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Web Appendix to accompany “Signaling Quality via Demand Lockout” 

Date: 08/09/2024 

 

This appendix contains four sections: (T1) Omitted proofs from propositions presented in the 
paper; (T2) The proofs of the three lemmas presented in the paper; (T3) A discussion of model 
extensions with the mathematical details; (T4) Analysis to validate R-level predictions; (T5) A 
discussion of alternative explanations of empirical results, and (T6) Omitted details of 
estimation of propensity score.  There is some reproduction of the material from the main 
paper to make this appendix self-contained.  

 

T1: Detailed Proofs of the Main Propositions 

 Proof of Proposition 1:  

In the main text we presented the proof for the existence of the separating equilibrium with 
the high type playing lockout (𝑅𝑅) and the low type playing not lockout (𝑁𝑁). Here, we analyze the 
existence of the other equilibria and consider two versions of the intuitive criterion to restrict 
receivers’ beliefs. Following Simester (1995) we assume that the receivers’ belief reverts to the 
prior if they cannot eliminate either type given the most favorable belief. We also consider the 
standard assumption that beliefs in the second stage of the intuitive criterion reverts to the 
lowest type for which deviating is profitable, given the most favorable belief.  

Here, we will analyze the other possible equilibria in this game. Suppose there exists a 
separating equilibrium with 𝜎𝜎𝐹𝐹(𝑅𝑅|ℎ) = 0 and 𝜎𝜎𝐹𝐹(𝑅𝑅|𝑙𝑙) = 1, which induces consumer beliefs: 
𝜇𝜇𝐶𝐶(𝑅𝑅) = 0 and 𝜇𝜇𝐶𝐶(𝑁𝑁) = 1. The on-path payoffs for the low type is given by: Π𝑙𝑙|𝑅𝑅 =

𝑝𝑝𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘  �1 + (1 − 𝛼𝛼)  𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢𝑙𝑙]
��. The payoffs for the low types when 

deviating from the equilibrium and  mimicking the high type is given by: Π𝑙𝑙|𝑁𝑁 =

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢ℎ]
𝑘𝑘 �1 + (1 − 𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢ℎ] ��𝑖𝑖∈{1,2} . Because the incentive 

constraint Π𝑙𝑙|𝑅𝑅 > Π𝑙𝑙|𝑁𝑁 never holds, we can rule out this equilibrium.  

Next, suppose there exists a pooling equilibrium with 𝜎𝜎𝐹𝐹(𝑅𝑅|ℎ) = 0 and 𝜎𝜎𝐹𝐹(𝑅𝑅|𝑙𝑙) = 0, which 
induces consumer beliefs: 𝜇𝜇𝐶𝐶( 𝑁𝑁) = 𝜇𝜇0 and 𝜇𝜇𝐶𝐶(𝑅𝑅) = 0.  

The payoffs for the two types (on path) are given by: Πℎ|𝑁𝑁 =
𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝜇𝜇0�
�𝐸𝐸�𝑢𝑢𝜇𝜇0�

𝑘𝑘 �𝑖𝑖∈{1,2}  and  Π𝑙𝑙|𝑁𝑁 =

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2}  
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The payoffs for the two types (off path) when deviating are given by: Πℎ|𝑅𝑅 =

𝑝𝑝𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 �1 + 𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢𝑙𝑙]
�� and Πℎ|𝑅𝑅 = 𝑝𝑝𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝑙𝑙]

𝑘𝑘 �1 +

(1 − 𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

��. 

This is a PBE because Πℎ|𝑁𝑁 > Πℎ|𝑅𝑅 and Π𝑙𝑙|𝑁𝑁 > Πℎ|𝑅𝑅. To check if the off-path equilibrium 
belief 𝜇𝜇𝐶𝐶(𝑅𝑅) = 0 survives the intuitive criterion, we need to first check which type has incentive 
to deviate under the most favorable consumer belief (𝜇𝜇𝐶𝐶(𝑅𝑅) = 1). The high type has incentive 

to deviate if 𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢ℎ]
𝑘𝑘 �1 + 𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢ℎ] �� >

∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2} . The low type has incentive to deviate if  

𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢ℎ]
𝑘𝑘 �1 + (1 − 𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢ℎ] �� > ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 +𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘𝑖𝑖∈{1,2}

(1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

��.  

The high type prefers to deviate if:
∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �1+𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝜇𝜇0�
�

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢ℎ�
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�1+𝛼𝛼𝛼𝛼�∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ�

−∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢𝜇𝜇�
𝑘𝑘 �� 

< 𝜆𝜆1

(1−𝜆𝜆1)
  

The low type has incentive to deviate if:
∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �1+(1−𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝜇𝜇0�
�

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢ℎ�
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�1+(1−𝛼𝛼) 𝜔𝜔�∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ�

−∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢𝜇𝜇�
𝑘𝑘 �� 

<

𝜆𝜆1

(1−𝜆𝜆1)
. The intuitive criterion (Cho and Krops, 1987) potentially eliminates equilibria where only 

one type has incentive to deviate. Both types have incentive to deviate for a sufficiently large 𝜆𝜆.  

Next, we need to check in the region where both types have incentive to deviate under the 
most favorable belief which type also has incentive to deviate under the least favorable belief. 
The high type has incentive to deviate under the least favorable belief if 

𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 �1 + 𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢𝑙𝑙]
�� > ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 +𝐸𝐸�𝑢𝑢𝜇𝜇0�

𝑘𝑘𝑖𝑖∈{1,2}

𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

��. The low type has incentive to deviate under the least favorable belief 

whenever 𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 �1 + (1 − 𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢𝑙𝑙]
�� >

∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2} , which both never hold. If, 

instead of assuming beliefs are the least unfavorable (as is the general assumption of the 
Intuitive Criterion), we assume that beliefs revert to the prior whenever both types have 
incentive to deviate in the first stage (Simester 1995), the high type has incentive to deviate if 

𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �1 + 𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝜇𝜇0�
�� > ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 +𝐸𝐸�𝑢𝑢𝜇𝜇0�

𝑘𝑘𝑖𝑖∈{1,2}
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𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

��. The low type has incentive to deviate if 𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �1 + (1 −

𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�� > ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑘𝑘1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2} . 

Neither type has incentive to deviate under the least favorable or the prior belief, because  

𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 �1 + 𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢𝑙𝑙]
�� < 𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇0�

𝑘𝑘 �1 +

𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�� < ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2} ∀ 𝛼𝛼 

Therefore, the equilibrium survives the intuitive criterion whenever both types or neither type 
has incentive to deviate under the most favorable beliefs. If only the low type has incentive to 
deviate, the receiver needs to assign a belief of 𝜇𝜇𝐶𝐶(𝑅𝑅) = 0 and we have shown above that no 
type has incentive to deviate under this low belief. Finally, if only the high type has incentive to 
deviate under the most favorable belief, the receiver needs to assign a belief of 𝜇𝜇𝐶𝐶(𝑅𝑅) = 1 to 
the observed action. Thus, the intuitive criterion eliminates equilibria in which only the high 
type has incentive to deviate (under the most favorable belief)  and the PBE thus survives the 

Intuitive Criterion whenever: 𝜆𝜆1

(1−𝜆𝜆1)
≤  

∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �1+𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝜇𝜇0�
�

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢ℎ�
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�1+𝛼𝛼𝛼𝛼�∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ�

−∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢𝜇𝜇�
𝑘𝑘 �� 

 or 

∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �1+(1−𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝜇𝜇0�
�

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢ℎ�
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�1+(1−𝛼𝛼) 𝜔𝜔�∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ�

−∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢𝜇𝜇�
𝑘𝑘 �� 

≤ 𝜆𝜆1

(1−𝜆𝜆1)
 

 

Suppose there exists a pooling equilibrium with 𝜎𝜎𝐹𝐹(𝑅𝑅|ℎ) = 1 and 𝜎𝜎𝐹𝐹(𝑅𝑅|𝑙𝑙) = 1, which induces 
consumer beliefs: 𝜇𝜇𝐶𝐶(𝑅𝑅) =  𝜇𝜇0 and 𝜇𝜇𝐶𝐶(𝑁𝑁) = 0.  

The payoffs for the two types (on path, is given by: Πℎ|𝑅𝑅 = 𝑝𝑝𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �1 +

𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�� and Π𝑙𝑙|𝑅𝑅 = 𝑝𝑝𝑝𝑝1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �1 + (1 − 𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝜇𝜇0�
��  

The payoffs for the two types when deviating are given by: Πℎ|𝑁𝑁 =
𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢𝑙𝑙]
�𝐸𝐸[𝑢𝑢𝑙𝑙]

𝑘𝑘 �𝑖𝑖∈{1,2}  and Π𝑙𝑙|𝑁𝑁 =

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

�𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 �𝑖𝑖∈{1,2}  

For the equilibrium to hold, we require: (IC 1) Πℎ|𝑅𝑅 > Πℎ|𝑁𝑁 and (IC 2) Π𝑙𝑙|𝑅𝑅 > Π𝑙𝑙|𝑁𝑁. The 
constraint on the high type implies that he prefers to not deviate whenever:  

  
∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑�1+𝛼𝛼 𝜔𝜔∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

�𝑢𝑢𝑙𝑙�
�𝐸𝐸�𝑢𝑢𝑙𝑙�

𝑘𝑘

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝐸𝐸�𝑢𝑢𝑙𝑙�

�1+𝛼𝛼𝛼𝛼 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

−∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 ��

< 𝜆𝜆1

(1−𝜆𝜆1)  
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The constraint on the low type implies that he prefers to not deviate whenever: 

∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑�1+(1−𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1
�𝑢𝑢𝑙𝑙�

�𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝐸𝐸�𝑢𝑢𝑙𝑙�

�1+(1−𝛼𝛼)𝜔𝜔 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

−∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 ��

< 𝜆𝜆1

(1−𝜆𝜆1)  

The equilibrium holds for max

⎩
⎪⎪
⎨

⎪⎪
⎧ ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑�1+𝛼𝛼 𝜔𝜔∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

�𝑢𝑢𝑙𝑙�
�𝐸𝐸�𝑢𝑢𝑙𝑙�

𝑘𝑘

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑘𝑘
𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝐸𝐸�𝑢𝑢𝑙𝑙�

�1+𝛼𝛼𝛼𝛼 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

−∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 ��

,
∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑�1+(1−𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

�𝑢𝑢𝑙𝑙�
�𝐸𝐸�𝑢𝑢𝑙𝑙�

𝑘𝑘

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝐸𝐸�𝑢𝑢𝑙𝑙�

�1+(1−𝛼𝛼)𝜔𝜔 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

−∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 ��⎭

⎪⎪
⎬

⎪⎪
⎫

< 𝜆𝜆1

(1−𝜆𝜆1) 

Next, we check if the beliefs assigned to the off-path action survive the intuitive criterion. First, 
we check which type has incentive to deviate under the most favorable beliefs (i.e, 𝜇𝜇(𝑁𝑁) = 1. 
The high type has incentive to deviate if:  

𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �1 + 𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝜇𝜇0�
�� < ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 +𝐸𝐸[𝑢𝑢ℎ]

𝑘𝑘𝑖𝑖∈{1,2}

𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] �� and the low type has incentive to deviate if:  𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇0�

𝑘𝑘 �1 +

(1 − 𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�� < ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] �𝐸𝐸[𝑢𝑢ℎ]

𝑘𝑘 �𝑖𝑖∈{1,2} .  

Both types always have incentive to deviate under the most favorable beliefs. Next, we need to 
check which type has incentive to deviate under the least favorable belief. This implies 

𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �1 + 𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝜇𝜇0�
�� < ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 +𝐸𝐸[𝑢𝑢𝑙𝑙]

𝑘𝑘𝑖𝑖∈{1,2}

𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

�� and 𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �1 + (1 − 𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝜇𝜇0�
�� <

∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

�𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 �𝑖𝑖∈{1,2} . Note that we showed above that 

this is only a PBE for 𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �1 + 𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝜇𝜇0�
�� >

∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

�𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 �𝑖𝑖∈{1,2}  and 𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇0�

𝑘𝑘 �1 + (1 −

𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�� > ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

�𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 �𝑖𝑖∈{1,2} . Thus, 

neither type has an incentive to deviate under the least favorable beliefs and the Intuitive 
Criterion does not eliminate either type.  

If we alternatively assume that beliefs revert to the prior whenever both types have incentive 

to deviate, the high type has incentive to deviate if 𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �1 +
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𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�� < ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2} . The low 

type has incentive to deviate if 𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �1 + (1 − 𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝜇𝜇0�
�� <

∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2} . Both types always have an 

incentive to deviate and the pooling equilibrium survives the intuitive criterion.  

