1981; Broome

1991, p. 185; Parfit n.d., ch. 1; 1995, p. 17). So our main result uses a weaker

axiom than Individual Stochastic Dominance.

To see why, consider Table 2, which is originally due to Myerson (1981). Con-

tinue to assume that the two states are equally probable. So both individuals face

the same individual prospect in f ∗∗ and g∗∗. Accordingly, Individual Stochastic

Dominance implies that those two prospects must be indifferent. But several

authors have argued that society may prefer prospect f ∗∗ because it does not

imply any inequality ex post (Fleurbaey, 2010). Our novel variable-population

individual dominance axiom, however, avoids this implication and avoids the di-

rect conflict with egalitarianism in Table 2. That is because our new principle —

namely Correlated Stochastic Dominance for Sure Individuals — weakens stochas-

tic dominance to only apply if states can be permuted in the same way for all

sure-to-exist individuals. Therefore, this principle is consistent with egalitarian

(or any other) choice in Table 2.

Our paper demonstrates that the axioms that can characterize Expected To-

5That is, mins (
∑

i uis). There is literature in decision theory proposing to maximize the
minimal expected utility using a set of probability, in particular Gilboa and Schmeidler 1989.
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tal Utilitarianism in a variable-population setting (which is the realistic setting

for our variable-population world) are meaningfully weaker than the axioms that

can do so in a fixed-population setting. Principally, this is because the variable-

population setting can use Correlated Stochastic Dominance for Sure Individuals

instead of Individual Stochastic Dominance, which the fixed-population setting

requires. Additionally, the fixed-population setting requires an axiom (called

Compensation) that can be dropped in our variable-population setting. Our

paper demonstrates this by first proving a representation theorem in a fixed-

population setting (our Theorem 1) and then proving a representation theorem

in a variable-population setting (our Theorem 2). In this way, we apply the in-

sight of Blackorby and Donaldson (1984), who showed that variable population

provides an axiomatic path to utilitarianism that is distinct from Harsanyi’s path

using social risk (Harsanyi, 1955). More broadly, we demonstrate what can be

achieved by combining Blackorby and Donaldson’s approach with Harsanyi’s re-

sult. Our result shows that Harsanyi’s assumptions can be considerably weakened

in a variable-population setting — which is also the setting that is pragmatically

needed for economic policy assessments.

After presenting our main results, we show that they can be reinterpreted to

apply to further economic settings and questions with two dimensions of value.

Macroeconomists, for one example, canonically use time-separable social objective

functions that add a value for each time period, which in turn is found by adding

a period utility for each individual:
∑

t αt

∑
i uit for individuals i and times t.

Although our main result considers risky states and individuals, our result can also

be applied to time periods and individuals. So our results offer a new axiomatic

justification for this practice in the macroeconomic literature. For example, we

provide a microfoundation for Klenow, et al.’s (2022) recent growth accounting

model that incorporates population growth while assuming a Total Utilitarian

perspective: They conclude that, even though per-person living standards have

improved radically, over the past decades population growth has accounted for

even more of the vast improvements in aggregate well-being. Climate economics,

such as Nordhaus’ (2017) DICE and RICE models, also uses a version of this
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functional form for optimizing macroeconomic climate policy. We provide a new

foundation for this standard tool in normative macroeconomics.

In another application, we show that our formal result can be reinterpreted to

propose that a prudent individual making risky decisions about a life of unknown

length and per-period utility should maximize the expected sum of per-period

utility over time,
∑

s αs

∑
t ust for risky states s and time periods t. This applica-

tion would exclude, for example, risk aversion over the length of the person’s life.

2 Framework

Let N denote the set of positive integers, N the set of non-empty finite subsets

of N, R the set of real numbers, and R++ the set of positive real numbers. For a

set D and any n ∈ N, Dn is the n-fold Cartesian product of D. Also, for any two

sets D and E, DE denotes the set of mappings from E into D.

The set of potential individuals who may or may not exist is I. We will

consider two cases: a fixed-population case where I = {1, . . . , n} for some finite

n and individuals always exist; and a variable-population case where I = N and

only a finite non-empty subset of individuals exist in any realized outcome. In

the variable-population case, because I = N, N is the set of all possible realized

populations of individuals. That is, in any outcome, a population N exists:

N ∈ N in the variable-population case and N = I in the fixed-population case.

We consider a welfarist framework where the only information necessary for

social decisions is the utility levels of people alive in a certain state of affairs.

An outcome’s welfare information is given by u = (ui)i∈N ∈ RN , where N is

the population, and ui ∈ R is, for each existing individual i, the lifetime utility

experienced by i.

Although we represent lifetime utilities with real numbers, we do not require,

as a property of the setting, that they be measured on a ratio or even interval

scale. We require only that lifetime utilities be ordered and have the cardinality of

the continuum, so that our use of R can be interpreted as a representation of this

order; that they have a topology that will allow us to use an axiom of continuity
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in lifetime utilities for fixed, sure populations; and that we can meaningfully use

an axiom that assumes the existence of a critical level for indifferently adding a

life in at least some egalitarian situations.

We denote U the set of outcomes; the exact definition will be different in the

fixed-population and variable-population cases. For each u, we denote N(u) the

set of individuals alive in u, and n(u) the number of individuals alive in u. For

two any outcomes u and v such that N(u) ∩ N(v) = ∅ (that is, u and v are

distributions of utility for two disjoint populations), we denote uv the outcome

where the two populations are merged. Formally, it is the outcome w such that

N(w) = N(u) ∪N(v), wi = ui for all i ∈ N(u), and wj = uj for all j ∈ N(v).

We assume that it is not always known for sure what the final utility vector

will be nor what set of individuals will exist. For simplicity we assume that

there is a fixed, finite set of states of the world S = {1, . . . ,m}, with m ≥ 2,

where all states are equally probable so that each state has probability 1
m
. A

“supplementary material” appendix discusses the extension to the more general

case. Note that we are in a framework where probabilities are given and/or

individuals have the same beliefs (an “objective” probability framework).

A social prospect f is a mapping from S to U . For s ∈ S, f(s) is therefore

the outcome induced by the prospect f in state s. We let F = US be the set

of functions from S to U . For an outcome u ∈ U , we abuse notation and also

denote u the sure social prospect f such that f(s) = u in all s ∈ S.

For any outcome u ∈ U , whenever i ∈ N(u), ui ∈ R denotes the utility of

individual i. For a prospect f ∈ F , whenever i ∈ N
(
f(s)

)
, fi(s) denotes the

utility of individual i in state of the world s ∈ S. For an individual i ∈ I and a

social prospect f ∈ F , we let Si(f) = {s ∈ S|i ∈ N(f(s))} be the set of states of

the world where individual i exists.6

In the fixed-population case, we have Si(f) = S for all individuals and

prospects. But this may not be case in the variable-population case: In that

6Notice that, like essentially all research in the traditions of Harsanyi (1955) and of Blackorby
et al. (2005) — such as Broome 1991, Fleurbaey 2010, McCarthy et al. 2020, Spears and
Zuber 2023, and Li et al. 2023 — our domain assumes that personal identity is such that it is
meaningful to talk about the same person existing in different risky states of the world.
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case a potential individual may not exist in some (or any) state of the world. In

our variable-population case, we call any individual i, under any social prospect f

such that Si(f) = S, “necessary” under f , because if f is chosen then i certainly

exists. Because we assume the complete domain F = US, our variable-population

domain includes prospects with both necessary and non-necessary individuals.7

The task of our paper is to characterize a social preorder ≿ on F . That ≿ is a

preorder means that it is a reflexive and transitive binary relation. In particular,

the preorder ≿ is not directly assumed by our axioms to be complete on F ,

although both of our theorems derive completeness on F from the combination

of our axioms. Throughout the paper we assume completeness only on sure

prospects, as stated in our first axiom:

Completeness for Sure Prospects For all u, v ∈ U , either u ≿ v, or v ≿ u, or

both.

Completeness for Sure Prospects is not contentious within the literature for same-

population cases. It is more contentious in the philosophical population-ethics

literature. Completeness, in that case, would hold that populations with differ-

ent sizes are always comparable. Some authors argue that variable-population

completeness may not hold because we do not know the critical level for adding

an additional life.8 But approaches with incompleteness are typically subject to

time-consistency problems or money pump arguments (Hammond, 1988; Gustafs-

son, 2022). Variable-population incompleteness would also have deeply unattrac-

tive practical and normative implications, such as that climate mitigation policy

is not preferable to large global temperature increases, because different sets of

people would exist.9 Ordinary economic analysis and policy-making routinely (if

7Our axiom Correlated Stochastic Dominance for Sure Individuals distinguishes between
necessary and non-necessary people, in a comparison of two social prospects. We do not model
time explicitly, but some readers may find that it aids their intuition to interpret necessary
individuals as those who are already alive (such as you and us), although this interpretation is
not required by our formal framework.

8See the literature on using a wide range for the critical level: Blackorby et al. 1996, Rabi-
nowicz 2009, and Gustafsson 2020.

9This observation is an application of Parfit’s (1984, p. 362) Depletion case in the philo-
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implicitly) assume that outcomes with different populations can be compared; we

follow that tradition.

3 Fixed-population results

We assume in this section that the population is a fixed set of n individuals,

I = {1, . . . , n} with n ≥ 3. The set U of outcomes is U = RI . In a slight abuse of

notation, it will sometimes be useful to consider subsets of I, which we will call

N in this section, and to consider the utility distribution of the subpopulation

within N that is an element of RN .

Our first results are based on two dominance principles, one for society and

one for individuals. In our social dominance principle, the notation f(s) ≿ g(s)

means “if ≿ faced a binary choice between the outcome of f in s occurring for

sure (that is, in every state), or the outcome of g in s occurring for sure, then ≿

would prefer the former to the latter.”

Social Statewise Dominance For all f, g ∈ F , if f(s) ≿ g(s) for all s ∈ S, then

f ≿ g. If in addition there exists s ∈ S such that f(s) ≻ g(s), then f ≻ g.

Social Statewise Dominance is a very weak rationality principle for social decision

making. It means that if we are sure that a social prospect would be better than

another under any state, then we should prefer it.

For individuals, we will require a property slightly stronger than statewise

dominance, namely stochastic dominance.10

sophical population-ethics literature.

10The definition of stochastic dominance used here may not be the most familiar one. Typ-
ically, in our framework we would say that individual prospect fi first-order stochastically
dominates individual prospect gi if for all z ∈ R |{s ∈ S : fi(s) ≤ z}| ≤ |{s ∈ S : gi(s) ≤ z}|
(with a strict dominance if the inequality is strict for some z ∈ R). It can easily be verified
that our definition is equivalent. We use this formulation because it is similar to that in our
Correlated Stochastic Dominance for Sure Individuals principle below.
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Individual Stochastic Dominance For all f, g ∈ F , if for each i ∈ I there exists

a bijection πi : S → S such that fi
(
πi(s)

)
≥ gi(s) for all s ∈ S, then f ≿ g.

If in addition there exists j ∈ I and s′ ∈ S such that fj
(
πj(s

′)
)
> gj(s

′),

then f ≻ g.