Finally, we can now summarize the equilibria and conclude that the focal separating equilibrium 
exists and is unique if: 

∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 �1+𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝑙𝑙�
�

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢ℎ�
𝐸𝐸�𝑢𝑢𝑙𝑙�

�1+𝛼𝛼 𝜔𝜔�∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ�

−∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 �� 

< 𝜆𝜆1

(1−𝜆𝜆1)
≤

∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 �1+(1−𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝑙𝑙�
�

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢ℎ�
𝐸𝐸�𝑢𝑢𝑙𝑙�

�1+(1−𝛼𝛼) 𝜔𝜔�∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ�

−∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 �� 

 , 

∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �1+𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝜇𝜇0�
�

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢ℎ�
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�1+𝛼𝛼𝛼𝛼�1−�2∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 +∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑

𝐸𝐸�𝑢𝑢ℎ�
𝐸𝐸�𝑢𝑢𝜇𝜇0�

��� 

≤ 𝜆𝜆1

(1−𝜆𝜆1)
≤

 
∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �1+(1−𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝜇𝜇0�
�

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢ℎ�
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�1+(1−𝛼𝛼) 𝜔𝜔�1−�2∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸𝑢𝑢𝜇𝜇0
𝑘𝑘 +∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑

𝐸𝐸�𝑢𝑢ℎ�
𝐸𝐸�𝑢𝑢𝜇𝜇0�

��� 
 and   

𝜆𝜆1

(1−𝜆𝜆1)
≤  

∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑�1+𝛼𝛼 𝜔𝜔∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1
�𝑢𝑢𝑙𝑙�

�𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝐸𝐸�𝑢𝑢𝑙𝑙�

(1+𝛼𝛼𝛼𝛼 (1−�2∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 +∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑

𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝐸𝐸�𝑢𝑢𝑙𝑙�

�
 or  

𝜆𝜆1

(1−𝜆𝜆1)
≤  

∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑�1+(1−𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1
�𝑢𝑢𝑙𝑙�

�𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑘𝑘
𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝐸𝐸�𝑢𝑢𝑙𝑙�

(1+(1−𝛼𝛼)𝜔𝜔 (1−�2∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 +∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑

𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝐸𝐸�𝑢𝑢𝑙𝑙�

�
.  

It is generally difficult to further characterize the density functions and parameter region in 
which the equilibrium is unique, but it is possible to find parameters that satisfy the inequalities 
above. 

When 𝜇𝜇0 → 0, the separating equilibrium is unique in the range in which it is a PBE. 𝜇𝜇0 → 0 
implies 𝐸𝐸�𝑢𝑢𝜇𝜇0� → 𝐸𝐸[𝑢𝑢𝑙𝑙], and the separating equilibrium is the unique PBE whenever 

∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 �1+𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝑙𝑙�
�

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢ℎ�
𝐸𝐸�𝑢𝑢𝑙𝑙�

�1+𝛼𝛼 𝜔𝜔�∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ�

−∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 �� 

< 𝜆𝜆1

(1−𝜆𝜆1)
≤

∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 �1+(1−𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝑙𝑙�
�

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢ℎ�
𝐸𝐸�𝑢𝑢𝑙𝑙�

�1+(1−𝛼𝛼)𝜔𝜔�∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ�

−∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 �� 
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Proof of Proposition T1: 

We are looking at a potential separating equilibrium in which the high-quality product spends 
an amount 𝑎𝑎 on advertising and the low-quality product does not advertise. Recall that prices 
are exogenously set at 𝑝𝑝 > 0 for both products.  

Suppose there exists a separating equilibrium with 𝜎𝜎𝐹𝐹(𝐴𝐴|ℎ) = 1 and 𝜎𝜎𝐹𝐹(𝐴𝐴|𝑙𝑙) = 0, which 
induces consumer beliefs: 𝜇𝜇𝐶𝐶(𝐴𝐴) = 1 and 𝜇𝜇𝐶𝐶(𝑁𝑁𝑁𝑁) = 0. As before, for notational ease, let 
[𝑢𝑢ℎ] = 𝛼𝛼 𝑞𝑞�  + (1 − 𝛼𝛼)𝑞𝑞 − 𝑝𝑝 , 𝐸𝐸[𝑢𝑢𝑙𝑙] = (1 − 𝛼𝛼)𝑞𝑞�  + 𝛼𝛼𝑞𝑞 − 𝑝𝑝, and 𝐸𝐸�𝑢𝑢𝜇𝜇0� = 𝜇𝜇0𝐸𝐸[𝑢𝑢ℎ]  +
(1 − 𝜇𝜇0)𝐸𝐸[𝑢𝑢𝑙𝑙] 

The payoffs for the two types (on path) is given by Πℎ|𝐴𝐴 = 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 +𝐸𝐸[𝑢𝑢ℎ]
𝑘𝑘𝑖𝑖∈{1,2}

𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] �� − 𝑎𝑎 and  Π𝑙𝑙|𝑁𝑁𝑁𝑁 = 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 −𝐸𝐸[𝑢𝑢𝑙𝑙]

𝑘𝑘𝑖𝑖∈{1,2}

𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

�� 

The payoffs for the two types when mimicking the other type are given by Πℎ|𝑁𝑁𝑁𝑁 =
𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑘𝑘1

𝐸𝐸[𝑢𝑢𝑙𝑙]
�𝐸𝐸[𝑢𝑢𝑙𝑙]

𝑘𝑘 �𝑖𝑖∈{1,2}  and Π𝑙𝑙|𝐴𝐴 =

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] �𝐸𝐸[𝑢𝑢ℎ]

𝑘𝑘 �𝑖𝑖∈{1,2} − 𝑎𝑎 

For this equilibrium to hold, we require the following two incentive compatibility to hold:   

∑ 𝜆𝜆𝑖𝑖 ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼)𝜔𝜔 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] − ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸𝑢𝑢𝑙𝑙

𝑘𝑘 ��𝐸𝐸[𝑢𝑢ℎ]
𝐸𝐸[𝑢𝑢𝑙𝑙]𝑖𝑖∈{1,2} < 𝑎𝑎

𝑝𝑝
<

∑ 𝜆𝜆𝑖𝑖 ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼𝛼𝛼 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] − ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸𝑢𝑢𝑙𝑙

𝑘𝑘 ��𝐸𝐸[𝑢𝑢ℎ]
𝐸𝐸[𝑢𝑢𝑙𝑙]𝑖𝑖∈{1,2}    

By FOSD, ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] − ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸𝑢𝑢𝑙𝑙

𝑘𝑘 < ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] − ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸𝑢𝑢𝑙𝑙

𝑘𝑘 . Thus, 

∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] − ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸𝑢𝑢𝑙𝑙

𝑘𝑘 > 0 𝑖𝑖𝑖𝑖 a sufficient condition to ensure that there exists an 𝑎𝑎 
such that the above inequalities hold.  

Next, we consider the other possible pooling and separating equilibria.  

Suppose there exists a separating equilibrium with 𝜎𝜎𝐹𝐹(𝐴𝐴|ℎ) = 0 and 𝜎𝜎𝐹𝐹(𝐴𝐴|𝑙𝑙 ) = 1, which 
induces consumer beliefs: 𝜇𝜇𝐶𝐶(𝐴𝐴) = 0 and 𝜇𝜇𝐶𝐶(𝑁𝑁𝑁𝑁) = 1. The payoffs for the low type is given by: 
Π𝑙𝑙|𝐴𝐴 = 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢𝑙𝑙]
�𝐸𝐸[𝑢𝑢𝑙𝑙]

𝑘𝑘 � − 𝑎𝑎 𝑖𝑖∈{1,2} The payoffs for the 

low types when mimicking the high type is given by: Π𝑙𝑙|𝑁𝑁𝑁𝑁 =
𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢ℎ] �𝐸𝐸[𝑢𝑢ℎ]
𝑘𝑘 �𝑖𝑖∈{1,2} .  

Because the incentive constraint Π𝑙𝑙|𝐴𝐴 > Π𝑙𝑙|𝑁𝑁𝑁𝑁 never holds, we can rule out this equilibrium.  

Next, suppose there exists a pooling equilibrium with 𝜎𝜎𝐹𝐹(𝐴𝐴|ℎ) = 0 and 𝜎𝜎𝐹𝐹(𝐴𝐴|𝑙𝑙) = 0, which 
induces consumer beliefs: 𝜇𝜇𝐶𝐶(𝑁𝑁𝑁𝑁) = 𝜇𝜇0 and 𝜇𝜇𝐶𝐶(𝐴𝐴) = 0.  
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The payoffs for the two types (on path) are given by: Πℎ|𝑁𝑁𝑁𝑁 =
𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝜇𝜇0�
�𝐸𝐸�𝑢𝑢𝜇𝜇0�

𝑘𝑘 �𝑖𝑖∈{1,2}  and  Π𝑙𝑙|𝑁𝑁𝑁𝑁 =

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2}  

The payoffs for the two types off path are given by: Πℎ|𝐴𝐴 = 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 +𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘𝑖𝑖∈{1,2}

𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

�� − 𝑎𝑎 and Π𝑙𝑙|𝐴𝐴 = 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 −𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘𝑖𝑖∈{1,2}

𝛼𝛼)𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

�� − 𝑎𝑎. 

This is a PBE because Πℎ|𝑁𝑁𝑁𝑁 > Πℎ|𝐴𝐴 and Π𝑙𝑙|𝑁𝑁𝑁𝑁 > Πℎ|𝐴𝐴. To check if the off-path equilibrium 
belief 𝜇𝜇𝐶𝐶(𝐴𝐴) = 0 survives the intuitive criterion, we need to first check which type has incentive 
to deviate under the most favorable consumer belief (𝜇𝜇𝐶𝐶(𝐴𝐴) = 1). The high type has incentive 
to deviate if 

∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼𝛼𝛼 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] − ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝜇𝜇0]

𝑘𝑘 ��𝐸𝐸[𝑢𝑢ℎ]
𝐸𝐸�𝑢𝑢𝜇𝜇0�

� > 𝑎𝑎
𝑝𝑝

 𝑖𝑖∈{1,2} . The low type 

has incentive to deviate if ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼)𝜔𝜔 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] −𝐸𝐸[𝑢𝑢ℎ]

𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑖𝑖∈{1,2}

∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝜇𝜇0]
𝑘𝑘 ��� > 𝑎𝑎

𝑝𝑝
 .  

The intuitive criterion potentially eliminates equilibria where only one type has incentive to 
deviate. Both types have incentive to deviate for a sufficiently small 𝑎𝑎. 

Next, for the region where both types have incentive to deviate under the highest favorable 
belief, we check which type has incentive to deviate under the least favorable belief. The high 
type has incentive to deviate under the least favorable belief if: 
𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢𝑙𝑙]
�𝐸𝐸[𝑢𝑢𝑙𝑙]

𝑘𝑘 � − 𝑎𝑎 𝑖𝑖∈{1,2} >

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2} . The low type has incentive to deviate 

if 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

�𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 � − 𝑎𝑎 𝑖𝑖∈{1,2} >

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2} . Both types never have 

incentive to deviate under the least favorable belief. If we alternatively assume that beliefs 
revert to the prior whenever both types have incentive to deviate under the most favorable 

beliefs, the high type has incentive to deviate if 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 +𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘𝑖𝑖∈{1,2}

𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�� − 𝑎𝑎 > 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2} . The 

low type has incentive to deviate if 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 −𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘𝑖𝑖∈{1,2}

𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�� − 𝑎𝑎 > 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2}  

Both types never have incentive to deviate when assuming their beliefs revert to the prior. 
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Therefore, the equilibrium survives the intuitive criterion whenever both types or neither type 
has incentive to deviate under the most favorable beliefs. If only the low type has incentive to 
deviate, the receiver needs to assign a belief of 𝜇𝜇𝐶𝐶(𝐴𝐴) = 0 and we have shown above that no 
type has incentive to deviate under this low belief. Finally, if only the high type has incentive to 
deviate under the most favorable belief, the receiver needs to assign a belief of 𝜇𝜇𝐶𝐶(𝐴𝐴) = 1 to 
the observed action. Thus, the intuitive criterion eliminates equilibria in which only the high 
type has incentive to deviate (under the most favorable belief): 
∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢ℎ] �𝐸𝐸[𝑢𝑢ℎ]
𝑘𝑘 � − ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 +𝐸𝐸�𝑢𝑢𝜇𝜇0�

𝑘𝑘𝑖𝑖∈{1,2}𝑖𝑖∈{1,2}

(1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�� < 𝑎𝑎
𝑝𝑝

< ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] �𝐸𝐸[𝑢𝑢ℎ]

𝑘𝑘 � −𝑖𝑖∈{1,2}

∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2}    

The PBE survives the intuitive criterion whenever ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 +𝐸𝐸[𝑢𝑢ℎ]
𝐸𝐸�𝑢𝑢𝜇𝜇0�

𝑖𝑖∈{1,2}

𝛼𝛼𝛼𝛼 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] − ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝜇𝜇0]

𝑘𝑘 ��� < 𝑎𝑎
𝑝𝑝

 or 𝑎𝑎
𝑝𝑝

< ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 −𝐸𝐸[𝑢𝑢ℎ]
𝐸𝐸�𝑢𝑢𝜇𝜇0�

𝑖𝑖∈{1,2}

𝛼𝛼)𝜔𝜔 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] − ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝜇𝜇0]

𝑘𝑘 ��� . 

Suppose there is a pooling equilibrium with 𝜎𝜎𝐹𝐹(𝐴𝐴|ℎ) = 1 and 𝜎𝜎𝐹𝐹(𝐴𝐴|𝑙𝑙) = 1, which induces 
consumer beliefs: 𝜇𝜇𝐶𝐶(𝐴𝐴) =  𝜇𝜇0 and 𝜇𝜇𝐶𝐶(𝑁𝑁𝑁𝑁) = 0.  

The payoffs for the two types (on path, is given by: Πℎ|𝐴𝐴 =  p∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 +𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘𝑖𝑖∈{1,2}

𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�� − 𝑎𝑎 and Π𝑙𝑙|𝐴𝐴 =  p∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 −𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘𝑖𝑖∈{1,2}

𝛼𝛼)𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�� − 𝑎𝑎. 

The payoffs for the two types when deviating are given by: Πℎ|𝑁𝑁𝑁𝑁 =
𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢𝑙𝑙]
�𝐸𝐸[𝑢𝑢𝑙𝑙]

𝑘𝑘 �𝑖𝑖∈{1,2}  and Π𝑙𝑙|𝑁𝑁𝑁𝑁 =

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

�𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 �𝑖𝑖∈{1,2}  

For the equilibrium to hold, we require: (IC 1) Πℎ|𝑅𝑅 > Πℎ|𝑁𝑁 and (IC 2) Π𝑙𝑙|𝑅𝑅 > Π𝑙𝑙|𝑁𝑁. The 
constraint on the high type implies that he prefers to not deviate whenever:  

 𝑎𝑎
𝑝𝑝

< ∑ ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝐸𝐸[𝑢𝑢𝑙𝑙]

�1 + 𝛼𝛼𝛼𝛼 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

− ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 ��𝑖𝑖∈{1,2}   

The constraint on the low type implies that he prefers to not deviate whenever: 

𝑎𝑎
𝑝𝑝

< ∑ ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝐸𝐸[𝑢𝑢𝑙𝑙]

�1 + (1 − 𝛼𝛼)𝜔𝜔 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

− ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 ��𝑖𝑖∈{1,2}   
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The equilibrium holds for 

min

⎩
⎪
⎨

⎪
⎧ ∑ ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇0�

𝐸𝐸[𝑢𝑢𝑙𝑙]
�1 + 𝛼𝛼𝛼𝛼 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝜇𝜇0�
− ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝑙𝑙]

𝑘𝑘 ��𝑖𝑖∈{1,2} ,

∑ ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝐸𝐸[𝑢𝑢𝑙𝑙]

�1 + (1 − 𝛼𝛼)𝜔𝜔 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

− ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 ��𝑖𝑖∈{1,2}  

⎭
⎪
⎬

⎪
⎫

> 𝑎𝑎
𝑝𝑝

 

Next, we check if the beliefs survive the intuitive criterion. First, we check which type has 
incentive to deviate under the most favorable beliefs. The high type has incentive to deviate if:  

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼𝜔𝜔 ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2} − 𝑎𝑎 <

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] �𝐸𝐸[𝑢𝑢ℎ]

𝑘𝑘 �𝑖𝑖∈{1,2}  and the low type has incentive to 

deviate if:  𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼)𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2} − 𝑎𝑎 <

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] �𝐸𝐸[𝑢𝑢ℎ]

𝑘𝑘 �𝑖𝑖∈{1,2} .  

Both types always have incentive to deviate under the most favorable beliefs. Next, we need to 
check which type has incentive to deviate under the least favorable belief. This implies 

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼𝜔𝜔 ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2} − 𝑎𝑎 < ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 +𝐸𝐸[𝑢𝑢𝑙𝑙]

𝑘𝑘𝑖𝑖∈{1,2}

𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

�� and the low type has incentive to deviate if:  

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼)𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2} − 𝑎𝑎 <

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼)𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

�𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 �𝑖𝑖∈{1,2}  

Note that we showed above that this is only a PBE for 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 +𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘𝑖𝑖∈{1,2}

𝛼𝛼𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�� − 𝑎𝑎 > ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

�𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 �𝑖𝑖∈{1,2}  and 

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼)𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2} − 𝑎𝑎 >

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼)𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

�𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 �𝑖𝑖∈{1,2} . Thus, neither type has an 

incentive to deviate under the least favorable beliefs and the Intuitive Criterion does not 
eliminate either type.  

If we alternatively assume that beliefs revert to the prior whenever both types have incentive 

to deviate, the high type has incentive to deviate if ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 +𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘𝑖𝑖∈{1,2}

𝛼𝛼𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�� − 𝑎𝑎 < ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2} . The low 

type has incentive to deviate if ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼)𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2} −

𝑎𝑎 < 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼)𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝐸𝐸�𝑢𝑢𝜇𝜇0�
𝑘𝑘 �𝑖𝑖∈{1,2} . Both types always have an 

incentive to deviate and the pooling equilibrium survives the intuitive criterion.  
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Finally, we can now summarize the equilibria and conclude that the focal separating equilibrium 
exists and is unique if: 

∑ 𝜆𝜆𝑖𝑖 ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼)𝜔𝜔 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] − ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸𝑢𝑢𝑙𝑙

𝑘𝑘 ��𝐸𝐸[𝑢𝑢ℎ]
𝐸𝐸[𝑢𝑢𝑙𝑙]𝑖𝑖∈{1,2} < 𝑎𝑎

𝑝𝑝
<

∑ 𝜆𝜆𝑖𝑖 ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼𝛼𝛼 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] − ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸𝑢𝑢𝑙𝑙

𝑘𝑘 ��𝐸𝐸[𝑢𝑢ℎ]
𝐸𝐸[𝑢𝑢𝑙𝑙]𝑖𝑖∈{1,2} ,  

∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼)𝜔𝜔 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] − ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝜇𝜇0]

𝑘𝑘 ��𝐸𝐸[𝑢𝑢ℎ]
𝐸𝐸�𝑢𝑢𝜇𝜇0�

� 𝑖𝑖∈{1,2} < 𝑎𝑎
𝑝𝑝

<

∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼𝛼𝛼 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] − ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝜇𝜇0]

𝑘𝑘 ��𝐸𝐸[𝑢𝑢ℎ]
𝐸𝐸�𝑢𝑢𝜇𝜇0�

�𝑖𝑖∈{1,2}  , and  

� � 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢𝜇𝜇0�

𝐸𝐸[𝑢𝑢𝑙𝑙]
�1 + 𝛼𝛼𝛼𝛼 �� 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑

1

𝐸𝐸�𝑢𝑢𝜇𝜇0�
− � 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑

𝐸𝐸[𝑢𝑢𝑙𝑙]

𝑘𝑘
��

𝑖𝑖∈{1,2}

<
𝑎𝑎
𝑝𝑝

, 𝑜𝑜𝑜𝑜

 

 � � 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐸𝐸�𝑢𝑢𝜇𝜇0�

𝐸𝐸[𝑢𝑢𝑙𝑙]
�1

𝑖𝑖∈{1,2}

+ (1 − 𝛼𝛼)𝜔𝜔 �� 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑
1

𝐸𝐸�𝑢𝑢𝜇𝜇0�
− � 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑

𝐸𝐸[𝑢𝑢𝑙𝑙]

𝑘𝑘
�� <

𝑎𝑎
𝑝𝑝

. 

When 𝜇𝜇0 → 0, the separating equilibrium is unique in the range in which it exists. 𝜇𝜇_0 → 0 
implies 𝐸𝐸�𝑢𝑢𝜇𝜇0�−> 𝐸𝐸[𝑢𝑢𝑙𝑙], and the separating equilibrium holds and is unique whenever 

∑ 𝜆𝜆𝑖𝑖 ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼)𝜔𝜔 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] − ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸𝑢𝑢𝑙𝑙

𝑘𝑘 ��𝐸𝐸[𝑢𝑢ℎ]
𝐸𝐸[𝑢𝑢𝑙𝑙]𝑖𝑖∈{1,2} < 𝑎𝑎

𝑝𝑝
<

∑ 𝜆𝜆𝑖𝑖 ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼𝛼𝛼 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] − ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸𝑢𝑢𝑙𝑙

𝑘𝑘 ��𝐸𝐸[𝑢𝑢ℎ]
𝐸𝐸[𝑢𝑢𝑙𝑙]𝑖𝑖∈{1,2}  and 0 < 𝑎𝑎

𝑝𝑝
 

Proof of Proposition 3 

To show the first part, consider the payoffs from both actions for high and low types: 

Πℎ|𝑅𝑅 = 𝛾𝛾 Πℎ|�𝑅𝑅, 𝑟𝑟�𝑞𝑞𝑗𝑗� = 𝑞𝑞𝑗𝑗� + (1 − 𝛾𝛾) Πℎ|�𝑅𝑅, 𝑟𝑟�𝑞𝑞𝑗𝑗� ≠ 𝑞𝑞𝑗𝑗�  = 𝛾𝛾 𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ|+�
𝑘𝑘  �1 +

𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ|+�

�� + (1 − 𝛾𝛾)𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ|−�
𝑘𝑘  �1 + 𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢ℎ|−�
��  

Π𝑙𝑙|𝑁𝑁 = 𝛾𝛾 Πℎ�𝑅𝑅, 𝑟𝑟�𝑞𝑞𝑗𝑗� = 𝑞𝑞𝑗𝑗� + (1 − 𝛾𝛾) Πℎ|�𝑅𝑅, 𝑟𝑟�𝑞𝑞𝑗𝑗� ≠ 𝑞𝑞𝑗𝑗�  =
𝛾𝛾 ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢𝑙𝑙|− ]
�𝐸𝐸[𝑢𝑢𝑙𝑙|− ]

𝑘𝑘 �𝑖𝑖∈{1,2} + (1 −

𝛾𝛾)∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙|+] �𝐸𝐸[𝑢𝑢𝑙𝑙|+]

𝑘𝑘 �𝑖𝑖∈{1,2}   

The payoffs for the two types when mimicking the other type are given by:  



11 
 

Πℎ|𝑁𝑁 = 𝛾𝛾 ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙|+] �𝐸𝐸[𝑢𝑢𝑙𝑙|+ ]

𝑘𝑘 �𝑖𝑖∈{1,2} + (1 −

𝛾𝛾)∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙|−] �𝐸𝐸[𝑢𝑢𝑙𝑙|−]

𝑘𝑘 �𝑖𝑖∈{1,2}     

Π𝑙𝑙|𝑅𝑅 = 𝛾𝛾 𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ|−�
𝑘𝑘  �1 + (1 − 𝛼𝛼)𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢ℎ|−�
�� + (1 −

𝛾𝛾)𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ|+�
𝑘𝑘  �1 + (1 − 𝛼𝛼)𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢ℎ|+�
��  

Combining, the IC conditions imply: 

𝛾𝛾 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙|+ �
𝑘𝑘 �1+𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝑙𝑙|+ � �+(1−𝛾𝛾)∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙|− �
𝑘𝑘 �1+𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝑙𝑙|− � �

𝛾𝛾 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ|+�
𝐸𝐸�𝑢𝑢𝑙𝑙|+�

�1+𝛼𝛼𝛼𝛼�∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ|+� −∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙|+�

𝑘𝑘 ��+(1−𝛾𝛾)∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ|−�
𝐸𝐸�𝑢𝑢𝑙𝑙|−�

�1+𝛼𝛼𝛼𝛼�∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ|−� −∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙|−�

𝑘𝑘 ��
<

𝜆𝜆1

(1−𝜆𝜆1)
<

𝛾𝛾 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙|− �
𝑘𝑘 �1+(1−𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝑙𝑙|− � �+(1−𝛾𝛾)∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙|+�
𝑘𝑘 �1+(1−𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝑙𝑙|+ � �

𝛾𝛾 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ|−�
𝐸𝐸�𝑢𝑢𝑙𝑙|−�

�1+(1−𝛼𝛼)𝜔𝜔�∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ|−� −∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙|−�

𝑘𝑘 ��+(1−𝛾𝛾)∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ|+�
𝐸𝐸�𝑢𝑢𝑙𝑙|+�

�1+(1−𝛼𝛼)𝜔𝜔�∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ|+� −∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙|+�

𝑘𝑘 ��
.  

This is equivalent to the IC in proposition 1 for 𝛾𝛾 = 1
2
 and the PBE exists for a sufficiently low 𝛾𝛾. 

To show the first part of the statement, we consider the payoff for the high type playing lockout 
(R) in a separating equilibrium and compare it to the payoff under the equilibrium without the 
signaling action being available. As 𝛾𝛾 → 1, this simplifies to 𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝑘𝑘  � >

 ∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝑘𝑘 �𝑖𝑖∈{1,2} , which never holds.  

Comparing profits in the pooling equilibrium and the separating equilibrium:  

Πℎ��𝑅𝑅, 𝜇𝜇𝐶𝐶(𝑅𝑅) = 1� − Πℎ��𝑁𝑁, 𝜇𝜇𝐶𝐶(𝑁𝑁) = 𝜇𝜇0� =  𝛾𝛾 𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ|+�
𝑘𝑘  �1 +

𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ|+�

�� − (1 − 𝛾𝛾)𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ|−�
𝑘𝑘  �1 + 𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢ℎ|−�
�� −

 ∑ �𝛾𝛾𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇|+ �
𝑘𝑘  �1 + 𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝜇𝜇|+ � �� + (1 −𝑖𝑖∈{1,2}

𝛾𝛾)𝜆𝜆1 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇|− �
𝑘𝑘  �1 + 𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝜇𝜇|− � ��� = 𝛾𝛾 � 𝜆𝜆1 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ|+�
𝐸𝐸�𝑢𝑢𝜇𝜇|+ �  �1 +

𝛼𝛼 𝜔𝜔 � ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ|+�

− ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇|+ �
𝑘𝑘 �� − 𝜆𝜆2 �∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇|+ �

𝑘𝑘  �1 +

𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇|+ � ��� + (1 − 𝛾𝛾)� 𝜆𝜆1 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ|−�

𝐸𝐸�𝑢𝑢𝜇𝜇|− �  �1 + 𝛼𝛼 𝜔𝜔 � ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ|−�

−

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇|− �
𝑘𝑘 �� − 𝜆𝜆2 �∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝜇𝜇|− �

𝑘𝑘  �1 + 𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢𝜇𝜇|− � ���  
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As 𝛾𝛾 → 1
2
, we have already shown in proposition 1 that Πℎ|𝑅𝑅 > Πℎ|𝑁𝑁 if 𝜇𝜇0 is sufficiently low. As  

𝛾𝛾 → 1, the above expression reduces to  −𝜆𝜆2. Πℎ|𝑅𝑅 = Πℎ|𝑁𝑁 can have multiple solutions, 
depending on the PDF of the opportunity costs. By continuity of the density, whenever the 
separating equilibrium is a PBE, there exists a 𝛾̅𝛾 such that Πℎ|𝑅𝑅 < Πℎ|𝑁𝑁 for 𝛾𝛾 > 𝛾̅𝛾 and a 𝛾𝛾 such 
that  Πℎ|𝑅𝑅 > Πℎ|𝑁𝑁 for 𝛾𝛾 < 𝛾𝛾.   