Individual Stochastic Dominance can be interpreted as a weak ex-ante Pareto

principle: If a prospect is better than another for all individuals (in the sense

of stochastic dominance), then it is also socially better. In that sense, it is

in the lineage of Harsanyi’s foundational result on social aggregation under risk

(Harsanyi, 1955). Note, however, that Individual Stochastic Dominance is weaker

than the usual ex-ante principles for two reasons: because it is compatible with

non-expected utility assessments of individual prospects, and because it only uses

an incomplete ranking of individual prospects. An interpretation is that the social

ranking needs not always respect individual preferences, but instead only respects

a part of individual preferences: that part that is compatible with stochastic dom-

inance (assuming that individual preferences at least respect this principle).11

Recall the conflict between Individual Stochastic Dominance Dominance and

the egalitarian intuition behind Table 2. This conflict emerges, in fact, from

the Anteriority axiom, which is weaker than Individual Stochastic Dominance

and which says that the social preorder only depends on which prospect each

individual faces, that is:

Anteriority For all f, g ∈ F , if for each i ∈ I there exists a bijection πi : S → S

such that fi
(
πi(s)

)
= gi(s) for all s ∈ S, then f ∼ g.

McCarthy et al. (2020) have argued that Anteriority expresses a weak sense in

which the social preorder is ex-ante. So our characterization results can be seen

as attractive to people endorsing a weak ex-ante view, or as additional arguments

for people who resist that view.

11Many non-expected utility models of choice are compatible with first-order stochastic dom-
inance in the context of risk. For instance, Chew and Epstein (1989) studied extensions of
the rank-dependent expected utility model and conditions to obtain first-order stochastic domi-
nance for a large class of models. Also, Tversky and Kahneman (1992) developed the cumulative
prospect theory model to ensure compatibility with first-order stochastic dominance.
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The first step is to show that those two dominance principles, together with

Completeness for Sure Prospects, imply the following separability property for

sure prospects:

Separability for Sure Prospects For any N ⊂ I, for any u, v ∈ RN and w, ŵ ∈
RI\N , uw ≿ vw if and only if uŵ ≿ vŵ.

Lemma 1 If the social ordering ≿ satisfies Completeness for Sure Prospects, So-

cial Statewise Dominance and Individual Stochastic Dominance, then it satisfies

Separability for Sure Prospects.

Proof. The proof is by contradiction. Assume that N ⊂ I, u, v ∈ RN and

w, ŵ ∈ RI\N are such that uw ≿ vw but vŵ ≻ uŵ. Consider the three following

prospects f , g, and h (where each row gives the vector of utilities in a specific

state of the world):

state f g h

1 uw vw uw

2 uŵ uŵ vŵ

3 uw uw uw
...

...
...

...

m uw uw uw

By Social Statewise Dominance, given that uw ≿ vw, we must have f ≿ g.

By Social Statewise Dominance, given that vŵ ≻ uŵ, we must have h ≻ f .

Hence, by transitivity, we should have h ≻ g. But it is the case that for all

i ∈ N gi(1) = hi(2), gi(2) = hi(1), and gi(s) = hi(s) for all s ∈ {3, . . . ,m},
while gj(s

′) = hj(s
′) for all j ∈ (I ⊂ N) and s′ ∈ S. So, Individual Stochastic

Dominance requires g ∼ h, a contradiction. Completeness for Sure Prospects

implies that, if we do not have vŵ ≻ uŵ, we must have uŵ ≿ vŵ.

Note that for this first result, we do not need the full force of Individual

Stochastic Dominance, but only Anteriority.
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Lemma 1 is already a big step towards additive separability, because we now

have a strong separability condition. But to obtain our fixed-population main

result, we need two additional technical properties.

Continuity For all u ∈ U , the sets {v ∈ U |u ≿ v} and {v ∈ U |v ≿ u} are

closed.

Compensation For any u, v ∈ U and i ∈ I, there exists z ∈ R such that, if

w ∈ U is defined by wi = z and wj = vj for all j ̸= i, then u ∼ w.

Compensation means that we can compensate losses or gains of all but one

individuals by adjusting the welfare level of the last individual.12 Although

Compensation may intuitively appear utilitarian, it is consistent with views

that are sensitive to distribution, such as equally-distributed-equivalent egal-

itarianism
(
ϕ−1

(
1
n

∑
i ϕ(ui)

))
and rank-discounted generalized utilitarianism(∑

[r] β
rϕ(ur), where [r] indicates rank from worst-off

)
, if ϕ is an unbounded

increasing transformation.

Theorem 1 The following statements are equivalent:

1. The social preorder ≿ satisfies Completeness for Sure Prospects, Social

Statewise Dominance, Individual Stochastic Dominance, Continuity and

Compensation.

2. ≿ is a complete social order and there exist continuous, increasing and un-

bounded functions ϕi : R → R such that:

f ≿ g ⇐⇒
∑
s∈S

1
m

∑
i∈I

ϕi

(
fi(s)

)
≥

∑
s∈S

1
m

∑
i∈I

ϕi

(
gi(s)

)
.

An impartiality axiom would replace ϕi with a shared ϕ.

The proof is in the Appendix. It has two steps that we describe here in-

formally. The first step is to derive additive separability within a state (or for

12Such a property is sometimes named Solvability in the literature (see for instance Pivato
and Tchouante, 2023).
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sure prospects). It relies on Separability for Sure Prospects, using Lemma 1, and

on the theorem by Debreu (1960) on additive representations. The second step

is to construct the across-state additivity of social expected utility. Informally,

this is done by combining the use of the additive formula within a state and

Stochastic Dominance for Sure Individuals to move the consequences of other

states all into one state. This is illustrated by the following two-by-two example

(which disregards ϕ for illustration), where columns are individuals, rows are two

equiprobable risky states (s1 and s2), and x, y, z, and w are real lifetime utilities:

s1

s2

[
x y

w z

]
∼

[
x+ y 0

0 w + z

]
∼

[
x+ y w + z

0 0

]
∼

[
x+ y + w + z 0

0 0

]
.

The first equivalence uses Social Statewise Dominance and the additive structure

within states. The second equivalence uses Stochastic Dominance for Sure Indi-

viduals. The third equivalence again uses Social Statewise Dominance and the

additive structure within states.

Notice that we can derive Theorem 1 with even weaker principles. As ex-

plained before, Lemma 1 only requires Anteriority. Similarly, our full proof

only requires Anteriority and a Pareto-like property that is implied by Individual

Stochastic Dominance (this is detailed in the proof). So Theorem 1 can be re-

formulated using Anteriority and this Pareto-like property in place of Individual

Stochastic Dominance. However, we present Individual Stochastic Dominance

because it foreshadows our variable-population theorem.

Finally, notice that here or in our variable-population result, if ϕ is concave,

then our criterion would be an instance of “prioritarianism,” which is the name

for an additively-separable social welfare function which gives priority to worse-

off individuals. A Pigou-Dalton axiom for transfers of lifetime utility would be

sufficient for this curvature of ϕ.

4 Variable-population results

Theorem 1 is a powerful weakening of the Harsanyi approach. But fixed-

population utilitarianism leaves open the question of how to expand to

variable-population questions — which are the real-world questions of much
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actual economic policy decision-making. Blackorby et al. (2005) detail many

variable-population social welfare functions (such as Average Utilitarian-

ism or Number-Dampened Utilitarianism) that simplify to fixed-population

utilitarianism in fixed-population cases. This section shows how social and

individual dominance further narrow down the possibilities for utilitarianism in

a variable-population setting. We show that our axioms imply a specific family

of generalized utilitarianisms for variable-population cases, namely, Expected

Total Utilitarianism that corresponds in the sure case (absent any risk) to

the well-known Critical-Level Generalized Utilitarianism (henceforth CLGU,

Blackorby et al., 2005).

Here we take advantage of the variable-population setting — which has its

own “existence independence” route to additive separability, due to Blackorby

and Donaldson (1984) — to weaken our assumptions. In particular, Individual

Stochastic Dominance, in the fixed-population setting, is inconsistent with mak-

ing the egalitarian choice that f ∗∗ ≻ g∗∗ in Table 2, but the weaker axiom we use

here is consistent with that choice. Moreover, in the fixed-population case, we

use the Compensation principle, but this may not be obviously appealing from

some ethical viewpoints. By moving to the variable-population case, we will be

able to instead use the principles of Anonymity and Critical Level for Egalitarian

Expansion, specified below.

In this section, the set of potential individuals who may or may not exist is

I = N. In an outcome, only a non empty finite population N ∈ N exists. We thus

define U =
⋃

N∈N RN as the set of possible outcomes when at least one individual

exists. For each population N ∈ N , we also denote UN = {u ∈ U |N(u) = N}
the set of outcomes such that the population is N .

We adopt six principles that are properties of the social preorder ≿. Com-

pleteness for Sure Prospects and Social Statewise Dominance are the same as

in the previous sections. We next have three principles that we expect to be

uncontroversial in the economics literature.
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Anonymity for Sure Outcomes For all u, v ∈ U , if n(u) = n(v) and there exists

a bijection π : N(u) → N(v) such that ui = vπ(i) for all i ∈ N(u), then

u ∼ v.

Same-Population Continuity for Sure Outcomes For all N ∈ N , for all u ∈ UN ,

the sets {v ∈ UN |u ≿ v} and {v ∈ UN |v ≿ u} are closed.

Critical Level for Egalitarian Expansion There exists c ∈ R such that, for

any N ∈ N and j ∈ (I \ N), if u and v ∈ U are defined by N(u) = N,

N(v) = N ∪ {j}, vi = ui = c for all i ∈ N and vj = c, then u ∼ v.

Notice that these three axioms — Anonymity and Same-Population Continuity

and Critical Level for Egalitarian Expansion — each only apply to comparisons

among sure outcomes (we suppress this in the title of the critical level axiom for

brevity).

Critical Level for Egalitarian Expansion asserts that there is a wellbeing level

such that a one-person expansion of a population in which everyone is at that level

is indifferent.13 This weak axiom would be acceptable to many diverse variable-

population social welfare functions named and studied in the literature, including

average utilitarianism, total utilitarianism, maximin (Blackorby et al., 2005, p.

176), critical-level leximin (Blackorby et al., 2005, p. 169), number-dampened

generalized utilitarianism, (Blackorby et al., 2005, p. 172), and rank-discounted

critical-level generalized utilitarianism (Asheim and Zuber, 2014, p. 632). It is

important to notice what this axiom does not assume. It does not assume that

the critical-level is fixed, whatever the pre-existing population: It only applies to

egalitarian populations with each lifetime utility at the critical level. So, it does

not assume that a critical level always exists for each population.

The heart of our variable-population characterization is our stochastic domi-

nance axiom for individuals: Correlated Stochastic Dominance for Sure Individu-

als. This axiom formalizes the principle behind our motivating example in Table

13Fleurbaey and Zuber (2015) and Spears and Zuber (2023) call this axiom simply “Egali-
tarian Expansion,” but we use this name to emphasize that it also serves the role of our critical
level axiom in characterizing CLGU.
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1. To adapt Individual Stochastic Dominance to the variable-population setting,

we apply the principle only to individuals who are sure to exist — like Bob is

in Table 1’s motivating example. Additionally, this axiom only applies when

states of the world where not-sure-to-exist individuals exist and their utilities

conditional on existence are left unchanged.14

Correlated Stochastic Dominance for Sure Individuals For all f, g ∈ F , if:

(i) Si(f) = Si(g) for all i ∈ I;

(ii) for all j ∈ I such that Sj(f) /∈ {∅, S}, there exists xj ∈ R such that

fj(s) = gj(s) = xj for all s ∈ Sj(f);

(iii) there exists a bijection σ : S → S such that for all k ∈ I such that

Sk(f) = S and all s ∈ S, fk
(
σ(s)

)
≥ gk(s);

then f ≿ g.