T2: Proofs of the Lemmas 

Lemma 1 (Role of Uncertainty in the main result) 

  We now consider the role of quality uncertainty for the firm. Clearly, there cannot be a 
separating equilibrium when the high-type and the low-type firms offer the high and low 
quality products with equal probability (𝛼𝛼 = 1

2
). Intuitively, one might expect that the 

separating equilibrium is most feasible when both types are maximally vertically differentiated 
and the high-type always offers high-quality products and the low-type always offers low-
quality products, as the incentive for the high type to convince consumers that they are high-
type is maximized. However, because expected quality also affects WOM, there is no separating 
equilibrium when the quality difference between the two types is at the maximum (𝛼𝛼 → 1).  

Lemma 1: There exists an 𝛼𝛼∗ < 1, such that no separating equilibrium survives if firm 
uncertainty is too low (𝛼𝛼 > 𝛼𝛼∗). When 𝜇𝜇0 is sufficiently high, high-type profits under full 
certainty are lower than high-type profits in a separating equilibrium under uncertainty 
(Πℎ|(𝑅𝑅,𝛼𝛼 = 𝛼𝛼∗) > Πℎ(𝑁𝑁,𝛼𝛼 → 1).  

Proof: Evaluated at the lower bound of 𝛼𝛼 → 1
2
,  𝐸𝐸[𝑢𝑢𝑙𝑙] →

𝑞𝑞+𝑞𝑞�

2
− 𝑝𝑝. And 𝐸𝐸[𝑢𝑢ℎ] →

𝑞𝑞+𝑞𝑞�

2
− 𝑝𝑝 A 

necessary condition for the equilibrium is ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝑞𝑞+𝑞𝑞�
2 −𝑝𝑝

< ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝑞𝑞+𝑞𝑞�
2 −𝑝𝑝

− ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝑞𝑞+𝑞𝑞�
2 −𝑝𝑝

𝑘𝑘 , 

which simplifies to: 

2∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝑞𝑞+𝑞𝑞�
2 −𝑝𝑝

𝑘𝑘 < ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑
𝑞𝑞+𝑞𝑞�
2 −𝑝𝑝

𝑘𝑘 .  

As 𝛼𝛼 → 1,  ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

→ 1, ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] → 0, and ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝑙𝑙]

𝑘𝑘 → 0, and the necessary 

equilibrium condition implies 1 < 0, which never holds. Noting that 𝜕𝜕𝐸𝐸[𝑢𝑢𝑙𝑙]
𝜕𝜕𝜕𝜕

< 0 and 𝜕𝜕𝐸𝐸[𝑢𝑢ℎ]
𝜕𝜕𝜕𝜕

> 0, 

by continuity of the probability density: 𝜕𝜕
𝜕𝜕𝜕𝜕 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢𝑙𝑙]
> 0, 𝜕𝜕

𝜕𝜕𝜕𝜕 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] < 0, and 

𝜕𝜕
𝜕𝜕𝜕𝜕 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝑙𝑙]

𝑘𝑘 > 0, which implies that there exists, at most, one 𝛼𝛼∗ =

{𝛼𝛼|∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝛼𝛼𝑞𝑞+(1−𝛼𝛼)𝑞𝑞�−𝑝𝑝 = ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝛼𝛼𝑞𝑞�+(1−𝛼𝛼)𝑞𝑞−𝑝𝑝 − ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝛼𝛼𝑞𝑞+(1−𝛼𝛼)𝑞𝑞�−𝑝𝑝
𝑘𝑘 }. 

Thus, for 2∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑
𝑞𝑞+𝑞𝑞�
2 −𝑝𝑝

𝑘𝑘 < ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑
𝑞𝑞+𝑞𝑞�
2 −𝑝𝑝

𝑘𝑘  and 𝛼𝛼 < 𝛼𝛼∗, there exists a range  𝜆𝜆 ∈ (𝜆𝜆, 𝜆̅𝜆), 
such that the separating equilibrium is a PBE.  
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Comparing the profits between the pooling equilibrium evaluated at 𝛼𝛼 → 1 and the separating 
equilibrium at some  1

2
< 𝛼𝛼� < 𝛼𝛼∗.  

(Πℎ|𝑁𝑁,𝛼𝛼 = 1) = 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝜇𝜇0𝑞𝑞�+(1−𝜇𝜇0)𝑞𝑞−𝑝𝑝 �𝜇𝜇0𝑞𝑞�+(1−𝜇𝜇0)𝑞𝑞−𝑝𝑝

𝑘𝑘 �𝑖𝑖∈{1,2} .  

(Πℎ|𝑅𝑅,𝛼𝛼 = 𝛼𝛼�) = 𝜆𝜆1𝑝𝑝 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝛼𝛼�𝑞𝑞�+(1−𝛼𝛼�)𝑞𝑞−𝑝𝑝
𝑘𝑘  �1 + 𝛼𝛼�  𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝛼𝛼�𝑞𝑞�+(1−𝛼𝛼�)𝑞𝑞−𝑝𝑝 ��  

(Πℎ|𝑅𝑅,𝛼𝛼 = 𝛼𝛼∗) is independent of 𝜇𝜇0 and (Πℎ|𝑁𝑁,𝛼𝛼 = 1) is increasing in 𝜇𝜇0. Evaluated at 𝜇𝜇0 =
0, (Πℎ|𝑁𝑁,𝛼𝛼 = 1) = 0. Evaluated at 𝜇𝜇0 = 1, (Πℎ|𝑁𝑁,𝛼𝛼 = 1) = 𝑝𝑝. We have shown in Proposition 
1 that 0 < (Πℎ|𝑅𝑅,𝛼𝛼 = 𝛼𝛼∗) < 𝜆𝜆1. Thus, by continuity of the distribution of 𝑘𝑘, there exists one 

𝜇𝜇0∗ = �𝜇𝜇0|∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝜇𝜇0𝑞𝑞�+(1−𝜇𝜇0)𝑞𝑞−𝑝𝑝 �𝜇𝜇0𝑞𝑞�+(1−𝜇𝜇0)𝑞𝑞−𝑝𝑝

𝑘𝑘 �𝑖𝑖∈{1,2} =

𝜆𝜆1𝑝𝑝 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝛼𝛼�𝑞𝑞�+(1−𝛼𝛼�)𝑞𝑞−𝑝𝑝
𝑘𝑘  �1 + 𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝛼𝛼�𝑞𝑞�+(1−𝛼𝛼�)𝑞𝑞−𝑝𝑝 ��� and 𝜇𝜇 < 𝜇𝜇∗ 

(Πℎ|𝑁𝑁,𝛼𝛼 = 1) < (Πℎ|𝑅𝑅,𝛼𝛼 = 𝛼𝛼�). 

 

Lemma 2 (Role of uncertainty in the advertising equilibrium) 

This part considers the role of uncertainty in the advertising equilibrium.  

Lemma 2: There exists no separating equilibrium with positive profits for the high quality type if 
there is no firm uncertainty (𝛼𝛼 → 1).  

Proof:  At any possible separating equilibrium, it follows directly from the IC that the highest 
possible advertising cost is such that Πℎ|𝐴𝐴 → 0. Next, we consider the profit under the lowest 
possible advertising cost for 𝛼𝛼 → 1 and 𝛼𝛼 = 𝛼𝛼� < 1 

The lowest possible advertising cost in equilibrium is given by the IC 

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼)𝜔𝜔 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] − ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝑙𝑙]

𝑘𝑘 �� < 𝑎𝑎𝐸𝐸[𝑢𝑢ℎ]
𝐸𝐸[𝑢𝑢𝑙𝑙]𝑖𝑖∈{1,2} . As 𝛼𝛼 → 1:  

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼)𝜔𝜔 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] − ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝑙𝑙]

𝑘𝑘 �� →  𝑝𝑝𝐸𝐸[𝑢𝑢ℎ]
𝐸𝐸[𝑢𝑢𝑙𝑙 ]𝑖𝑖∈{1,2} . Evaluating 

profit at 𝛼𝛼 →  1 and 𝑎𝑎 → 𝑝𝑝, we get Πℎ|𝐴𝐴 = 𝑝𝑝 − 𝑝𝑝 = 0. Profit for the low type is zero because 
𝐸𝐸[𝑢𝑢𝑙𝑙] → 𝑞𝑞 − 𝑝𝑝 = 𝑘𝑘. 

Π𝑙𝑙|𝑁𝑁𝑁𝑁 = 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

�𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 �𝑖𝑖∈{1,2} = 0  

For any equilibrium with 𝛼𝛼� < 1, the IC is given by 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 +
𝛼𝛼�𝑞𝑞�+(1−𝑎𝑎�)𝑞𝑞−𝑝𝑝
𝛼𝛼�𝑞𝑞+(1−𝑎𝑎�)𝑞𝑞�−𝑝𝑝𝑖𝑖∈{1,2}

(1 −  𝛼𝛼�)𝜔𝜔 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝛼𝛼�𝑞𝑞�+(1−𝑎𝑎�)𝑞𝑞−𝑝𝑝 − ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝛼𝛼�𝑞𝑞+(1−𝑎𝑎�)𝑞𝑞�−𝑝𝑝

𝑘𝑘 �� < 𝑎𝑎. 
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Evaluating profit at 𝛼𝛼�: Πℎ|𝐴𝐴 = 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 +𝛼𝛼�𝑞𝑞�+(1−𝑎𝑎�)𝑞𝑞−𝑝𝑝
𝑘𝑘𝑖𝑖∈{1,2}

𝛼𝛼� 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝛼𝛼�𝑞𝑞�+(1−𝑎𝑎�)𝑞𝑞−𝑝𝑝 �� −  𝑝𝑝∑ 𝜆𝜆𝑖𝑖 ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 −

𝛼𝛼�𝑞𝑞�+(1−𝑎𝑎�)𝑞𝑞−𝑝𝑝
𝐸𝐸[𝑢𝑢𝑙𝑙]𝑖𝑖∈{1,2}

𝛼𝛼�)𝜔𝜔 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝛼𝛼�𝑞𝑞�+(1−𝑎𝑎�)𝑞𝑞−𝑝𝑝 − ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝛼𝛼�𝑞𝑞+(1−𝑎𝑎�)𝑞𝑞�−𝑝𝑝

𝑘𝑘 �� =

 𝑝𝑝∑ 𝜔𝜔 ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝛼𝛼�𝑞𝑞�+(1−𝑎𝑎�)𝑞𝑞−𝑝𝑝
𝑘𝑘 �(2𝛼𝛼� − 1) �1 − ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝛼𝛼�𝑞𝑞�+(1−𝑎𝑎�)𝑞𝑞−𝑝𝑝

𝑘𝑘 ��  +𝑖𝑖∈{1,2}

∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝛼𝛼�𝑞𝑞+(1−𝑎𝑎�)𝑞𝑞�−𝑝𝑝
𝑘𝑘 �1 + (1 − 𝛼𝛼�)𝜔𝜔 �1 − ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝛼𝛼�𝑞𝑞+(1−𝑎𝑎�)𝑞𝑞�−𝑝𝑝

𝑘𝑘 � � > 0 

We have shown that, whenever a separating equilibrium exists, profits are higher for 𝛼𝛼 < 1.  

The intuition from Lemma 2 is similar to the case with the lockout signaling equilibrium. 
If the high-type always offers a high-quality product and advertises, no consumer would wait 
for WOM. As before, this would allow the low-type to mimic the high-type and receive the 
same profit, which would contradict the equilibrium. Thus, as the expected high-type product 
quality approaches the upper bound, the lowest cost of advertising prices that allow for a 
separating equilibrium increases towards the point where the high-type makes no profits.  

Proof of Lemma 3: 

Consumer beliefs for high expert reviews are given by: 𝐸𝐸�𝑞𝑞|�𝑆𝑆, 𝛾𝛾, 𝑟𝑟�𝑞𝑞𝑗𝑗� = 𝑞𝑞��� = 𝑏𝑏ℎ𝑞𝑞� +
(1 − 𝑏𝑏ℎ)𝑞𝑞. Expanding, we get , 𝐸𝐸�𝑞𝑞|�𝑆𝑆, 𝛾𝛾, 𝑟𝑟�𝑞𝑞𝑗𝑗� = 𝑞𝑞��� = 𝛾𝛾𝛾𝛾(𝑆𝑆)

𝛾𝛾𝛾𝛾(𝑆𝑆)+(1−𝛾𝛾)(1−𝑞𝑞(𝑆𝑆))
𝑞𝑞� +

�1 − 𝛾𝛾𝛾𝛾(𝑆𝑆)
𝛾𝛾𝛾𝛾(𝑆𝑆)+(1−𝛾𝛾)(1−𝑞𝑞(𝑆𝑆))

� 𝑞𝑞. Plugging in 𝛾𝛾 = 1, we get 𝐸𝐸�𝑞𝑞|�𝑆𝑆, 𝛾𝛾, 𝑟𝑟�𝑞𝑞𝑗𝑗� = 𝑞𝑞��� = 𝑞𝑞�.  