If, in addition, there exists l ∈ I such that Sl(f) = S and s′ ∈ S such that

fl
(
σ(s′)

)
> gl(s

′), then f ≻ g.

This axiom, Correlated Stochastic Dominance for Sure Individuals, has three

important features:

• In condition (i), individuals exist in the same states of the world in the two

social prospects f and g being compared, which equivalently means that in

each state of the world the populations existing with f and g are the same.

The principle does not speak to situations with different populations in a

state of the world.

• In condition (ii), people who do not exist for sure either do not exist at all,

or they do not bear any risk and exist with the same level of utility in f

and g. People who do not necessarily exist, in the comparison between f

and g, are altogether unaffected.

14We thank Marcus Pivato for suggesting this formulation of Correlated Stochastic Domi-
nance for Sure Individuals.
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• For people who are sure to exist, the condition (iii) entails that the individ-

ual prospect they face in f stochastically dominates the one they face in g.

But, in fact, condition (iii) is weaker than individual stochastic dominance

because the same permutation of states σ is used for all individuals.

Notice, then, that Correlated Stochastic Dominance for Sure Individuals requires

that g∗ ≻ f ∗ in the example from Table 1 but it permits any ranking of f ∗∗ and

g∗∗ in Table 2, including the non-utilitarian judgment that f ∗∗ ≻ g∗∗. We cannot

conclude from Correlated Stochastic Dominance for Sure Individuals that f ∗∗

and g∗∗ in Table 2 are socially equivalent, because to obtain dominance we need

to use different permutations of states for Ann and Bob. Yet we can conclude

for Table 1 that g∗ ≻ f ∗ because only Bob exists for sure, so we can permute

the outcome for Bob in states 1 and 2. These examples, therefore, distinguish

Correlated Stochastic Dominance for Sure Individuals from Anteriority, because

Anteriority would immediately imply the utilitarian judgement that f ∗∗ ∼ g∗∗.15

Indeed, although the representation in Theorem 2 implies that f ∗∗ ∼ g∗∗, no one

axiom used in our variable-population theorem individually requires this.

Our first result is that the restricted social ordering to sure prospects must be a

CLGU social ordering. Fundamentally, we achieve additive separability from our

axioms because, in our variable population setting, Social Statewise Dominance

and Correlated Stochastic Dominance for Sure Individuals are sufficient to obtain

the Separability property discussed before. With Critical Level for Egalitarian

Expansion, they also imply that there exist a fixed critical level. The proof in the

Appendix provides the details on how these properties deliver the Critical Level

Generalized Utilitarian social ordering.

15Anteriority, as written above, is not defined for variable-population cases. So consider,
further, a variable population extension of Anteriority which holds that two prospects are
equally good if each potential person faces the same individual distribution of the probability
of non existence and the same distribution of utility levels conditional on existence (McCarthy
et al., 2020). Such an Anteriority axiom would both hold that Table 1’s g∗ ≻ f∗, like Correlated
Stochastic Dominance for Sure Individuals, and that Table 2’s f∗∗ ∼ g∗∗. Such an Anteriority
axiom is thus stronger than Stochastic Dominance for Sure Individuals.
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Proposition 1 If ≿ satisfies Completeness for Sure Prospects, Anonymity for

Sure Outcomes, Same-Population Continuity for Sure Outcomes, Critical Level

for Egalitarian Expansion, Social Statewise Dominance, and Correlated Stochas-

tic Dominance for Sure Individuals, then there exists a continuous and increasing

function ϕ : R → R and a number c ∈ R such that for all u, v ∈ U , u ≿ v if and

only if
∑

i∈N(u)

[
ϕ(ui)− ϕ(c)

]
≥

∑
i∈N(v)

[
ϕ(vi)− ϕ(c)

]
.

We can then state our main result for this section:

Theorem 2 The following statements are equivalent:

1. The social preorder ≿ satisfies Completeness for Sure Prospects, Anonymity

for Sure Outcomes, Same-Population Continuity for Sure Outcomes, Criti-

cal Level for Egalitarian Expansion, Social Statewise Dominance and Cor-

related Stochastic Dominance for Sure Individuals.

2. ≿ is a complete social order and there exists a continuous and increasing

function ϕ : R → R and a number c ∈ R such that for all f, g ∈ F , f ≿ g

if and only if

∑
s∈S

1
m

[ ∑
i∈N(f(s))

[
ϕ(fi(s))− ϕ(c)

]]
≥

∑
s∈S

1
m

[ ∑
i∈N(g(s))

[
ϕ(gi(s))− ϕ(c)

]]
.

The basic approach is to use the within-state additivity of CLGU to construct the

across-state additivity of social expected utility.16 Informally, this is done first by

using CLGU to have a separate set of individuals with welfare different from c in

each state of the world. Then we use Correlated Stochastic Dominance for Sure

Individuals to move the consequences of other states all into one state. Then we

can apply CLGU to get an additive formula. Consider the following example for

16An alternative version of Theorem 2 would substitute Extended Replication Invariance
(Blackorby et al., 2005, p. 165) and Intermediate Existence of Critical Levels (Blackorby et al.,
2005, p. 160) instead of Critical Level for Egalitarian Expansion, characterizing the same social
welfare function.
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intuition of the proof. There are four possible individuals (in columns) and two

equiprobable states (in rows); x, y, z, and w are real lifetime utilities:

s1

s2

[
x y Ω Ω

Ω w z Ω

]
∼

[
x y c c

Ω Ω w z

]
∼

[
x y w z

Ω Ω c c

]
.

The first equivalence uses CLGU from Proposition 1 in each state of the world

(and then Social Statewise Dominance). The second equivalence uses Correlated

Stochastic Dominance for Sure Individuals (the last two individuals). We can

then use the additive formula of CLGU applied to the first state of the last

prospect. The full proof is presented in the Appendix.

Notice that Correlated Stochastic Dominance for Sure Individuals is indepen-

dent of the other axioms of Theorem 2, because the other axioms are each consis-

tent with Expected Average Utilitarianism, but Correlated Stochastic Dominance

for Sure Individuals is not. The next logical weakening of Correlated Stochas-

tic Dominance for Sure Individuals would be to weaken stochastic dominance

to statewise dominance, but this would not be sufficient for Theorem 2, which

suggests that Correlated Stochastic Dominance for Sure Individuals may be the

weakest axiom that can narrow variable-population utilitarianism to Expected

Total Utilitarianism.

In this section, contrary to the previous one, we have assumed Anonymity,

which is a widely admitted principle of social ethics. However, Anonymity may

not make sense for other applications of our result (as discussed below). In an

intertemporal setting, it has been argued that individuals living in different gener-

ations perhaps should not be treated symmetrically because there are permissible

reasons to discount future utility. The core of our line of arguments however does

not depend on Anonymity. We show in the Supplementary Material (Section

S.A) that we obtain the expected value of a non-symmetric, additively-separable

function when we replace Anonymity with Compensation.
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5 Further applications

In this section, we note that our formal results can be usefully reinterpreted

if the dimensions and utility-bearers are understood in different ways.17 We

give an example for macroeconomics and another for individual rational choice.

Where our main setting uses risky states and individuals as the two dimensions,

our applications below use, first, time periods and individuals and, second, time

periods and risky states.

5.1 Macroeconomic welfare accounting with time separa-

bility: Time periods and individuals

Macroeconomists typically use a social welfare function that is additively sepa-

rable across time periods and sums individual time-period-specific utility within

time periods. This practice has two important implications: that individual life-

time utility is also additively time-separable, and that the implied population

ethics is totalist. For example, the climate-economy model of Nordhaus (2017),

like other leading climate-policy models, maximizes a social objective function∑
t αt

∑
i uit, for individuals i and periods t experiencing flow utility uit — or

more precisely
∑

t αtLtūt, where Lt is population size and ūt is average wellbeing

in t. Particularly relevantly to our paper, Klenow et al. (2022) use this functional

form (without time discount factors αt) to conduct a growth accounting exercise

that decomposes aggregate growth into population growth and improvements in

per-person living standards.

These conventions invite the question: How can this social objective function

be normatively justified? Our Theorem 2 provides a justification, if cells are

reinterpreted as individual-by-time flows of utility, risky states are reinterpreted as

discrete time periods (ignoring risk for this application), and potential individuals

have lives composed of a variable number of time periods.

17Mongin and Pivato (2015) have made a similar observation, in surveying multiple ap-
plications of their own result about two-dimensional separability, although their result and
applications are different. A similar discussion can also be found in Li et al. 2023.

20



• Social Statewise Dominance axiom would become Social Period-wise Dom-

inance, holding that an intertemporal allocation f is better than another

g if each time period of f would be better, if made permanent, than the

corresponding time period of g, if made permanent.

• Correlated Stochastic Dominance for Sure Individuals would become Tem-

poral dominance for fixed-longevity individuals, holding that an intertem-

poral allocation f is better than another g if

• every person who only lives for some (but not all) populated time

periods is unaffected by a choice between f and g, and

• every person who lives throughout the entire span of populated time

has a lifelong distribution of period well-being in f that dominates

that person’s lifelong distribution of well-being in g.

These, combined with the technical axioms, would yield additivity across and

within time periods.18 So this result can justify Klenow, et al.’s (2022) Total

Utilitarian growth accounting, with the same sort of weak axioms that justify

our result.19 To be sure, various intuitions (including a taste for pattern goods

such as flat or increasing utility profiles over time) might lead an economist to

reject Temporal dominance for fixed-longevity individuals, but such economists

would already have rejected macroeconomists’ entire time-separable project. This

is formally analogous to, in our original social risk setting, a concern for egalitar-

ianism that might bring about a rejection of utilitarianism and our axioms that

characterize it.

18Pure social time preference could be accommodated by period weights which would be
analogous to probabilities in our interpretation. Note that Blackorby et al. (1995), in an early
contribution to population ethics, also derive additive separability from lives born at different
times, but consider only lifetime utilities, not period-specific utility flows.

19In fact, because they compare time periods with other time periods, without integrating
over time and without time discounting, our Proposition 1 is sufficient to justify their approach.
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5.2 Individual decision-making for a lifetime of risky

length and per-period utility: Time periods and risky

states

Consider an individual’s rational choice over a risky temporal distribution of state-

specific period flows of utility, ust, where s are risky states and t are time periods

when the individual may or may not be alive and, if so, would experience a flow

utility. Reinterpreting our model of social risky choice as a model of individual

risky choice, with i in our model now becoming periods t in a life of unknown

length, results in the decision criterion that maximizes the expectation of the sum

of period-specific utility flows over a lifetime:
∑

s
1
m

∑
t ust.