Similarly, beliefs for low expert reviews are given by: 𝐸𝐸 �𝑞𝑞| �𝑆𝑆, 𝛾𝛾, 𝑟𝑟�𝑞𝑞𝑗𝑗� = 𝑞𝑞�� = 𝑏𝑏𝑙𝑙𝑞𝑞� +

(1 − 𝑏𝑏𝑙𝑙)𝑞𝑞, Expanding, we get 𝐸𝐸 �𝑞𝑞| �𝑆𝑆, 𝛾𝛾, 𝑟𝑟�𝑞𝑞𝑗𝑗� = 𝑞𝑞�� = (1−𝛾𝛾)𝑞𝑞(𝑆𝑆)
(1−𝛾𝛾)𝑞𝑞(𝑆𝑆)+𝛾𝛾(1−𝑞𝑞(𝑆𝑆))

𝑞𝑞�  +

�1 − (1−𝛾𝛾)𝑞𝑞(𝑆𝑆)
(1−𝛾𝛾)𝑞𝑞(𝑆𝑆)+𝛾𝛾(1−𝑞𝑞(𝑆𝑆))

� 𝑞𝑞. Plugging in in 𝛾𝛾 = 1, we get 𝐸𝐸 �𝑞𝑞| �𝑆𝑆, 𝛾𝛾, 𝑟𝑟�𝑞𝑞𝑗𝑗� = 𝑞𝑞�� = 𝑞𝑞.  

Recall that we have assumed 𝐹𝐹𝑖𝑖(𝑞𝑞� − 𝑝𝑝) = 1  and that 𝐹𝐹𝑖𝑖(𝑘𝑘) is strictly increasing.   We can find 
that 𝐸𝐸�𝑞𝑞|�𝑆𝑆, 𝛾𝛾, 𝑟𝑟�𝑞𝑞𝑗𝑗� = 𝑞𝑞��� > 0   𝑞𝑞(𝑆𝑆(1−𝑞𝑞(𝑆𝑆) )(𝑞𝑞ℎ−𝑞𝑞𝑙𝑙)

(1−𝑞𝑞(𝑆𝑆)+𝛾𝛾(2𝑞𝑞(𝑆𝑆)−1)2
> 0, which always holds. For all 𝛾𝛾 < 1 

 𝐸𝐸�𝑞𝑞|�𝑆𝑆, 𝛾𝛾, 𝑟𝑟�𝑞𝑞𝑗𝑗� = 𝑞𝑞��� < 𝑞𝑞�. By continuity of the CDF, for < 1 𝐹𝐹𝑖𝑖�𝐸𝐸�𝑞𝑞|�𝑆𝑆, 𝛾𝛾, 𝑟𝑟�𝑞𝑞𝑗𝑗� = 𝑞𝑞��� −
𝑝𝑝� < 1., which completes the proof that there exists a mass of consumers that do not consume 
conditional on positive review.   

T3: Model Extensions 

In this section we first derrive the equilibrium with advertising. We then briefly consider the 
robustness of the demand lockout equilibrium under assumptions of endogenous cost and 
partial word-of-mouth spillover. To simplify exposition, we assume that consumers exogenously 
are assigned to be potential early or late consumers and 𝛼𝛼 denotes the proportion of 
consumers that potentially consumers in the first period. The remaining 1 − 𝛼𝛼 consumers enter 
the market in the second period and make a consumption decision.   
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In this section, we compare advertising to the demand lockout. But before we do so, we consider 

advertising in isolation as a possible way to signal to the market.  

As before, nature decides the firm type in the initial period. Upon learning of its quality, the firm can opt 

to spend money on uninformative advertising at an exogenously given cost indexed as 𝑎𝑎. For simplicity, 

we assume a discrete action space defined as  𝑠𝑠 = {𝐴𝐴,𝑁𝑁𝑁𝑁}, where A denotes spending an amount of 𝑎𝑎 

on advertising, and NA indicates no advertising spending. Influentials observe the advertising decision, 

make (rational) inferences, and consume accordingly in the first period. Finally, in the second period, 

followers (potentially) get informed about the actual quality through WOM, and they either consume or 

do not consume.  

First, consider an equilibrium where only the high-type firm advertises. For this to be a separating 

equilibrium, the low type should not have an incentive to mimic the high type and vice-versa. Assuming 

the equilibrium induces the correct posterior beliefs, the high-type firm's profit is given by  

Πℎ|𝐴𝐴 = 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] �𝐸𝐸[𝑢𝑢ℎ]

𝑘𝑘 � − 𝑎𝑎𝑖𝑖∈{1,2}  ,            (3) 

where 𝑎𝑎 is the advertising cost, and 𝑝𝑝  is the price. The profit for the low-type firm is                                                               

Π𝑙𝑙|𝑁𝑁𝑁𝑁 = 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

�𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 �𝑖𝑖∈{1,2} .                              (4) 

 If the high type mimics the low type and does not advertise, profits are Πℎ|𝑁𝑁𝑁𝑁 =

𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + 𝛼𝛼 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

�𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 �𝑖𝑖∈{1,2} . The low type’s profits from acting as a high type 

by advertising are Π𝑙𝑙|𝐴𝐴 = 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] �𝐸𝐸[𝑢𝑢ℎ]

𝑘𝑘 �𝑖𝑖∈{1,2} − 𝑎𝑎. 

Proposition T1. In a separating equilibrium, only the high-type firm advertises. In the first period, 
consumers with relatively low opportunity costs consume both under no advertising and advertising (𝑘𝑘 ≤
𝐸𝐸[𝑞𝑞𝑙𝑙]). Consumers with relatively high opportunity costs (𝐸𝐸[𝑞𝑞𝑙𝑙] < 𝑘𝑘 ≤ 𝐸𝐸[𝑞𝑞ℎ] consume only when the 
product is accompanied by costly advertising. In the second period, a fraction of consumers receive WOM 
and consume if the product quality is high.    
 
Advertising as a signal has been studied in the literature in many different contexts (e.g., Nelson 1974). 

In our setting, because consumers in the second period consume the product only upon receiving 

positive WOM, the value of the high opportunity cost segment differs across the low- and high types. 

Even if the low-type firm can make the high opportunity cost segment (mistakenly) believe that it is of 

high quality, the true quality gets revealed upon consumption, and ultimately, positive WOM is less 

likely to be generated for such a firm. Similar to the demand lockout signal, the high type benefit when 
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their quality is revealed to the high opportunity cost segment because doing so induces positive WOM. 

For this equilibrium to hold, advertising needs to be sufficiently expensive, so the low type is better off 

not advertising. The increase in demand for the low quality via the signal needs to be less than the cost 

of advertising.  At the same time, the advertising price cannot be so high that a high-type firm also 

cannot benefit from advertising.  Similar to the lockout mechanism, information uncertainty for the firm 

plays an important role in the existence of this equilibrium. (See Lemma 2 and other details in the Web 

Appendix) 

 

Endogenous cost: In this section, we model the cost a choice variable for the firm and assume 
that consumers observe it. Instead of nature having full control over the quality of an offering, a 
firm can endogenously set the cost, which affects the quality. To make things tractable, assume 
that quality is still discrete, and the probability of the product being high-quality increases as 
the cost increases. Let the continuous function 𝛿𝛿�𝑐𝑐𝑗𝑗� be the probability of product 𝑗𝑗 being high 

quality, conditional on cost 𝑐𝑐𝑗𝑗. Further, let  
𝜕𝜕𝜕𝜕�𝑐𝑐𝑗𝑗�
𝜕𝜕𝑐𝑐𝑗𝑗

> 0, 
𝑑𝑑2𝛿𝛿�𝑐𝑐𝑗𝑗�
𝑑𝑑𝑐𝑐𝑗𝑗

2 ≤ 0, 𝛿𝛿(0) = 𝛿𝛿 , and  𝛿𝛿(𝑝𝑝) = 𝛿𝛿, 

where 𝛿𝛿 is the lower limit and 𝛿𝛿 is the upper limit of the probability of being the high type. We 
assume 𝛿𝛿 = 0 and 𝛿𝛿 = 1 to simplify the analysis.  

In the separating equilibrium, profits for the high type are given by: Πℎr = 𝜆𝜆1 × (𝑝𝑝 − 𝑐𝑐𝑗𝑗) and 
profit for the low-quality product from not using the signal is given by: Π𝑙𝑙𝑛𝑛 = (1 − 𝜆𝜆1)(𝑝𝑝 − 𝑐𝑐𝑗𝑗).  

Expected profit, conditional on signaling, is given by: 

𝐸𝐸�𝜋𝜋�𝑐𝑐𝑗𝑗� = 𝛿𝛿�𝑐𝑐𝑗𝑗� 𝜋𝜋ℎ𝑟𝑟(𝑐𝑐𝑗𝑗) + �1 − 𝛿𝛿�𝑐𝑐𝑗𝑗��  𝜋𝜋𝑙𝑙𝑛𝑛(𝑐𝑐𝑗𝑗)     (T4) 

Consumers form their beliefs about quality conditional on the observed cost:  

𝐸𝐸�𝑞𝑞�𝑐𝑐𝑗𝑗� = 𝛿𝛿�𝑐𝑐𝑗𝑗�𝑞𝑞ℎ + �1 − 𝛿𝛿�𝑐𝑐𝑗𝑗�� 𝑞𝑞𝑙𝑙      (T5) 

Proposition 5: For a sufficiently concave cost-to- quality mapping �𝑑𝑑𝑑𝑑
�𝑐𝑐𝑗𝑗�
𝑑𝑑𝑐𝑐𝑗𝑗

│𝑐𝑐𝑗𝑗=0 > 1−𝜆𝜆1

(2𝜆𝜆1−1)𝑝𝑝
� , the 

equilibrium cost is positive (𝑐𝑐∗ > 0). The signaling lockout equilibrium exists for a sufficiently 
high difference between segments’ reservation price (𝑘𝑘1 > 𝑘𝑘1���). For a low difference in 
reservation prices (𝑘𝑘1 ≤ 𝑘𝑘1���), the firm sets the cost such that all consumers demand the product 
in the pooling equilibrium without signaling (𝐸𝐸�𝑞𝑞|𝛿𝛿�𝑐𝑐𝑗𝑗�� = 𝑝𝑝 + 𝑘𝑘1). 

Proof: The profit function when the firm is using the lockout signal is given by: 𝐸𝐸�𝜋𝜋�𝑐𝑐𝑗𝑗� =
𝛿𝛿�𝑐𝑐𝑗𝑗�  �𝜆𝜆1 × �𝑝𝑝 − 𝑐𝑐𝑗𝑗�� + �1 − 𝛿𝛿�𝑐𝑐𝑗𝑗�� �(1 − 𝜆𝜆1)�𝑝𝑝 − 𝑐𝑐𝑗𝑗�� and the first-order condition is given 

by: 
𝑑𝑑𝑑𝑑�𝜋𝜋�𝑐𝑐𝑗𝑗�

𝑑𝑑𝑐𝑐𝑗𝑗
= 

𝑑𝑑𝑑𝑑�𝑐𝑐𝑗𝑗�
𝑑𝑑𝑐𝑐𝑗𝑗

∗ �𝜆𝜆1 × �𝑝𝑝 − 𝑐𝑐𝑗𝑗�� − 𝛿𝛿�𝑐𝑐𝑗𝑗� 𝜆𝜆1 − 𝑑𝑑𝑑𝑑�𝑐𝑐𝑗𝑗�
𝑑𝑑𝑐𝑐𝑗𝑗

∗ �(1 − 𝜆𝜆1)�𝑝𝑝 − 𝑐𝑐𝑗𝑗�� +

�1 − 𝛿𝛿�𝑐𝑐𝑗𝑗�� (𝜆𝜆1 − 1) =  
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𝑑𝑑𝑑𝑑�𝑐𝑐𝑗𝑗�
𝑑𝑑𝑐𝑐𝑗𝑗

�(2𝜆𝜆1 − 1)�𝑝𝑝 − 𝑐𝑐𝑗𝑗�� + 𝛿𝛿�𝑐𝑐𝑗𝑗� (1 − 2𝜆𝜆1) + 𝜆𝜆1 − 1 = 0 

The second derivative, with respect to 𝑐𝑐𝑗𝑗 is given by: 
𝑑𝑑2𝐸𝐸�𝜋𝜋�𝑐𝑐𝑗𝑗�

𝑑𝑑𝑐𝑐𝑗𝑗
2 = (1 − 2𝜆𝜆1)�2 𝑑𝑑𝑑𝑑�𝑐𝑐𝑗𝑗�

𝑑𝑑𝑐𝑐𝑗𝑗
−

 𝑑𝑑
2𝛿𝛿�𝑐𝑐𝑗𝑗�
𝑑𝑑𝑐𝑐𝑗𝑗

2 �𝑝𝑝 − 𝑐𝑐𝑗𝑗�� ≤ 0, because 
𝜕𝜕𝜕𝜕�𝑐𝑐𝑗𝑗�
𝜕𝜕𝑐𝑐𝑗𝑗

> 0,
𝑑𝑑2𝛿𝛿�𝑐𝑐𝑗𝑗�
𝑑𝑑𝑐𝑐𝑗𝑗

2 ≤ 0 and 𝜆𝜆1 > 1
2
.  To establish an interior 

solution, we now consider the FOC at the upper and lower bound of the cost.  