• Social Statewise Dominance axiom would become Individual statewise dom-

inance, but its interpretation would otherwise be similar to the interpreta-

tion of statewise dominance in our main setting, holding that a risky in-

tertemporal allocation f is better than another g if each state of f would be

better, if received for certain, than the corresponding state of g, if received

for certain.

• Correlated Stochastic Dominance for Sure Individuals would become

Stochastic dominance for fixed-longevity outcomes, holding that a risky

intertemporal allocation f is better than another g if

• every time period in which the decision-maker is not certain to live is

unaffected by a choice between f and g, and

• every time period in which the decision-maker is certain to live has a

period-specific lottery of well-being in f that dominates that period’s

lottery of well-being in g.

This would be a novel justification of individual-level expected utility and of

evaluating lifetime utility as the sum of period utility flows. As in the macroe-

conomic interpretation, the axioms rule out certain pattern goods. So whether

or not this application makes normative sense for a prudent decision-maker may
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depend upon your interpretation of personal identity over a lifetime and whether

lifetime pattern goods make sense and are valuable.

As indicated above, we can also dispense with the Anonymity assumption

that, in the present context, would mean treating all time periods in the same

way. So, we can allow for time discounting in individual decisions. Our key result

is about expectation-taking and having time-separable preferences.

6 Discussion and conclusion

6.1 Extension to more general probability distributions

Until now, we have assumed that we have a finite numberm of states of the world,

all of them having the same probability 1/m to occur. In the Supplementary

Material (Section S.B), we show that the results very easily extend to a case with

events whose probability of occurrence is a rational number.

The main intuition is as follows. Consider two social prospects f and g and

let d be the least common denominator of the probability of the events generated

by f and g. It means that we can divide each events into subevents of probability

1/d. And that the two prospects can be seen as inducing consequences on d

equiprobable states of the world. Because we can apply all of our results to

spaces where each state of the world has the same probability 1/d to occur, this

extends to cases where events have a rational probability.

There are additional steps due to the fact that we must relate f and g to

acts that induce the same partition into d equiprobable events. This relation

is done by appropriately adapting the two key axioms of Individual Stochastic

Dominance and Correlated Stochastic Dominance for Sure Individuals. All other

axioms straightforwardly adapts to the more general framework.

6.2 Related literature

Our paper joins a recent literature that has characterized objective functions

with two dimensions of value. A theme of this literature is that separability in

23



one dimension creates pressure for separability in another. None of these papers

connect axioms as weak as ours to a conclusion as strong as ours.

Harsanyi’s (1955) aggregation theorem is recognized as a foundation of utili-

tarian welfare economics, which is widely used throughout macroeconomics and

public economics. As Fleurbaey (2009) summarized, Harsanyi showed that “in

the presence of risk, weighted utilitarianism is the only criterion that satisfies

the ex-ante Pareto principle and can be written as the expected value of social

welfare,” where ex-ante Pareto, in Harsanyi’s case, meant assuming complete in-

dividual expected utilities. Harsanyi’s result has received much attention and

has been weakened in several directions. Fleurbaey (2009), in a founding contri-

bution to this recent literature, weakens Harsanyi’s assumptions in a setting of

fixed-population social risk. Fleurbaey uses a weak dominance axiom like ours

for social risk, but maintains an assumption of expectation-taking for individ-

ual ex-ante Pareto. In an uncertainty framework à la Savage, without objective

probabilities, Mongin and Pivato (2015) obtained the Harsanyi’s result with as-

sumptions akin to statewise dominance for the social ordering and ex-ante Pareto

for individuals, without assuming that individuals maximize an expected utility.

A similar result is obtained by Zuber (2016) in an uncertainty framework à la

Anscombe–Aumann. Li et al. (2023) recall the generality of this result that ap-

plies also to the context of risk and time or time and individuals as explained

above. One way that all of these axiomatizations are stronger than ours is in

requiring an individual order, where our axiom for individuals requires only dom-

inance; also we do not assume a complete social ordering of all prospects.

Another contribution is the paper by McCarthy et al. (2020). They consider a

framework with objective probabilities and use the property of Anteriority, which

is related to our properties of Individual Stochastic Dominance and Stochastic

Dominance for Sure Individuals. They obtain a “quasi-utilitarian” result with

axioms that are similar to ours. But it must be clarified that their result is

not exactly utilitarian in the sense that we use here. What they get is that

the society should evaluate social prospects as if one of the individuals in the

society was facing an average prospect, in the sense that she faces the prospect
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of each individual with equal probability. To clarify the difference, assume that

individuals assess prospects only on the basis of first order stochastic dominance

(to be consistent with our axioms). Consider a society with two individuals

and two prospects: in one prospect the two individuals get utility 1/2 for sure,

in the other prospect one individual gets utility 1 for sure and the other gets

0 for sure. McCarthy et al. (2020) require that we assess these prospects like

an individual would do if she compared a sure outcome of 1/2 with the lottery

of having 0 or 1 with equal probability. Given that the individual uses first

order stochastic dominance, these two prospects cannot be compared. On the

contrary, our approach can compare them and will prefer the former to the latter

if ϕ(1/2) > 1
2
ϕ(0) + 1

2
ϕ(1) — for instance when ϕ is concave. McCarthy et al.

(2020) could obtain this result by further assuming that individuals maximize an

expected utility — which we do not assume.

Harsanyi (1955) only considered a fixed-population case. We show that the

axioms leading to Harsanyi’s result can be significantly weakened in a variable-

population setting. There exist other extensions of Harsanyi’s to the variable

population framework. A founding result is by Blackorby et al. (1998) but they

assume social expected utility as well as some utility independence for uncon-

cerned individuals (or individual-level expected utility). Other, more recent, pa-

pers do combine the logic of two dimensions with variable population. Spears and

Zuber (2023), for example, extend Harsanyi’s result to variable population, but

maintain an assumption of social expected utility throughout. McCarthy et al.

(2020), which we mentioned above, is a recent contribution with wide mathemat-

ical generality, including the variable-population case. Their variable-population

results differ from ours in assuming an axiom that they call Omega Independence

that contains a comparison of existence in a risky outcome to non-existence. As

explained above, they also do not get a generalized utilitarian criterion in the

sense that we use here. Finally, Thomas (2022) offers an overview of the relation-

ship between separability and additivity for the philosophical population-ethics

literature. Thomas makes use of the Anteriority axiom that we have discussed.

Any axiomatization of a social welfare function can be read as an argument
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for that approach or as a warning of what the approach entails, depending upon

one’s perspective. To a reader who shares the interpretation that the axioms of

Theorem 2 are weak and normatively attractive, our result raises the theoretical

cost of departing either from additively-separable utilitarianism or from social

expectation-taking. Because, as we have shown, these axioms are weaker in a

variable-population setting than in a fixed-population setting, the theoretical cost

of departing from additively-separable utilitarianism or from social expectation-

taking is greater in a variable-population setting than in a fixed-population set-

ting. As the large changes over time in the size of the human population have

shown, the relevant economic world is such a variable-population setting.
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A Proof of Theorem 1

Proof. It is straightforward to check that statement 2. implies statement 1.

Then, the proof has two steps.

Step 1: an additive representation of ≿ for sure prospects. By Com-

pleteness for Sure Prospects, we know that ≿ is a complete pre-order for sure

prospects. By Lemma 1, ≿ satisfies Separability for Sure Prospects. By defini-

tion of ≿ and Individual stochastic dominance, it is easily shown that ≿ satisfies

the following Pareto-like property (mentioned in the text on page 13):

for any u, v ∈ RI if u ≥ v and u ̸= v, then u ≻ v,

where ≥ means at least as good for each person. Hence, by the well-known result

of Debreu (1960), there exist continuous and increasing functions ϕi : R → R
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such that, for all u, v ∈ U ,

u ≿ v ⇐⇒
∑
i∈I

ϕi(ui) ≥
∑
i∈I

ϕi(vi).

Without loss of generality, we can normalize the ϕi functions so that ϕi(0) = 0

and
∑

i∈I ϕi(1) = 1.

Let us show that each ϕi is unbounded. Assume by contradiction that ϕi

is bounded above for some i ∈ I (the reasoning is similar for the case where

ϕi would be bounded below). Given that ϕi is increasing, it means that there

exists B ∈ R such that, for any ε > 0 there exists K ∈ R such that, for any

z ≥ K, 0 < K − ϕi(z) < ε. As a consequence, for any ε > 0 there exists K ∈ R
such that, for any z ≥ K and any x ∈ R, ϕi(x) − ϕi(z) < ε. Now consider any

u, v ∈ U such that uj > vj for some j ̸= i and uk = vk for all k ̸= i, j. Let

ε = ϕj(uj)−ϕj(vj) > 0. So, by the reasoning above, there exists z ∈ R such that

ϕi(x) − ϕi(z) < ε for all x ∈ R. Assume that ui = z. By compensation, there

exists z̃ ∈ R such that, if w ∈ U is defined by wj = vj for all j ̸= i and wi = z̃

then u ∼ w. But, by the representation above, this would imply:

ϕi(z) + ϕ(uj) = ϕi(z̃) + ϕ(vj),

and therefore ϕi(z)−ϕi(z̃) = ε, which is impossible. Hence, it cannot be the case

that ϕi is bounded above (nor bounded below by a similar reasoning).

Step 2: an expected utility representation. Consider any f, g ∈ F . Let us

first construct f̂ (1), ĝ(1) ∈ F in the following way, using Compensation: f̂
(1)
1 (1) =

z(1) and ĝ
(1)
1 (1) = z̄(1) while f̂

(1)
i (1) = ĝ

(1)
i (1) = 0 for all i ̸= 1, where z(1) and

z̄(1) ∈ R are such that f̂ (1)(s) ∼ f(s) and ĝ(1)(s) ∼ g(s) (we know that such z(1)

and z̄(1) exist by Compensation). For each s > 1, f̂ (1)(s) = f(s) and ĝ(1)(s) = g(s)

so that f̂ (1) ∼ f and ĝ(1) ∼ g by Social Statewise Dominance. By Step 1, it is the

case that ϕ1

(
f̂
(1)
1 (1)

)
=

∑
i∈I ϕi(fi(1)) and ϕ1

(
ĝ
(1)
1 (1)

)
=

∑
i∈I ϕi(gi(1)).

The next move is to construct two sequences of prospects f̂ (1), . . . , f̂ (m) and

ĝ(1), . . . , ĝ(m) with the following properties:
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• ϕ1

(
f̂
(k)
1 (1)

)
=

∑k
s=1

∑
i∈I ϕi(fi(s)), ϕ1

(
ĝ
(k)
1 (1)

)
=

∑k
s=1

∑
i∈I ϕi(gi(s)),

and f̂
(k)
i (1) = ĝ

(k)
i (1) = 0 for all i > 1;

• f̂
(k)
i (s) = ĝ

(k)
i (s) = 0 for all i ∈ I and 2 ≤ s ≤ k;

• f̂ (k)(s) = f(s) and ĝ(k)(s) = g(s) for all s > k;

• f̂ (k+1) ∼ f̂ (k) and ĝ(k+1) ∼ ĝ(k) for all k = 1, . . . ,m− 1.