First, consider the upper bound, where 𝑐𝑐𝑗𝑗 = 𝑝𝑝. It is easy to verify that 𝐸𝐸�𝜋𝜋�𝑐𝑐𝑗𝑗� =
𝛿𝛿�𝑐𝑐𝑗𝑗�  �𝜆𝜆1 × �𝑝𝑝 − 𝑐𝑐𝑗𝑗�� + �1 − 𝛿𝛿�𝑐𝑐𝑗𝑗�� �(1 − 𝜆𝜆1)�𝑝𝑝 − 𝑐𝑐𝑗𝑗�� = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑗𝑗 = 𝑝𝑝. Further, set cost to 

𝑐𝑐𝑗𝑗 = 𝑝𝑝 − 𝜖𝜖 to get 𝐸𝐸�𝜋𝜋�𝑐𝑐𝑗𝑗� = 𝛿𝛿�𝑐𝑐𝑗𝑗� (𝜆𝜆1 × 𝜖𝜖) + �1 − 𝛿𝛿�𝑐𝑐𝑗𝑗�� �(1 − 𝜆𝜆1)(𝜖𝜖)� > 0 ∀ 𝑞𝑞𝑙𝑙 ≥ 𝑝𝑝, which 
we have assumed to be true. Thus, the equilibrium cost cannot be at the upper bound.  

Now, consider the lower bound, where 𝑐𝑐𝑗𝑗 = 0. Because 𝛿𝛿(0) = 0, the first-order condition 

reduces to: 
𝑑𝑑𝑑𝑑�𝑐𝑐𝑗𝑗�
𝑑𝑑𝑐𝑐𝑗𝑗

│𝑐𝑐𝑗𝑗=0 ∗ �(2𝜆𝜆1 − 1)𝑝𝑝� + 𝜆𝜆1 − 1 = 0 

In order for an interior solution to exist, the first derivative needs to be increasing at the lower 

bound: 
𝑑𝑑𝑑𝑑�𝑐𝑐𝑗𝑗�
𝑑𝑑𝑐𝑐𝑗𝑗

│𝑐𝑐𝑗𝑗=0 × �(2𝜆𝜆1 − 1)𝑝𝑝� + 𝜆𝜆1 − 1 ≥ 0 
𝑑𝑑𝑑𝑑�𝑐𝑐𝑗𝑗�
𝑑𝑑𝑐𝑐𝑗𝑗

│𝑐𝑐𝑗𝑗=0 > 1−𝜆𝜆1

(2𝜆𝜆1−1)𝑝𝑝
. 

Recall that 𝛿𝛿�𝑐𝑐𝑗𝑗�: [0,𝑝𝑝] → [0,1] and 
𝑑𝑑2𝛿𝛿�𝑐𝑐𝑗𝑗�
𝑑𝑑𝑐𝑐𝑗𝑗

2 ≤ 0. By the mean value theorem, we can conclude 

that 
𝑑𝑑𝑑𝑑�𝑐𝑐𝑗𝑗�
𝑑𝑑𝑐𝑐𝑗𝑗

│𝑐𝑐𝑗𝑗=0 ≥
1
𝑝𝑝
. Thus, a sufficient statistic for an interior solution is given by:  

𝑑𝑑𝑑𝑑�𝑐𝑐𝑗𝑗�
𝑑𝑑𝑐𝑐𝑗𝑗

│𝑐𝑐𝑗𝑗=0 ≥
1
𝑝𝑝
≥ 1−𝜆𝜆1

(2𝜆𝜆1−1)𝑝𝑝
  𝜆𝜆1 > 2

3
 

We have established that the solution for cost for the lockout equilibrium is given implicitly by 
𝑑𝑑𝑑𝑑�𝑐𝑐𝑗𝑗�
𝑑𝑑𝑐𝑐𝑗𝑗

�(2𝜆𝜆1 − 1)�𝑝𝑝 − 𝑐𝑐𝑗𝑗�� + 𝛿𝛿�𝑐𝑐𝑗𝑗� (1 − 2𝜆𝜆1) + 𝜆𝜆1 − 1 = 0, whenever 
𝑑𝑑𝑑𝑑�𝑐𝑐𝑗𝑗�
𝑑𝑑𝑐𝑐𝑗𝑗

│𝑐𝑐𝑗𝑗=0 > 1−𝜆𝜆1

(2𝜆𝜆1−1)𝑝𝑝
 

or 𝜆𝜆1 > 2
3
 or 𝑐𝑐𝑗𝑗 = 0 else.           

  

Next, we need to consider the two possible pooling equilibria where the firm serves both 
segments without signaling or serves the quality insensitive segment only. Note that the case 
where the firm sets cost at zero and only serves the quality insensitive segment is equivalent to 

the signaling equilibrium with cost at zero. This equilibrium only occurs if 
𝑑𝑑𝑑𝑑�𝑐𝑐𝑗𝑗�
𝑑𝑑𝑐𝑐𝑗𝑗

│𝑐𝑐𝑗𝑗=0 <
1−𝜆𝜆1

(2𝜆𝜆1−1)𝑝𝑝
. Next, we consider the pooling equilibrium where the firm invests sufficiently much in 

quality to increase expected quality to the level where both segments purchase the product 
absent any signaling.  

Consider 𝑐𝑐𝑗𝑗 such that 𝐸𝐸�𝑞𝑞|𝛿𝛿�𝑐𝑐𝑗𝑗�� = 𝑝𝑝 + 𝑘𝑘1. Profit now is given by: 𝜋𝜋 = 𝑝𝑝 − 𝑐𝑐𝑗𝑗 , s.t. 𝐸𝐸�𝑞𝑞|𝛿𝛿�𝑐𝑐𝑗𝑗�� <
𝑝𝑝 + 𝑘𝑘1.  
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Note that 𝐸𝐸�𝑞𝑞|𝛿𝛿�𝑐𝑐𝑗𝑗�� is given by: 𝐸𝐸�𝑞𝑞|𝛿𝛿�𝑐𝑐𝑗𝑗�� = 𝛿𝛿�𝑐𝑐𝑗𝑗�𝑞𝑞ℎ + �1 − 𝛿𝛿�𝑐𝑐𝑗𝑗�� 𝑞𝑞𝑙𝑙 = 𝑝𝑝 + 𝑘𝑘1  𝛿𝛿∗�𝑐𝑐𝑗𝑗� =
𝑝𝑝+𝑘𝑘1−𝑞𝑞𝑙𝑙
𝑞𝑞ℎ−𝑞𝑞𝑙𝑙

. Taking the derivative, we find that  

𝑑𝑑𝛿𝛿∗�𝑐𝑐𝑗𝑗�
𝑑𝑑𝑘𝑘1

= 1
𝑞𝑞ℎ−𝑞𝑞𝑙𝑙

> 0. Because 𝛿𝛿�𝑐𝑐𝑗𝑗� is an increasing function, we find that 𝑑𝑑𝑑𝑑
𝑑𝑑𝑘𝑘1

< 0 

Plugging in, we find that 𝜋𝜋 = 𝑝𝑝 − 𝑐𝑐𝑗𝑗 = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘1 = 𝑞𝑞ℎ − 𝑝𝑝 and 𝜋𝜋 = 𝑝𝑝 − 𝑐𝑐𝑗𝑗 = 𝑝𝑝 for 𝑘𝑘1 = 𝑞𝑞𝑙𝑙 − 𝑝𝑝.  

Because 𝑝𝑝 > 𝛿𝛿�𝑐𝑐𝑗𝑗�  �𝜆𝜆1 × �𝑝𝑝 − 𝑐𝑐𝑗𝑗�� + �1 − 𝛿𝛿�𝑐𝑐𝑗𝑗�� �(1 − 𝜆𝜆1)�𝑝𝑝 − 𝑐𝑐𝑗𝑗�� > 0 and dπ
dk1

< 0 we can 

conclude that there exists a  𝑘𝑘1��� where the separating equilibrium dominates the pooling 
equilibrium whenever 𝑘𝑘1 > 𝑘𝑘1���. For 𝑘𝑘1 ≤ 𝑘𝑘1���, the pooling equilibrium dominates and the firm 
sets 𝑐𝑐 such that 𝐸𝐸�𝑞𝑞|𝛿𝛿�𝑐𝑐𝑗𝑗�� = 𝑝𝑝 + 𝑘𝑘1. 

The main result from the proposition is that the lockout remains an equilibrium strategy, even 
when the firm has control over the cost and the quality. The equilibrium can break under two 
conditions. First, if the cost-to-quality mapping is not sufficiently concave, it is prohibitively 
expensive to invest in quality. The firm is then better off serving only the quality insensitive 
segment with a low-quality product. Secondly, if the difference between the two segments’ 
reservation price is not sufficiently high, the firm is better off investing sufficiently high such 
that expected utility from consumption is at least as high as the reservation price of both 
segments.  

Spillover of Word of Mouth: We have assumed that there is no communication between the 
segments. We will now consider the case where there is a limited spillover of word-of-mouth 
across the segments. Consider that absent consumption, a proportion of consumers 𝜔𝜔𝑖𝑖 within 
each segment receives word-of-mouth from the other segment irrespective of its own prior 
consumption. If the high-quality product excludes segment 2 and restricts demand to segment 
1, the profit is given by Πℎr = 𝜆𝜆1 × 𝑝𝑝. Profit for the low-quality product from not using the signal 
is given by: Π𝑙𝑙𝑛𝑛 = (1 − 𝜆𝜆1)𝑝𝑝 

If the low-quality type mimics the high-quality type (via demand lockout), its profit is given by 
Π𝑙𝑙r = 𝛼𝛼1 × 𝜆𝜆1 × 𝑝𝑝, because consumers in period 2 will receive word of mouth, revealing the 
low-quality and not consume. If the high-quality product mimics the low-quality type, its profits 
are Πℎn = (1 − 𝜆𝜆1)𝑝𝑝 + 𝜆𝜆1𝜔𝜔1𝑝𝑝. It is straightforward to show that the separating equilibrium 
described in proposition 1 holds, as long as the proportion of consumers receiving spillover 
information is sufficiently low 𝜔𝜔1 ≤ 2 − 1

𝜆𝜆1
. 

An alternative assumption is that consumers do not observe word-of-mouth but can see 
consumption in the other segment. Rational consumers will make an inference that word-of-
mouth revealed a quality above the reservation quality. This assumption ensures that if there is 
consumption in the second period in segment 𝑖𝑖, all consumers infer that the quality of the 
product is such that 𝑞𝑞𝑗𝑗 ≥ 𝑝𝑝 − 𝑘𝑘𝑖𝑖. Recall that we have assumed that only consumers in the 
quality insensitive segment have demand for the low-quality product (𝑝𝑝 + 𝑘𝑘1 > 𝑞𝑞𝑙𝑙 > 𝑝𝑝) and 
consumers in both segments demand the high type product  (𝑞𝑞ℎ > 𝑝𝑝 + 𝑘𝑘1). Combining the two 
assumptions (𝑞𝑞ℎ ≥ 𝑝𝑝 + 𝑘𝑘1 > 𝑞𝑞𝑙𝑙 > 𝑝𝑝), it is clear that consumption by the quality insensitive 



19 
 

segment does not reveal any useful information. However, consumption in the second period 
by the quality sensitive segment reveals the product to be of high quality to all consumers. Still, 
the information is not actionable because the second segment would have either consumed the 
product in the first period or be locked out in equilibrium. If the segment consumed the 
product in the first period, word-of-mouth within the segment reveals the quality. If the 
segment is locked out, there is no use to knowing the quality because of the lockout. 

Imperfect Lockout: We now consider the case in which the lockout is imperfect and some 
consumers are able to consume the product despite being in the locked out segment. To make 
the problem tractable, we assume that there is a random proportion of consumers (denoted by 
𝑏𝑏 ∈ (0,1) ) in segment 2 that is not affected by the lockout and always has the opportunity to 
consume the product. The proportion 𝑏𝑏 is common knowledge and is independent from the 
opportunity cost1.  