Let us show that the construction is possible by recursion. Notice that all the

properties (except the last) are already satisfied by f̂ (1) and ĝ(1). Let k ∈
{1, . . . ,m − 1} and assume that we have constructed f̂ (k). Let us show that

we can construct f̂ (k+1) with the desired properties so that f̂ (k+1) ∼ f̂ (k) (the

proof is similar for ĝ(1), . . . , ĝ(m−1), and thus not repeated).

By Compensation, there exists a number z̃(k+1) ∈ R such that, if we define

ũ(k+1) ∈ U by ũ
(k+1)
2 = z̃(k+1) and ũ

(k+1)
j = 0 for all j ∈ I \ {2}, it is the case that

ũ(k+1) ∼ f̂ (k)(k + 1). By construction and step 1, it is the case that

ϕ2

(
ũ
(k+1)
2

)
=

∑
i∈I

ϕi

(
f̂
(k)
i (k + 1)

)
=

∑
i∈I

ϕi (fi(k + 1)) . (1)

Define f̃ (k+1) by f̃ (k+1)(k + 1) = ũ(k+1) and f̃ (k+1)(s) = f̂ (k)(s) for all s ̸= k + 1.

Social Statewise Dominance gives f̃ (k+1) ∼ f̂ (k). Next construct f̄ (k+1) in the

following way: f̄
(k+1)
i (s) = f̃

(k+1)
i (s) for all s ∈ S and i ̸= 2; f̄

(k+1)
2 (1) = f̃

(k+1)
2 (k+

1), f̄
(k+1)
2 (k+ 1) = 0, while f̄

(k+1)
2 (s) = f̃

(k+1)
2 (s) for all s ̸= 1, k+ 1. Individual 2

faces the same individual prospect in f̄ (k+1) and f̃ (k+1), while all other individuals

are not affected. By Individual stochastic dominance, f̄ (k+1) ∼ f̃ (k+1), and by

transitivity f̄ (k+1) ∼ f̂ (k).

The prospect f̄ (k+1) is such that f̄
(k+1)
1 (1) = f̂

(k)
1 (1), f̄

(k+1)
2 (1) = f̃

(k+1)
2 (k+1) =

ũ
(k+1)
2 and f̄

(k+1)
i (1) = 0 for all i > 2. By Compensation, there exists a number

z(k+1) ∈ R such that, if we define ū(k+1) ∈ U by ū
(k+1)
1 = z(k+1) and ū

(k+1)
j = 0 for

all j ∈ I \ {1}, it is the case that ū(k+1) ∼ f̄ (k+1)(1). By construction and step 1,
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it is also the case that

ϕ1

(
ū
(k+1)
1

)
=

∑
i∈I

ϕi

(
f̄ (k+1)(1)

)
= ϕ1

(
f̂
(k)
1 (1)

)
+ ϕ2

(
ũ
(k+1)
2

)
=

k+1∑
s=1

∑
i∈I

ϕi(fi(s)).

(Recall that ϕ1

(
f̂
(k)
1 (1)

)
=

∑k
s=1

∑
i∈I ϕi(fi(s)) and ϕ2

(
ũ
(k+1)
2

)
=

∑
i∈I ϕi (fi(k + 1))

– see Equation (1)). It suffices to define f̂ (k+1) by f̂ (k+1)(1) = ū(k+1) and

f̂ (k+1)(s) = f̄ (k)(s) for all s > 1 to obtain f̄ (k+1) ∼ f̂ (k+1) by Social Statewise

Dominance. By transitivity, f̂ (k) ∼ f̂ (k+1). It can be checked that f̂ (k+1) has all

the aforementioned features. Figure 1 describes the step between f̂ (k) and f̂ (k+1).

Figure 1: Construction of prospect f̂ (k+1) for k ≥ 2

f̂ (k) f̃ (k+1)

indiviuals individuals
state 1 2 3 · · · 1 2 3 · · ·

1 f̂
(k)
1 (1) 0 0 · · · f̂

(k)
1 (1) 0 0 · · ·

2 0 0 0 · · · 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

k 0 0 0 · · · 0 0 0 · · ·
k + 1 f1(k + 1) f2(k + 1) f3(k + 1) · · · 0 f̃

(k+1)
2 (k + 1) 0 · · ·

k + 2 f1(k + 2) f2(k + 2) f3(k + 2) · · · f1(k + 2) f2(k + 2) f3(k + 2) · · ·
...

...
...

...
...

...
...

...
...

f̄ (k+1) f̂ (k+1)

indiviuals individuals
state 1 2 3 · · · 1 2 3 · · ·

1 f̂
(k)
1 (1) f̃

(k+1)
2 (k + 1) 0 · · · f̂

(k+1)
1 (1) 0 0 · · ·

2 0 0 0 · · · 0 0 0 · · ·
k 0 0 0 · · · 0 0 0 · · ·

k + 1 0 0 0 · · · 0 0 0 · · ·
k + 2 f1(k + 2) f2(k + 2) f3(k + 2) · · · f1(k + 2) f2(k + 2) f3(k + 2) · · ·
...

...
...

...
...

...
...

...
...

By our construction and transitivity, we have f ∼ f̂ (m) and g ∼ ĝ(m). But
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f̂ (m) and ĝ(m) are such that f̂
(m)
i (s) = ĝ

(m)
i (s) = 0 for all i ∈ I and s > 1. By

Social Statewise Dominance and Completeness for Sure Prospects, we know that

f̂ (m) ≿ ĝ(m) ⇐⇒ f̂ (m)(1) ≿ ĝ(m)(1). By transitivity, we also have f ≿ g ⇐⇒
f̂ (m)(1) ≿ ĝ(m)(1).

Using Step 1 and the definition of f̂ (m) and ĝ(m) we get:

f ≿ g ⇐⇒ f̂ (m)(1) ≿ ĝ(m)(1)

⇐⇒
∑
i∈I

ϕi

(
f̂
(m)
i (1)

)
≥

∑
i∈I

ϕi

(
ĝ
(m)
i (1)

)
⇐⇒

∑
s∈S

∑
i∈I

ϕi (fi(s)) ≥
∑
s∈S

∑
i∈I

ϕi (gi(s))

⇐⇒
∑
s∈S

1
m

∑
i∈I

ϕi (fi(s)) ≥
∑
s∈S

1
m

∑
i∈I

ϕi (gi(s)) .

B Proof of Proposition 1

Proof. The proof has three steps.

Step 1: The social ordering ≿ satisfies Separability for Sure Prospects.

We first show that if ≿ satisfies Completeness for Sure Prospects, Social State-

wise Dominance and Correlated Stochastic Dominance for Sure Individuals, then

it also satisfies Separability for Sure Prospects, stated below for the variable pop-

ulation case:

Separability for Sure Prospects For all u, v, w, w′ ∈ U such that N(u) = N(v)

and N(u) ∩N(w) = N(u) ∩N(w′) = ∅, uw ≿ vw if and only if uw′ ≿ vw′.

Let us first show that this is the case when N(w) ∩ N(w′) = ∅. The proof is by

contradiction and is similar to that of Lemma 1. It is obtained by considering

the three prospects:
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state f g h

1 uw vw uw

2 uw′ uw′ vw′

3 u u u
...

...
...

...

m u u u

Assume for contradiction that uw ≿ vw but vw′ ≻ uw′. By Social Statewise

Dominance, and given that uw ≿ vw, f ≿ g. Similarly, given that vw′ ≻ uw′,

h ≻ f . So, by transitivity, h ≻ g. But this violates Correlated Stochastic

Dominance for Sure Individuals (The necessary people are those in N(u)). By

Completeness for Sure Prospects, we must have uw′ ≿ vw′.

Now, if it is not the case N(w) ∩ N(w′) = ∅, it suffices to take ŵ ∈ U such

that N(ŵ) ∩N(w) = N(ŵ) ∩N(w′) = ∅. By the reasoning above, uw ≿ vw ⇐⇒
uŵ ≿ vŵ ⇐⇒ uw′ ≿ vw′. Hence Separability for Sure Prospects must hold.

Step 2: A fixed Critical Level. We show that if ≿ satisfies Completeness for

Sure Prospects, Social Statewise Dominance, Correlated Stochastic Dominance

for Sure Individuals, and Critical Level for Egalitarian Expansion, then it also

satisfies Fixed Critical Level:

Fixed Critical Level There exists c ∈ R such that, for any u ∈ U and j ∈
(I \ N(u)), if v ∈ U is defined by N(v) = N(u) ∪ {j}, vi = ui for all

i ∈ N(u) and vj = c, then u ∼ v.

By Critical Level for Egalitarian Expansion, we already know that exists c ∈ R
such that, if ũ ∈ U is such that N(ũ) = N(u) and ũi = c for all i ∈ N(u), and

ṽ ∈ U is such that N(ṽ) = {j} and ṽi = c, then ũ ∼ ũṽ. We want to prove that

u ∼ uṽ. The proof is obtained by considering the four prospects:
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state f g h h′

1 u ũ ũṽ uṽ

2 ũṽ uṽ uṽ ũṽ

3 ũ ũ ũṽ ũṽ
...

...
...

...
...

m ũ ũ ũṽ ũṽ

By Correlated Stochastic Dominance for Sure Individuals, f ∼ g (people in

N(u) = N(ũ) are necessary). But given that ũ ∼ ũṽ, we have g ∼ h by So-

cial Statewise Dominance. Then, h ∼ h′ by Correlated Stochastic Dominance for

Sure Individuals (all individuals are necessary). By transitivity, f ∼ h′. But,

given Completeness for Sure Prospects, this is possible only if u ∼ uṽ (otherwise

we have a violation of Social Statewise Dominance, given that ũ ∼ ũṽ in states

s ≥ 3).

Step 3: A characterization of Critical Level Generalized Utilitarian.

Let us define formally the Same-Population Pareto for Sure Outcomes property.

Same-Population Pareto for Sure Outcomes For any N ⊂ I, for any u, v ∈ RN ,

if u ≥ v and u ̸= v, then u ≻ v .

In this Step, we prove the following result:

Proposition 2 If ≿ satisfies Completeness for Sure Prospects, Same-Population

Continuity for Sure Outcomes, Same-Population Pareto for Sure Outcomes, Sep-

arability for Sure Prospects, and Fixed Critical Level, then there exists continuous

and increasing functions ϕi : R → R (one for each individual i ∈ I) and a number

c ∈ R such that for all u, v ∈ U , u ≿ v if and only if
∑

i∈N(u)

[
ϕi(ui) − ϕi(c)

]
≥∑

i∈N(v)

[
ϕi(vi)− ϕi(c)

]
.

For n ∈ N with n ≥ 3, denote In = {1, . . . , n} the set of the n first individuals and

≿n the restriction of ≿ to UIn . The relation ≿n is a continuous complete preorder

(by Completeness for Sure Prospects and Same-Population Continuity for Sure

Outcomes) that satisfies Separability (for Sure Prospects and Same-Population)
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and Pareto for Sure Outcomes, which corresponds to the Pareto-like property

defined in the proof of Theorem 1. So like in the proof of Theorem 1 (Step 1), we

can show that there exist continuous and increasing functions ϕn
i : R → R such

that, for all u, v ∈ UIn ,

u ≿n v ⇐⇒
∑
i∈In

ϕn
i (ui) ≥

∑
i∈In

ϕn
i (vi).

Functions ϕn
i are unique up to a positive affine transformation (see Debreu, 1960).

Without loss of generality, we can normalize the ϕn
i functions so that ϕn

i (0) = 0

for all i ∈ In and ϕn
1 (1) = 1 to obtain a unique representation.

Now consider any u, v ∈ UIn and define ũ, ṽ ∈ UIn+1 by ũi = ui and ṽi = vi for

all i ∈ In and ũn+1 = ṽn+1 = c, where c is the level in the Fixed Critical Level

axiom. By Fixed Critical Level and transitivity, u ≿ v ⇐⇒ ũ ≿ ṽ, which by the

result above implies the equivalences:

u ≿n v ⇐⇒
∑

i∈In+1

ϕn+1
i (ũi) ≥

∑
i∈In+1

ϕn+1
i (ṽi) ⇐⇒

∑
i∈In

ϕn+1
i (ui) ≥

∑
i∈In

ϕn+1
i (vi).

Given the unique representation of functions ϕn
i under the normalization ϕn

i (0) =

0 for all i ∈ In and ϕn
1 (1) = 1, we must have ϕn

i = ϕn+1
i for all i ∈ In. By

induction, we obtain that ϕm
n = ϕn

n for all m ≥ n and n ∈ N with n ≥ 3.

Define ϕ1 = ϕ3
1, ϕ2 = ϕ3

2 and ϕi = ϕi
i for all i ≥ 3. We can conclude that for

any n ∈ N, and any u, v ∈ UIn :
20

∑
i∈In

ϕi(ui) ≥
∑
i∈In

ϕi(vi).

Last consider any u, v ∈ U . Let m = max
{
max{i ∈ N(u)},max{j ∈ N(v)}

}
.

Define ũ, ṽ ∈ UIm by ũi = ui for all i ∈ N(u), ṽj = vj for all j ∈ N(v), ũk = c for

20For n ≥ 3, this results from the reasoning above. For n = 1, given that ϕ3
1 is increasing, it

is clear that for all u, v ∈ UI1 , u ≿ v ⇐⇒ u1 ≥ v1 ⇐⇒ ϕ3
1(u1) ≥ ϕ3

1(v1). For n = 2, we can use
the argument built on Fixed Critical Level above — adding person 3 at level c — to show that,
for any u, v ∈ UI2 , u ≿ v ⇐⇒

∑
i∈I2

ϕ3
i (ui) ≥

∑
i∈I2

ϕ3
i (vi).
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all k ∈ (Im\N(u)), and ṽl = c for all l ∈ (Im\N(v)). By Fixed Critical Level and

transitivity, u ≿ v ⇐⇒ ũ ≿ ṽ, which by the representation result above implies

the equivalences:21

u ≿ v ⇐⇒
∑
i∈Im

ϕi(ũi) ≥
∑
j∈Im

ϕj(ṽj)

⇐⇒
∑

i∈N(u)

ϕi(ui) +
∑

k∈(Im\N(u))

ϕk(c) ≥
∑

j∈N(u)

ϕj(vj) +
∑

l∈(Im\N(u))

ϕl(c)

⇐⇒
∑

i∈N(u)

[
ϕi(ui)− ϕi(c)

]
≥

∑
i∈N(v)

[
ϕi(vi)− ϕi(c)

]
.

Step 4: Conclusion. Assume that ≿ satisfies Completeness for Sure Prospects,

Anonymity for Sure Outcomes, Same-Population Continuity for Sure Outcomes,

Critical Level for Egalitarian Expansion, Social Statewise Dominance, and Cor-

related Stochastic Dominance for Sure Individuals. By Step 1, it implies that ≿

satisfies Separability for Sure Prospects. By Step 2, it implies that ≿ satisfies

Fixed Critical Level. Like in the proof of Theorem 1, Social Statewise Domi-

nance and Correlated Stochastic Dominance for Sure Individuals imply Same-

Population Pareto for Sure Outcomes. Therefore, by Step 3, we know that there

exists continuous and increasing functions ϕi : R → R (one for each individ-

ual i ∈ I) and a number c ∈ R such that for all u, v ∈ U , u ≿ v if and only

if
∑

i∈N(u)

[
ϕi(ui) − ϕi(c)

]
≥

∑
i∈N(v)

[
ϕi(vi) − ϕi(c)

]
. By Anonymity for Sure

Outcomes, all the functions ϕi must be identical.

C Proof of Theorem 2

Proof. It is straightforward to check that Expected Total Utilitarianism satisfies

all of our six principles.

Let us show that the six principles imply Expected Total Utilitarianism. By

Proposition 1, we know that there exists a continuous and increasing function

ϕ : R → R and a number c ∈ R such that for all u, v ∈ U , u ≿ v if and only if

21Between the second and third line, we subtract
∑

i∈Im
ϕi(c) from both sides of the inequal-

ity.
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∑
i∈N(u)

[
ϕ(ui)− ϕ(c)

]
≥

∑
i∈N(v)

[
ϕ(vi)− ϕ(c)

]
.

Consider any social prospect f ∈ F . Let us construct the social prospect

f̃ ∈ F with the following properties:

• There exists a collection of state-indexed populations N1, . . . , Nm such that:

(i) |N s| = |N(f(s))| for all s ∈ S; (ii) N s′ ∩N s = ∅ for all s′ ̸= s;

• N
(
f̃(1)

)
=

⋃
s′∈S N

s′ ;

• There exist bijections σs : N s → N
(
f(s)

)
such that f̃i(1) = fσs(i)(s) for all

i ∈ N s;

• When s ∈ {2, . . . ,m}, N
(
f̃(s)

)
= Nm and f̃i(s) = c for all i ∈ Nm.

Social prospect f̃ is a prospect where all utility levels of all states of the world

have been moved to state 1 (by creating new people), and all individuals have

level c or do not exist in other states of the world. We want to show that f ∼ f̃ .

Notice that, by the definition of f̃ :

∑
i∈N(f̃(1))

[
ϕ
(
f̃i(1)

)
− ϕ(c)

]
=

∑
s∈S

∑
j∈Ns

[
ϕ
(
f̃j(1)

)
− ϕ(c)

]
=

∑
s∈S

∑
j∈Ns

[
ϕ
(
fσs(j)(s)

)
− ϕ(c)

]
=

∑
s∈S

∑
k∈N(f(s))

[
ϕ (fk(s))− ϕ(c)

]
.

To show that f ∼ f̃ , let us construct two sequences of social prospects

(f̂ (1), . . . , f̂ (m)) and (f̃ (1), . . . , f̃ (m)) in the following way.

We have f̂ (1) = f̃ (1), defined as follows: N
(
f̃ (1)(1)

)
=

⋃
s′∈S N

s′ , f̃
(1)
i (1) =

fσ1(i)(1) for all i ∈ N1, and f̃
(1)
j (1) = c for all j ∈

(
N

(
f̃ (1)(1)

)
\N1

)
; for all

s ≥ 2, N
(
f̃ (1)(s)

)
= N s and f̃

(1)
i (s) = fσ1(i)(s) for all i ∈ N s.

For any k ∈ {2, . . . ,m}:

• N
(
f̂ (k)(1)

)
= N

(
f̃ (k)(1)

)
=

⋃k
s′=1N

s′ ; f̂
(k)
i (1) = f̃

(k)
i (1) = fσs(i)(s) for all

i ∈ N s and s < k; f̂
(k)
j (1) = c and f̃

(k)
j (1) = fσk(j)(k) for all j ∈ Nk;

35



• For all 1 < s < k, N
(
f̂ (k)(s)

)
= N

(
f̃ (k)(s)

)
= Nk, and f̂

(k)
i (s) = f̃

(k)
i (s) =

c for all i ∈ Nk;

• N
(
f̂ (k)(k)

)
= N

(
f̃ (k)(k)

)
= Nk, f̂

(k)
i (k) = fσk(i)(k) and f̃

(k)
i (k) = c for all

i ∈ Nk;

• For all s > k, N
(
f̂ (k)(s)

)
= N

(
f̃ (k)(s)

)
= Nk ∪N s, f̂

(k)
i (s) = f̃

(k)
i (s) = c

for all i ∈ Nk, and f̂
(k)
j (s) = f̃

(k)
j (s) = fσs(j)(s) for all j ∈ N s.

Figure 2: Construction of prospects f̂ (k) and f̃ (k) for k ≥ 2. Like in the main
text, Ω denotes non-existence, here applied to a group of persons.

f̂ (k)

Populations
state N1 · · · Nk−1 Nk Nk+1 Nk+2 · · ·

1
(
fi(1)

)
i∈N1 · · ·

(
fi(k − 1)

)
i∈Nk−1 c Ω Ω · · ·

2 Ω · · · Ω c Ω Ω · · ·
...

...
...

...
...

...
...

...
k − 1 Ω · · · Ω c Ω Ω · · ·
k Ω · · · Ω

(
fi(k)

)
i∈Nk Ω Ω · · ·

k + 1 Ω · · · Ω c
(
fi(k + 1)

)
i∈Nk+1 Ω · · ·

k + 2 Ω · · · Ω c Ω
(
fi(k + 2)

)
i∈Nk+2 · · ·

...
...

...
...

...
...

...
...

f̃ (k)

Populations
state N1 · · · Nk−1 Nk Nk+1 Nk+2 · · ·

1
(
fi(1)

)
i∈N1 · · ·

(
fi(k − 1)

)
i∈Nk−1

(
fi(k)

)
i∈Nk Ω Ω · · ·

2 Ω · · · Ω c Ω Ω · · ·
...

...
...

...
...

...
...

...
k − 1 Ω · · · Ω c Ω Ω · · ·
k Ω · · · Ω c Ω Ω · · ·

k + 1 Ω · · · Ω c
(
fi(k + 1)

)
i∈Nk+1 Ω · · ·

k + 2 Ω · · · Ω c Ω
(
fi(k + 2)

)
i∈Nk+2 · · ·

...
...

...
...

...
...

...
...

Figure 2 illustrates those social prospects.

By Social Statewise Dominance, f̃ (k) ∼ f̂ (k+1) for any k ∈ {1, . . . ,m − 1};
indeed, f̃ (k) and f̂ (k+1) differ only in each state of the world (except state 1 where

they are identical) by the existence of people with utility level c. By Proposition
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1 and CLGU with critical-level c, they are thus equivalent in each state of the

world. On the other hand, f̃ (k) ∼ f̂ (k) for any k ∈ S by Correlated Stochastic

Dominance for Sure Individuals. Indeed, the necessary people are in Nk and their

utility is permuted from state 1 to state k, so that they face the same prospect.

We thus obtain the chain of equivalences f̃ 1 ∼ f̂ (2) ∼ f̃ (2) ∼ · · · ∼ f̃ (m−1) ∼
f̂ (m) ∼ f̃ . In addition, f ∼ f̃ (1) by Social Statewise Dominance (they differ only

in each state of the world by the set of people with certain utility levels, and/or

a number of people at critical-level c). So, by transitivity f ∼ f̃ .