The on-path profits are given by  

Πℎ|𝑅𝑅 = 𝑝𝑝𝜆𝜆1 �∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢ℎ]
𝑘𝑘  �1 + 𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢ℎ] �� + 𝑝𝑝𝜆𝜆2 �𝑏𝑏 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢ℎ]
𝑘𝑘  �1 +

𝛼𝛼 𝑏𝑏 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] ��  

Π𝑙𝑙|𝑁𝑁 = 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑 �1 + (1 − 𝛼𝛼) 𝜔𝜔∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢𝑙𝑙]

�𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 �𝑖𝑖∈{1,2}     

The off-path profits if each type deviates from the equilibrium path is given by: 

Π𝑙𝑙|𝑅𝑅 = 𝜆𝜆1𝑝𝑝�∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢ℎ]
𝑘𝑘 �1 + (1 − 𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢ℎ] �� +𝑝𝑝𝜆𝜆2 �𝑏𝑏 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢ℎ]
𝑘𝑘  �1 + (1 −

𝛼𝛼) 𝑏𝑏𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸[𝑢𝑢ℎ] ��  

Πℎ|𝑁𝑁 = 𝑝𝑝∑ 𝜆𝜆𝑖𝑖 �∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 �1 + 𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓𝑖𝑖(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢𝑙𝑙]
��𝑖𝑖∈{1,2}   

We can summaries the incentive compatibility constraints as:  

                                                           
1 Alternatively, it could be that consumers with the lowest opportunity cost have a higher probability to evade the 
lockout (e.g., have a fake ID to watch R-rated movies). However, to keep the problem tractable, we leave that 
problem to future researchers.  
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∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 �1+𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝑙𝑙�
�−�𝑏𝑏 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ�

𝑘𝑘  �1+𝛼𝛼 𝑏𝑏𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ�

��

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ�
𝐸𝐸�𝑢𝑢𝑙𝑙�

�1+𝛼𝛼𝛼𝛼�∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ�

−∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 �� 

< 𝜆𝜆1

(1−𝜆𝜆1)
<

∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 �1+(1−𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝑙𝑙�
�−�𝑏𝑏 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ�

𝑘𝑘  �1+(1−𝛼𝛼) 𝑏𝑏𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ�

��

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ�
𝐸𝐸�𝑢𝑢𝑙𝑙�

�1+(1−𝛼𝛼) 𝜔𝜔�∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ�

−∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 �� 

. 

We can make several interesting observations regarding the equilibrium. First, it always breaks down for 

a sufficiently high 𝑏𝑏. Secondly, the equilibrium region “shifts”, as now the cost of locking out demand is 

reduced. Thus, there exists a parameter space in which the separating equilibrium is a PBE for some 𝑏𝑏 >

0 but not for 𝑏𝑏 = 0. Thirdly, whenever there is slack in the IC of the separating equilibrium, an increase 

in 𝑏𝑏 increases high type profits and holds low type profits  

Proof:  

To prove the first statement, observe that ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢𝑙𝑙]
𝑘𝑘 �1 + (1 − 𝛼𝛼) 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢𝑙𝑙]
� −

�𝑏𝑏 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸[𝑢𝑢ℎ]
𝑘𝑘  �1 + (1 − 𝛼𝛼) 𝑏𝑏𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸[𝑢𝑢ℎ] �� evaluated at 𝑏𝑏 = 1 is always negative, 

which means the IC on the low type can never hold. For the second statement, one can easily 

construct a set of parameters in which the IC on the high type only holds whenever 𝑏𝑏 > 0:  

∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 �1+𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝑙𝑙�
�−�𝑏𝑏 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ�

𝑘𝑘  �1+𝛼𝛼 𝑏𝑏𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ�

��

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ�
𝐸𝐸�𝑢𝑢𝑙𝑙�

�1+𝛼𝛼𝛼𝛼�∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ�

−∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 �� 

< 𝜆𝜆1

(1−𝜆𝜆1)
<

∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 �1+𝛼𝛼 𝜔𝜔 ∫ 𝑓𝑓2(𝑘𝑘)𝑑𝑑𝑑𝑑1

𝐸𝐸�𝑢𝑢𝑙𝑙�
�

∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢ℎ�
𝐸𝐸�𝑢𝑢𝑙𝑙�

�1+𝛼𝛼𝛼𝛼�∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑1
𝐸𝐸�𝑢𝑢ℎ�

−∫ 𝑓𝑓1(𝑘𝑘)𝑑𝑑𝑑𝑑𝐸𝐸�𝑢𝑢𝑙𝑙�
𝑘𝑘 �� 

 . For the third statement, note that 𝜕𝜕
𝜕𝜕
Πℎ|𝑅𝑅 > 0 and 

 𝜕𝜕
𝜕𝜕
Π𝑙𝑙|𝑁𝑁 = 0 

 

 

T4: Additional Empirical Analyses 
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The reasonable estimation of the R-level is critical for our identification strategy and thus 
deserves additional scrutiny and robustness checks. We will proceed to check the ratings from 
the different models for internal consistency and use expert reviews (from Common Sense 
Media) to validate the prediction's external validity.  

As a very first check, we display the distributions of the estimated values for R-levels for movies 
rated R and PG-13 using the five predictive models. The distributions have intuitive appeal. The 
mass of movies rated PG-13 has estimated values around 0.3-0.4 for all models. Similarly, the 
mass for movies rated R is significantly above 0.5.  

  

 

Figure T4: Density plots of estimated values from different models for PG-13 and R-rated 
movies 

 

Next, we test the internal validity of the recovered estimates. The first robustness check 
compares the estimates from the different models. The intuition for this test is that, if we have 
recovered values close to the true underlying distribution of the R-levels, we would expect 
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different predictive models to give similar estimates. A naïve approach would be to simply 
compare predictions from the different models and test the correlation between the estimates. 
This could be misleading because movies with R-ratings will necessarily have higher ratings in all 
models. To circumvent this issue, we condition the estimates on the MPAA rating and make 
comparisons only within R and within PG-13 movies. We test the correlations within each 
MPAA category and find (see table T1) that the correlations are large and significant. These 
robustness checks do not conclusively prove that the recovered distribution is a good proxy for 
the underlying distribution. However, given that the models mostly agree, we can rule out that 
the estimates are due to the idiosyncrasy of one model.  

 

PG-13/PG average lasso 
elastic 
net 

random 
forest SVR 

average 1 0.976146 0.969198 0.940351 0.848854 
lasso 0.976146 1 0.977808 0.89681 0.764761 
elastic net 0.969198 0.977808 1 0.853935 0.807084 
random forest 0.940351 0.89681 0.853935 1 0.69567 

SVR 0.848854 0.764761 0.807084 0.69567 1 

      

R-rated  average lasso 
elastic 
net 

random 
forest SVR 

average 1 0.97741 0.975776 0.94757 0.834182 
lasso 0.97741 1 0.982702 0.909999 0.746028 
elastic net 0.975776 0.982702 1 0.877007 0.800368 
random forest 0.94757 0.909999 0.877007 1 0.686323 
SVR 0.834182 0.746028 0.800368 0.686323 1 

 
Table T1: Correlations between prediction models and weighted avg predictions 

 

Our next test involves the use of expert age recommendations within MPAA rating categories 
to validate the estimates within the R and PG-13 group. In figure T5, we plot the relationship 
between the expert's age recommendation and the estimated value from the ensemble 
method, with a local polynomial regression line fitted to it for movies rated R and PG-13, and 
the full sample, respectively. Reassuringly we find a positive relationship within each group.  
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Figure T5: Comparing estimated values from weighted average prediction with age 
recommendations 
Note: Using data from Common Sense Media for subsample of rated R movies, PG-13 movies, and full sample 
 

To formally test the estimated values, we estimate the following ordinary linear squares model 
for each of the predictions (Table T2): 

𝑃𝑃𝚤𝚤� = 𝛽𝛽0 + 𝛽𝛽1 × 𝑅𝑅𝑖𝑖 + 𝛽𝛽2  × 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 + 𝛽𝛽3 𝑅𝑅𝑖𝑖 × 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 + 𝑒𝑒𝑖𝑖 

Where 𝑃𝑃𝚤𝚤�  is the predicted estimate of the R-level, 𝑅𝑅𝑖𝑖 ∈ {0,1}  is an indicator variable for R rated 
movies, and 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∈ (5,18) is the age recommendation given by Common 
Sense Media. The coefficients of interest are 𝛽𝛽2 and 𝛽𝛽3, which captures the relationship 
between the Common-Sense Media age recommendations and the predicted values. For 
movies rated PG-1, a positive 𝛽𝛽2 indicates that movies with a higher age recommendation also 
have a higher predicted value. Reassuringly, the coefficients in all models are significantly 
(p<0.01) positive, between 0.017 and 0.041. Similarly, for movies rated R, a positive (𝛽𝛽2 + 𝛽𝛽3) 
indicates that movies with a higher age recommendation also have a higher predicted value. 
The coefficients for (𝛽𝛽2 + 𝛽𝛽3) range from 0.05 to 0.063.  
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 Dependent variable:   

 Weighted 
Average Lasso Elastic 

Net  
Random 
Forrest 

Support 
Vector 

Regression   
R 0.295*** 0.296*** 0.231*** 0.483*** 0.114*** 
 (0.022) (0.024) (0.024) (0.027) (0.027)       
Age recommendation 0.026*** 0.021*** 0.028*** 0.017*** 0.041*** 
 (0.002) (0.002) (0.002) (0.002) (0.002)       
R × Age recommendation 0.036*** 0.047*** 0.044*** 0.027*** 0.024** 
 (0.008) (0.009) (0.008) (0.009) (0.010)       
Constant 0.301*** 0.288*** 0.322*** 0.224*** 0.398*** 
 (0.007) (0.007) (0.007) (0.008) (0.008)        
Observations 1,356 1,356 1,356 1,356 1,356 
R2 0.720 0.673 0.652 0.716 0.500 
Adjusted R2 0.719 0.672 0.651 0.715 0.499 
Residual Std. Error  0.159 0.181 0.176 0.196 0.202 
F Statistic (df = 3; 1352) 1,158.484*** 925.719*** 842.794*** 1,135.569*** 450.353***  
Note: CSrating is mean centered. Age recommendations are only 
available for 1,356 of the observations.  

*p**p***p<0.01 

  

Table T2: Validation of predictions 
 

Next, we consider a different approach to matching based on the propensity score. In the main 
text, we matched each R rated movie to 3 PG rated movies. Alternatively, we consider matching 
each R-rated movie to either 1,5, or 10 PG movies with appropriate weights. Alternatively, we 
also use the inverse propensity weight and re-estimate the sample. We re-estimate the three 
main empirical models, given in equations (17), (18), and (19) using the different samples.  

We also present analysis done separately for each genre below. We chose all genre-tags that 
are associated with over 10% of the movies in our sample. Each movie can have multiple genre 
tags, so we observe 9 genres that have a sufficiently high number of observations. We use of 
the inverse propensity weighting to construct each sample weights and present the analysis 
below.   

Below, we also use a different approach to matching, based on the expert ratings provided by 
Common Sense Media. We use this approach as a robustness check for the main estimation. 
The estimation of the propensity score using the subtitle data is highly accurate, yet it is 
possible that there remain systematic biases in the estimated propensity. This could potentially 
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bias the estimates in the main models (i.e. equations 17, 18, and 19) if the potential bias is 
correlated with the error terms in those models. While the alternative estimation might have 
the same problem, the potential bias is likely different from the bias stemming from the 
machine learning process, because the data is generated by an expert panel that watched the 
movie. One potential issues are that experts might give better movies more lenient ratings. The 
number of movies that received a rating by Common Sense media is a significantly smaller than 
the set of movies for which we observed subtitles, so there could be selection in terms of which 
movies receive ratings (e.g., only movies with a larger potential audience will be rated). Despite 
these potential issues and the lower statistical power due to the significantly lower number of 
observations, the results are largely similar to the ones observed in the full sample, using the 
subtitle data.  We present the results of this alternative estimation below in tables T9, T10, and 
T11.  

Rated R propensity score  
 Dependent variable:   
 R -rating 
 IPS W-1 W-5 W-10 
 (1) (2) (3) (4)  

Ad spending before release -0.002 -0.014 -0.014 -0.000 
 (0.009) (0.018) (0.014) (0.018) 

Budget     

 -0.014*** -0.011* -0.013*** -0.013*** 
 (0.003) (0.006) (0.005) (0.004)      

Critics’ count 0.018 -0.051* -0.026 -0.019 
 (0.012) (0.028) (0.021) (0.017)      

Critics’ standard deviation 0.140*** 0.277*** 0.273*** 0.250*** 
 (0.025) (0.058) (0.044) (0.040)      

Major studio -0.585*** -0.046 -0.174 -0.160 
 (0.165) (0.391) (0.299) (0.245)      

Foreign 0.291 0.487 0.624* 0.659 
 (0.197) (0.439) (0.332) (0.302)      

Critics’ mean 0.023*** 0.015 0.023** 0.022** 
 (0.006) (0.013) (0.010) (0.009)      

Constant -1.939*** -0.055 -1.930 -1.148 
 (0.660) (1.803) (1.280) (1.120)       

Year Fixed Effects Yes Yes Yes Yes 
Genre Fixed Effects Yes Yes Yes Yes 
Observations 705 564 642 705 
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Log Likelihood -615.826 -137.377 -275.441 -1,234.721 
Akaike Inf. Crit. 1,299.651 342.755 618.882 2,515.441  
Note: *p**p***p<0.01 
 
 

Table T3: Reproducing Table 4 using alternative weighting  
The table above reproduces Table 4, using four alternative matching and weighting mechanisms. (1) directly uses the 
propensity score and gives each movie a weight equal to the propensity of it’s movie rating. In (2), (3), and (4), we consider 
alternative number of matches (i.e., 1,5, and 10). Each R-rated movie is matched to the closest 𝑛𝑛 PG-13 movies, with respect to 

the propensity score. The weight for each matched PG-13 movie is given by  
1

#𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒
.  