Consider any f and g ∈ F . By the arguments above, there exist f̃ and g̃ such

that (where ϕ and c are given by Proposition 1):

• f ∼ f̃ and g ∼ g̃;

•
∑

i∈N(f̃(1))

[
ϕ
(
f̃i(1)

)
− ϕ(c)

]
=

∑
s∈S

∑
j∈N(f(s))

[
ϕ (fj(s))− ϕ(c)

]
;

•
∑

i∈N(g̃(1))

[
ϕ (g̃i(1))− ϕ(c)

]
=

∑
s∈S

∑
j∈N(g(s))

[
ϕ (gj(s))− ϕ(c)

]
; and

• for all s ∈ {2, . . . ,m}, f̃i(s) = c for all i ∈ N(f̃(s)) and g̃j(s) = c for all

j ∈ N(g̃(s)).

By Proposition 1, f̃(s) ∼ g̃(s) for all s ∈ {2, . . . ,m}, so that, by Social State-

wise Dominance and Completeness for Sure Prospects f̃ ≿ g̃ ⇐⇒ f̃(1) ≿ g̃(1).

Gathering all the results, we obtain:

f ≿ g ⇐⇒ f̃ ≿ g̃

⇐⇒ f̃(1) ≿ g̃(1)

⇐⇒
∑

i∈N(f̃(1))

[
ϕ
(
f̃i(1)

)
− ϕ(c)

]
≥

∑
j∈N(g̃(1))

[
ϕ (g̃j(1))− ϕ(c)

]
⇐⇒

∑
s∈S

∑
i∈N(f(s))

[
ϕ (fi(s))− ϕ(c)

]
≥

∑
s∈S

∑
j∈N(g(s))

[
ϕ (gj(s))− ϕ(c)

]
⇐⇒

∑
s∈S

1
m

[ ∑
i∈N(f(s))

[
ϕ (fi(s))− ϕ(c)

]]
≥

∑
s∈S

1
m

[ ∑
j∈N(g(s))

[
ϕ (gj(s))− ϕ(c)

]]
.
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Supplementary materials

S.A Dropping Anonymity

Let us use the framework of Section 4. We try to characterize a social preorder ≿

on F = US, where U =
⋃

N∈N RN . We will show that our result extends when we

do not assume a symmetric treatment of individuals, i.e. we give up Anonymity.

To do so, we need to replace Anonymity with the Compensation principle.

Here is the formulation of Compensation in the present context.

Compensation For any u ∈ U , i ∈ N(u) and v ∈ RN(u)\{i}, there exists z ∈ R
such that, if w ∈ U is defined by vi = z and vj = wj for all j ∈ (N(u)\{i}),
then u ∼ v.

We can prove the following Theorem:

Theorem S.A The following statements are equivalent:

1. The social preorder ≿ satisfies Completeness for Sure Prospects, Same-

Population Continuity for Sure Outcomes, Compensation, Critical Level for

Egalitarian Expansion, Social Statewise Dominance and Correlated Stochas-

tic Dominance for Sure Individuals.

2. ≿ is a complete social order and there exist continuous, increasing and

unbounded functions ϕi : R → R and a number c ∈ R such that for all

f, g ∈ F , f ≿ g if and only if

∑
s∈S

1
m

[ ∑
i∈N(f(s))

[
ϕi(fi(s))− ϕi(c)

]]
≥

∑
s∈S

1
m

[ ∑
j∈N(g(s))

[
ϕj(gj(s))− ϕj(c)

]]
.

The fact that Statement 2. implies Statement 1. is straightforward to check.

Below we prove that Statement 2. implies Statement 1. The first step is the

following Proposition:



Proposition S.A If the social preorder ≿ satisfies Completeness for Sure

Prospects, Same-Population Continuity for Sure Outcomes, Social Statewise

Dominance and Correlated Stochastic Dominance for Sure Individuals then there

exist continuous, increasing and unbounded functions ϕi : R → R such that for

all u, v ∈ U , u ≿ v if and only if

∑
i∈N(u)

[
ϕi(ui)− ϕi(c)

]
≥

∑
i∈N(v)

[
ϕi(vi)− ϕi(c)

]
.

Proof. Given that ≿ satisfies Completeness for Sure Prospects, Same-Population

Continuity for Sure Outcomes, Compensation, Critical Level for Egalitarian Ex-

pansion, Social Statewise Dominance and Correlated Stochastic Dominance for

Sure Individuals, we can mimic the beginning of the proof of Proposition 2 to

show that there exists continuous and increasing functions ϕi : R → R (one for

each individual i ∈ I) and a number c ∈ R such that for all u, v ∈ U , u ≿ v if

and only if
∑

i∈N(u)

[
ϕi(ui)− ϕi(c)

]
≥

∑
i∈N(v)

[
ϕi(vi)− ϕi(c)

]
.

It is possible to show that each ϕi function is unbounded using the same

reasoning as in the proof of Theorem 1 (end of Step 1 of the proof).

Let us now proceed with the proof of Theorem S.A. Consider any f, g ∈ F .

Let M =
(⋃

s∈S N
(
f(s)

))
∪
(⋃

s∈S N
(
g(s)

))
be the set of individual who exist

in at least one state of the world, in at least one of f or g. Let {i1, . . . , im} a

set of m distinct individuals (one individual per state of the world) who do not

belong to M . By Fixed Critical Level (which is implied by Completeness for

Sure Prospects, Social Statewise Dominance, Correlated Stochastic Dominance

for Sure Individuals, and Critical Level for Egalitarian Expansion see Step 2 in

the proof of Proposition 2), there exists c ∈ R, such that, for any u ∈ U and

i /∈ N(u), if v is defined by N(v) = N(u) ∪ {i}, vj = uj for all j ∈ N(u) and

vi = c, then u ∼ v.

Let f ′, g′ ∈ F be defined as follows: for each s ∈ S, N(f ′(s)) = N(f(s))∪{is},
N(g′(s)) = N(g(s)) ∪ {is}, f ′

i(s) = fi(s) for all i ∈ N(f(s)), g′j(s) = gj(s) for

all j ∈ N(g(s)), and f ′
is(s) = g′is(s) = c. Using Fixed Critical Level, we have

f(s) ∼ f ′(s) and g(s) ∼ g′(s) for each s ∈ S.

2



Next, by Compensation, for each s ∈ S, there exists zfs ∈ R such that, if

u ∈ U is defined by N(u) = N(f ′(s)), ui = c for all i ∈ N(f(s)), and uis = zfs ,

then u ∼ f ′(s). By Proposition S.A, it must then be the case that:

∑
i∈N(f(s))

ϕi(c) + ϕis(z
f
s ) =

∑
i∈N(f(s))

ϕi(fi(s)) + ϕis(c)

so that

ϕis(z
f
s )− ϕis(c) =

∑
i∈N(f(s))

[
ϕi(fi(s))− ϕi(c)

]
.

Let u′ ∈ U be defined by N(u′) = {is}, and u′
is = zfs . By Fixed Critical Level,

u′ ∼ u, so that by transitivity u′ ∼ f(s).

Similarly, for each s ∈ S, we can show that if v′ ∈ U be defined by N(v′) =

{is}, and v′is = zgs , where

ϕis(z
g
s )− ϕis(c) =

∑
i∈N(g(s))

[
ϕi(gi(s))− ϕi(c)

]
,

then v′ ∼ g(s).

Let f ′′, g′′ ∈ F be defined as follows: for each s ∈ S, N(f ′′(s)) = N(g′′(s)) =

{is}, f ′′
is(s) = zfs , and g′′is(s) = zgs . We obtain that for each s ∈ S f ′′(s) ∼ f(s)

and g′′(s) ∼ g(s). So, by Social Statewise Dominance, f ′′ ∼ f and g′′ ∼ g.

Let us construct two sequences of social prospects (f̂ (2), . . . , f̂ (m)) and

(f̃ (2), . . . , f̃ (m)) in the following way. For any k ∈ {2, . . . ,m}:

• N
(
f̂ (k)(1)

)
= N

(
f̃ (k)(1)

)
= {i1, . . . , ik}; f̂

(k)
is

(1) = f̃
(k)
is

(1) = zfs for all

s < k; f̂
(1)
ik

(1) = c; f̃
(1)
ik

(1) = zfk ;

• For all 1 < s < k, N
(
f̂ (k)(s)

)
= N

(
f̃ (k)(s)

)
= {ik}, and f̂

(k)
ik

(s) =

f̃
(k)
ik

(s) = c;

• N
(
f̂ (k)(k)

)
= N

(
f̃ (k)(k)

)
= {ik}; f̂ (k)

ik
(1) = zfk ; f̃

(k)
ik

(1) = c;

• For all s > k, N
(
f̂ (k)(s)

)
= N

(
f̃ (k)(s)

)
= {is}, and f̂

(k)
is

(s) = f̃
(k)
is

(s) = zfs .

3



We have f ′′(s) ∼ f̂ (2)(s) for each s ∈ S by Fixed Critical Level, given that f ′′

and f̂ (2) only differ by the addition of individual i2 at critical level c in each state

of the world but state 2 (where they are the same). Thus, by Social Statewise

Dominance, f ′′ ∼ f̂ (2).

For any k ∈ {2, . . . ,m}, we have f̂ (k) ∼ f̃ (k) by Correlated Stochastic Domi-

nance for Sure Individuals, because ik is the only individual existing for sure, and

faces the same prospect (zfk in one state of the world, c in all other states).

Last, for each k ∈ {2, . . . ,m − 1}, we have f̃ (k) ∼ f̂ (k+1). Indeed, f̃ (k)(s) ∼
f̂ (k+1)(s) in each state s ∈ S by Fixed-Critical Level: we add ik+1 at utility level

c (except in state k + 1) and then remove ik who was at that level c. Thus, by

Social Statewise Dominance, f̃ (k) ∼ f̂ (k+1).

In conclusion, by transitivity, f ∼ f̃ (m). Similarly, g ∼ g̃(m) where g̃(m) is

defined as follows:

• N
(
g̃(m)(1)

)
= {i1, . . . , im}; ĝ(m)

is
(1) = zgs for all s ∈ S;

• For all 1 < s, N
(
g̃(m)(s)

)
= {im}, and g̃

(m)
im

(s) = c.

Thus, f ≿ g ⇐⇒ f̃ (m) ≿ g̃(m). But f̃ (m)(s) = g̃(m)(s) for all s > 1. By Social

Statewise Dominance and Proposition S.A, we obtain:

f ≿ g ⇐⇒ f̃ (m) ≿ g̃(m)

⇐⇒ f̃ (m)(1) ≿ g̃(m)(1)

⇐⇒ ϕi1

(
f̃
(m)
i1

(1)
)
+ · · ·+ ϕim

(
f̃
(m)
im

(1)
)
≥ ϕi1

(
g̃
(m)
i1

(1)
)
+ · · ·+ ϕim

(
g̃
(m)
im

(1)
)

⇐⇒ ϕi1

(
zfi1

)
+ · · ·+ ϕim

(
zfim

)
≥ ϕi1

(
zgi1

)
+ · · ·+ ϕim

(
zgim

)
.

But by definition, we have mentioned above that for all s ∈ S:

ϕis(z
f
s )− ϕis(c) =

∑
i∈N(f(s))

[
ϕi(fi(s))− ϕi(c)

]
,

and

ϕis(z
g
s )− ϕis(c) =

∑
j∈N(g(s))

[
ϕj(gj(s))− ϕj(c)

]
.

4



Therefore:

f ≿ g

⇐⇒
∑
s∈S

[
ϕis(cis) +

∑
i∈N(f(s))

[
ϕi (fi(s))− ϕi(c)

]]
≥

∑
s∈S

[
ϕis(cis) +

∑
j∈N(g(s))

[
ϕj (gj(s))− ϕj(c)

]]

⇐⇒
∑
s∈S

1
m

[ ∑
i∈N(f(s))

[
ϕi (fi(s))− ϕi(c)

]]
≥

∑
s∈S

1
m

[ ∑
j∈N(g(s))

[
ϕj (gj(s))− ϕj(c)

]]
.

S.B Extension to an infinite state space

Assume that there exists an infinite set of states of the world S, with typical

element s ∈ S. We denote with Σ a σ-algebra over S, and by P a probability

measure on the measurable space (S,Σ). We assume P to be given, i.e. that we

are in a framework with ‘objective’ probability.

We make the following assumption on the measured space (S,Σ, P ):

For any event E ∈ Σ, P (E) is a rational number. Furthermore, for

any m ∈ N, there exists a partition of S into m Σ-measurable events,

(E1, . . . , Em) such that P (Ek) = 1/m for all k ∈ {1, . . . ,m}.

Our assumption implies that for each number k we can find a partition of the

state space into k equiprobable events. This is important because our proof in

the main text applies to such cases.

We define social prospects as functions from S to U , which are assumed to

be Σ-measurable. We actually focus only on simple prospects, that is social

prospects such that there exists a finite partition (E1(f), · · · , Em(f)) of S such

that f(s) = f(s′) for all s, s′ ∈ Ek(f), all k = 1, · · · ,m, and each Ek(f) is

measurable. We let F be the set of all those simple and measurable prospects.

The properties of Completeness for Sure Prospects, Anonymity, Same popu-

lation continuity, and Critical Level for Egalitarian Expansion all hold for sure

prospects, so they do not need be to be adapted to the present framework. Social

Statewise Dominance can still be formulated as before, because it is a state-by-

state property, and so does not depend on the number of states of the world.

5



The only axioms that we need to adjust to the new framework are the stochastic

dominance properties.

In the case of a fixed population, the formulation of Individual Stochastic

Dominance must be adapted as follows:

Individual Stochastic Dominance For all f, g ∈ F , if for each individual i ∈ I

there exist ℓi ∈ N and two partitions in Σ-measurable events {E1, . . . , Eℓi}
and {Ẽ1, . . . , Ẽℓi} such that for all r ∈ {1, . . . , ℓi}, P (Er) = P (Ẽr) and

fi(s) ≥ gi(s
′) for all s ∈ Er and s′ ∈ Ẽr; then f ≿ g.

If in addition there exists h ∈ I and r′ ∈ {1, . . . , ℓh} such that fh(s) > gh(s
′)

for all s ∈ Er′ and s′ ∈ Ẽr′ then f ≻ g.

The definition is adapted to guarantee dominance on events with the same prob-

ability.

In the case of a variable population, the formulation of Correlated Stochastic

Dominance for Sure Individuals must be adapted as follows:

Correlated Stochastic Dominance for Sure Individuals For all f, g ∈ F , if:

(i) Si(f) = Si(g) for all i ∈ I;

(ii) for all j ∈ I such that Sj(f) /∈ {∅, S}, there exists xj ∈ R such that

fj(s) = gj(s) = xj for all s ∈ Sj(f);

(iii) there exists ℓ ∈ N and two partitions in Σ-measurable events

{E1, . . . , Eℓ} and {Ẽ1, . . . , Ẽℓ} such that, for all k ∈ I such that

Sk(f) = S and for all r ∈ {1, . . . , ℓ}, P (Er) = P (Ẽr), fk(s) ≥ gk(s
′)

for all s ∈ Er and s′ ∈ Ẽr; then f ≿ g.

If in addition there exists h ∈ I such that Sh(f) = S and r′ ∈ {1, . . . , ℓ}
such that fh(s) > gh(s

′) for all s ∈ Er′ and s′ ∈ Ẽr′ then f ≻ g.

Consider any m ∈ N and let (E1, . . . , Em) be the partition into m equiprobable

and measurable events mentioned in our assumption above. Denote Fm the set

of all prospects f such that for each k ∈ {1, . . . ,m} we have f(s) = f(s′) for all

s, s′ ∈ Ek. Restricting our axioms to the set Fm, we clearly are formally in the

6



same case as the one in the main text because each event is like an equiprobable

state of the world where well-defined consequence occurs. So, we can apply all our

results and deduce – for instance – that, if the social preorder ≿ satisfies Com-

pleteness for Sure Prospects, Anonymity for Sure Outcomes, Same-Population

Continuity for Sure Outcomes, Critical Level for Egalitarian Expansion, Social

Statewise Dominance and Correlated Stochastic Dominance for Sure Individuals,

then there exists a continuous and increasing function ϕ : R → R and a number

c ∈ R such that for all f, g ∈ Fm, f ≿ g if and only if2

∑
s∈{1,...,m}

1
m

[ ∑
i∈N(f(Es))

[
ϕ(fi(E

s))−ϕ(c)
]]

≥
∑

s∈{1,...,m}

1
m

[ ∑
i∈N(g(Es))

[
ϕ(gi(E

s))−ϕ(c)
]]
,

where, with an abuse of notation, f(Es) = f(t) where t is some t ∈ Es (which is

well defined because f(t′) = f(t) for all t ∈ Es); fi(E
s) = fi(t) where t is some

t ∈ Es; and similar notation are used for g.

Consider any two prospects f and g ∈ F . Let (E1(f), . . . , Em(f)) and

(E1(g), . . . , Er(g)) be the partitions generated by f and g. Given that proba-

bilities of events are assumed to be rational numbers, there exists a least com-

mon denominator d such that for all l = 1, . . . ,m there exists kl
f ∈ N such

that P (El(f)) =
klf
d

and for all l′ = 1, . . . , r there exists kl′
g ∈ N such that

P (El′(g)) =
kl

′
g

d
. By definition,

∑m
l=1 k

l
f =

∑r
l′=1 k

l′
g = d. Recall that (E1, . . . , Ed)

is a partition of the state space into m measurable and equiprobable events. De-

note Kp
f =

∑p
l=1 k

l
f and Kp′

g =
∑p′

l′=1 k
l′

f .Let us define f̃ , g̃ ∈ F d as follows:

• for each p ∈ {1, . . . ,m}, Ẽp(f) =
⋃Kp

f

j=1+Kp−1
f

El, and f̃(s) = f(Ep(f)) for

any s ∈ Ẽp(f).

• for each p′ ∈ {1, . . . , r}, Ẽp′(g) =
⋃Kp′

g

j=1+Kp′−1
g

El, and g̃(s) = g(Ep′(g)) for

any s ∈ Ẽp′(g).

2Formally, the function ϕ may depend on m, but we can link different representations for
various values of m using Stochastic Dominance as explained below. Using the unicity of
additive representations up to an increasing affine transformation, we can actually show that ϕ
is independent of m.

7



So, what we do is to associate to each event Ep(f) defined by f a collection

Ẽp(f) of kp
f of equiprobable events and assume that the outcome in each state in

this collection is the same as the common consequence obtained in prospect f on

Ep(f). By definition, P (Ẽp(f)) = P (Ep(f)) = kp
f/d. Similarly, we associate to

each event Ep′(g) defined by f a collection Ẽp′(g) of kp′
g of equiprobable events

and assume that the outcome in each state in this collection is the same as the

common consequence obtained in prospect g on Ep′(g). What we will show next,

using Stochastic Dominance, is that f ∼ f̃ and g ∼ g̃. Then we can conclude

(because f̃ , g̃ ∈ F d):

f ≿ g

⇐⇒ f̃ ≿ g̃

⇐⇒
∑

s∈{1,...,d}

1
d

[ ∑
i∈N(f̃(Es))

[
ϕ(f̃i(E

s))− ϕ(c)
]]

≥
∑

s∈{1,...,d}

1
m

[ ∑
i∈N(g̃(Es))

[
ϕ(g̃i(E

s))− ϕ(c)
]]

⇐⇒
m∑
p=1

∑
s:Es⊂Ẽp(f)

1
d

[ ∑
i∈N(f̃(Es))

[
ϕ(f̃i(E

s))− ϕ(c)
]]

≥
r∑

p′=1

∑
s:Es⊂Ẽp′ (g)

1
d

[ ∑
i∈N(g̃(Es))

[
ϕ(g̃i(E

s))− ϕ(c)
]]

⇐⇒
m∑
p=1

kpf
d

[ ∑
i∈N(f(Ep(f)))

[
ϕ(fi(E

p(f)))− ϕ(c)
]]

≥
r∑

p′=1

kp
′

g

d

[ ∑
i∈N(g(Ep′ (g)))

[
ϕ(gi(E

p′(g)))− ϕ(c)
]]

⇐⇒
∫
s∈S

[ ∑
i∈N(f(s))

[
ϕi (fi(s))− ϕi(ci)

]]
dP (s) ≥

∫
s∈S

[ ∑
j∈N(g(s))

[
ϕj (gj(s))− ϕj(cj)

]]
dP (s).

It only remains to show that f ∼ f̃ and g ∼ g̃. We only prove that f ∼ f̃

in the variable population case (the proof that g ∼ g̃, and the one for the same

population case are similar). First remark that Proposition 1 still applies (it

suffices to concentrate on prospects in F 2 to get existence independence and the

rest of the proof follows). To show that f ∼ f̃ , let us denote N̄ = {i ∈ S|Si(f) ̸=
∅} the set of individuals who exist in at least one state of the world, and introduce

f ′ and f ′′ as follows:

• for all s ∈ S, N(f ′) = N̄ , f ′
i(s) = fi(s) for all i ∈ N(f(s)) and f ′

j(s) = c for

all j ∈ (N̄ \N(f(s));
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• for all s ∈ S, N(f ′′) = N̄ , f ′′
i (s) = f̃i(s) for all i ∈ N(f̃(s)) and f ′′

j (s) = c

for all j ∈ (N̄ \N(f̃(s));

where c is the critical level in Proposition 1.

By Proposition 1, f(s) ∼ f ′(s) and f̃(s) ∼ f ′′(s) for all s ∈ S. By Social

Statewise Dominance, we obtain f ∼ f ′ and f̃ ∼ f ′′. Now, remark that the

same population N̄ exist in all states of the world in both f ′ and f ′′. Last, by

definition, for any p ∈ {1, . . . ,m}, f ′(s) = f ′′(s′) for all s ∈ Ep(f) and s ∈ Ep(f̃).

Therefore, by Correlated Stochastic Dominance for Sure Individuals, f ′ ∼ f ′′.

As final remark, let us discuss how to deal with cases where probability are not

rational numbers. Indeed, our assumption up to know was that the probability

of each event defined by an act was rational. To include the more general case,

we can introduce a more general property of probability continuity for prospects,

which is as follows:

Probability Continuity for Prospects For all f, g ∈ F , if there exists a sequence

of prospects (fn)n∈N such that limn→N P (s ∈ S|fn(s) ̸= f) = 0 and fn ≿ g

for all n ∈ N, then f ≿ g.

The case of prospects that are not simple (that do not define a finite partition of

the state space) would be more difficult to deal with.

9