 

Revenue Week 1 Model Propensity Score matched data  
 Dependent variable:   
 Revenue 
 IPS W-1 W-5 W-10 
 (1) (2) (3) (4)  

R -3.173*** -7.566*** -6.404*** -5.914*** 
 (1.012) (2.332) (1.522) (1.370)      

logBudget 0.561*** 0.557** 0.468*** 0.445*** 
 (0.116) (0.253) (0.161) (0.139)      

logAd spending before 
release 0.186*** -0.045 0.100 0.124 

 (0.067) (0.123) (0.089) (0.080)      
Critics’ count 0.030* 0.055 0.063** 0.057*** 

 (0.016) (0.040) (0.025) (0.022)      
Critics’ standard 
deviation -0.083** -0.284*** -0.258*** -0.235*** 

 (0.039) (0.103) (0.065) (0.058)      
Critics’_mean 
 -0.036*** -0.087*** -0.076*** -0.069*** 

 (0.009) (0.021) (0.013) (0.012) 
Foreign -0.235 0.748 1.015*** 0.830*** 

 (0.309) (0.568) (0.372) (0.320) 
Major studio 
 0.525** 2.778*** 2.232*** 2.079*** 

 (0.232) (0.469) (0.310) (0.276)      
R × logBudget 0.325** 0.279 0.413** 0.447*** 
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 (0.137) (0.267) (0.179) (0.159)      
R× logAd spending 
before release 0.055 0.297** 0.151 0.125 

 (0.080) (0.131) (0.099) (0.091)      
R × Critics’ count -0.029 -0.048 -0.057** -0.050** 

 (0.020) (0.042) (0.027) (0.025)      
R × Critics’ standard 
deviation 0.124*** 0.311*** 0.282*** 0.256*** 

 (0.045) (0.106) (0.069) (0.062)      
R×  Critics’ mean 0.012 0.058*** 0.046*** 0.038*** 

 (0.011) (0.022) (0.015) (0.014)      
R × Foreign -0.653* -1.439** -1.705*** -1.520*** 

 (0.359) (0.595) (0.412) (0.366)      
R × Major studio 
 0.041 -2.130*** -1.646*** -1.512*** 

 (0.302) (0.506) (0.363) (0.335)      
Constant 16.753*** 21.519*** 20.210*** 19.724*** 

 (0.909) (2.294) (1.468) (1.307)       
Year Fixed Effects Yes Yes Yes Yes 
Genre Fixed Effects Yes Yes Yes Yes 
Observations 701 560 638 664 
R2 0.534 0.587 0.631 0.652 
Adjusted R2 0.505 0.555 0.606 0.629 
Residual Std. Error 2.006 (df = 659) 1.585 (df = 518) 1.564 (df = 596) 1.574 (df = 622) 

F Statistic 18.409*** (df = 
41; 659) 

17.972*** (df = 
41; 518) 

24.907*** (df = 
41; 596) 

28.415*** (df = 
41; 622) 

 
Note: Budget data missing for 77 movies & studio info is unavailable for 41 movies  *p**p***p<0.01 
 

Table T4: Reproducing Table 5 using alternative weighting 
 
Note: The table above reproduces Table 5, using four alternative matching and weighting mechanisms. (1) directly uses the 
propensity score and gives each movie a weight equal to the propensity of it’s movie rating. In (2), (3), and (4), we consider 
alternative number of matches (i.e., 1,5, and 10). Each R-rated movie is matched to the closest 𝑛𝑛 PG-13 movies, with respect to 
the propensity score. The weight for each matched PG-13 movie is given by  

1

#𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒
. 
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Week 2 Revenue  
 Dependent variable:   
 Revenue (Week 2) 

Lag Revenue × (1) (2) (3) (4)  
Intercept 0.333*** 0.537*** 0.493*** 0.418*** 

 (0.085) (0.165) (0.107) (0.097)      
Weekly advertising spending 0.055*** 0.033*** 0.008* -0.001 

 (0.004) (0.005) (0.004) (0.004)      
R -0.239* -0.471** -0.491*** -0.449*** 

 (0.122) (0.184) (0.131) (0.122)      
Budget -0.0005*** -0.0003* -0.0002 0.00000 

 (0.0001) (0.0002) (0.0002) (0.0002)      
Consumer review mean 0.042* -0.015 0.010 0.032 

 (0.025) (0.050) (0.032) (0.028)      
Quality shock 𝑞𝑞� 0.094* 0.328*** 0.235*** 0.206*** 

 (0.053) (0.097) (0.064) (0.057)      
R × Consumer review mean 0.079** 0.149*** 0.147*** 0.133*** 

 (0.037) (0.056) (0.040) (0.037)      
R × Quality shock 𝑞𝑞� -0.151** -0.353*** -0.289*** -0.273*** 

 (0.075) (0.106) (0.078) (0.072)       
Year Fixed Effects Yes Yes Yes Yes 
Genre Fixed Effects Yes Yes Yes Yes 
Observations 2,806 2,235 2,555 2,657 
R2 0.789 0.794 0.833 0.849 
Adjusted R2 0.786 0.791 0.831 0.847 

Residual Std. Error 6.300 (df = 
2772) 

4.444 (df = 
2201) 

4.431 (df = 
2521) 

4.468 (df = 
2623) 

F Statistic 304.005*** (df = 
34; 2772) 

249.917*** (df 
= 34; 2201) 

370.619*** (df 
= 34; 2521) 

433.847*** (df 
= 34; 2623)  

Note:  𝑞𝑞𝚤𝚤� = 𝑃𝑃𝑅𝑅𝑖𝑖𝑈𝑈 − 𝑃𝑃𝑅𝑅𝑖𝑖𝐶𝐶, where 𝑃𝑃𝑅𝑅𝑖𝑖𝑈𝑈 is the percentile rank of the consumer score for 
movie i, and 𝑃𝑃𝑅𝑅𝑖𝑖𝐶𝐶 is the percentile rank of the critics.  Budget data is missing for 77 movies 
in the raw data. # of Reviews in 10,000s 

*p**p***p<0.01 

 
Table T5: Reproducing Table 6 using alternative weighting 

Note: The table above reproduces Table 6, using four alternative matching and weighting mechanisms. (1) directly uses the 
propensity score and gives each movie a weight equal to the propensity of it’s movie rating. In (2), (3), and (4), we consider 
alternative number of matches (i.e., 1,5,and 10). Each R-rated movie is matched to the closest 𝑛𝑛 PG-13 movies, with respect to 
the propensity score. The weight for each matched PG-13 movie is given by  

1

#𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒
. 
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Rated R propensity score  
 Dependent variable:   
 R -rating 
 Drama Thriller Comedy Crime Action Romance Mystery Horror SciFi 
 (1) (2) (3) (4) (5) (6) (7) (8) (9)  

Ad spending before release -0.013 0.022 0.004 0.020 0.026 -0.035* 0.026 0.088* 0.028 
 (0.012) (0.016) (0.020) (0.026) (0.023) (0.021) (0.026) (0.046) (0.046) 

Budget          

 -0.003 -0.018*** -0.060*** -0.024** -0.016*** -0.005 -0.013* -0.022** -0.022** 
 (0.003) (0.004) (0.008) (0.010) (0.005) (0.007) (0.007) (0.009) (0.009)           

Critics’ count 0.022 0.028 0.047* -0.013 0.035 -0.018 0.009 0.060 0.089* 
 (0.018) (0.018) (0.026) (0.030) (0.027) (0.029) (0.029) (0.037) (0.050)           

Critics’ standard deviation 0.074** 0.201*** 0.151*** 0.290*** 0.327*** 0.114* 0.138* 0.229*** 0.181* 
 (0.034) (0.044) (0.047) (0.075) (0.067) (0.063) (0.072) (0.082) (0.096)           

Major studio -0.483** -0.709*** 0.114 -0.465 -1.907*** -0.165 -0.483 2.771*** -1.077 
 (0.230) (0.268) (0.324) (0.454) (0.418) (0.377) (0.468) (0.890) (0.666)           

Foreign 0.169 0.267 0.409 0.319 0.739 -0.139 0.960 1.610*** 2.898*** 
 (0.241) (0.327) (0.399) (0.553) (0.549) (0.377) (0.596) (0.611) (1.072)           

Critics’ mean 0.026*** 0.022** 0.018 0.097*** -0.015 0.048*** 0.024 -0.037* -0.004 
 (0.009) (0.010) (0.012) (0.019) (0.015) (0.015) (0.017) (0.021) (0.022)           

Constant -2.111** -0.901 -2.242 11.002 14.524 -3.839** -0.939 15.994 -3.824 
 (0.846) (1.169) (1.391) (1,515.989) (743.610) (1.680) (1.626) (2,662.648) (2.339)            

Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 405 288 234 162 155 145 112 104 74 
Log Likelihood -354.445 -259.391 -166.792 -101.692 -125.953 -134.354 -96.762 -70.631 -47.156 
Akaike Inf. Crit. 754.891 564.782 379.584 249.383 297.905 314.708 239.525 187.263 140.313  
Note: *p**p***p<0.01 

Table T6: Table 4 Reproduction by Genre 
The table above reproduces Table 4 separately for multiple genres. The weights for each movie are given by the inverse propensity score and the sample for each genre includes 
all movies that include that genre tag. Each movie can belong to multiple genres and we select all genres that are attached to more than 10% of our sample in the analysis.  
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Revenue Week 1 Model Propensity Score matched data  
 Dependent variable:   
 Revenue 
 Drama Thriller Comedy Crime Action Romance Mystery Horror SciFi 
 (1) (2) (3) (4) (5) (6) (7) (8) (9)  

R -5.438*** -2.695* -1.037 -3.046 0.124 -3.249 -2.901 -3.709 0.754 
 (1.721) (1.448) (1.832) (2.405) (1.727) (3.564) (3.095) (2.315) (2.728)           

logBudget 0.396** 0.227 0.497** 0.748 1.206*** 0.726** 0.693* -0.157 0.083 
 (0.162) (0.201) (0.203) (0.718) (0.216) (0.312) (0.388) (0.354) (0.378)           

logAd spending before 
release  

 

0.088 0.026 0.276*** 0.246 0.093 0.177 0.229 0.430** 0.456 

 (0.094) (0.116) (0.095) (0.210) (0.131) (0.119) (0.250) (0.178) (0.318)           
Critics’ count 0.010 0.015 0.061** 0.007 -0.033 0.058 0.006 0.146*** -0.001 

 (0.028) (0.021) (0.029) (0.044) (0.024) (0.039) (0.042) (0.036) (0.038)           
Critics’_standard 
deviation -0.083 -0.049 -0.053 -0.095 -0.004 -0.329*** -0.167 -0.295*** 0.040 

 (0.067) (0.059) (0.061) (0.078) (0.060) (0.108) (0.118) (0.109) (0.101)           
Major studio 0.800** 0.455 0.457 -0.110 0.423 0.495 0.139 -1.489 0.496 

 (0.383) (0.341) (0.392) (0.524) (0.314) (0.558) (0.609) (1.112) (0.698)           
Foreign -0.041 -0.714 -0.324 -0.840 0.518 -0.230 -0.524 -0.027 -0.616 

 (0.435) (0.483) (0.581) (0.671) (0.544) (0.667) (0.939) (0.921) (1.808)           
Critics’ mean -0.059*** -0.002 -0.032** -0.011 0.009 -0.053** -0.026 -0.030 0.003 

 (0.016) (0.014) (0.014) (0.026) (0.015) (0.023) (0.026) (0.024) (0.026)           
R × logBudget 0.584*** 0.894*** 0.433* 0.351 -0.328 -0.356 -0.003 0.715* 1.378*** 

 (0.193) (0.243) (0.258) (0.733) (0.311) (0.402) (0.482) (0.400) (0.494)           
R × logAd spending 
before release 0.195* 0.211 -0.070 -0.080 -0.052 0.061 0.295 -0.176 -0.395 

 (0.117) (0.129) (0.128) (0.226) (0.151) (0.213) (0.287) (0.198) (0.345)           
R × Critics’ count -0.004 -0.032 -0.102*** -0.030 0.043 -0.021 -0.043 -0.177*** -0.050 
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 (0.031) (0.026) (0.036) (0.049) (0.032) (0.057) (0.049) (0.044) (0.048)           
R × Critics’_standard 
deviation  0.102 0.047 0.110 0.139 0.005 0.317** 0.175 0.296** -0.165 

 (0.074) (0.067) (0.074) (0.086) (0.073) (0.131) (0.136) (0.123) (0.128)           
R ×Major studio -0.317 -0.428 0.348 0.357 -0.539 0.443 0.439 2.076* -0.454 

 (0.468) (0.435) (0.536) (0.658) (0.466) (0.794) (0.763) (1.207) (0.922)           
R ×Foreign -0.880* -0.057 -0.335 -0.447 -1.357** -1.086 -0.008 -1.281 -0.307 

 (0.501) (0.560) (0.701) (0.765) (0.630) (0.833) (1.017) (1.021) (1.867)           
R ×Critics’_mean 0.027 -0.016 0.007 0.001 0.005 -0.009 0.011 0.037 -0.016 

 (0.018) (0.017) (0.018) (0.028) (0.020) (0.029) (0.032) (0.029) (0.033)           
Constant 18.823*** 16.403*** 14.350*** 15.489*** 12.159*** 19.814*** 18.230*** 18.733*** 15.696*** 

 (1.556) (1.222) (1.517) (2.145) (1.347) (2.902) (2.697) (1.991) (1.932)            
Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 405 288 234 162 155 145 112 104 74 
R2 0.518 0.450 0.568 0.606 0.572 0.546 0.512 0.652 0.631 
Adjusted R2 0.479 0.386 0.504 0.516 0.468 0.427 0.331 0.509 0.374 

Residual Std. Error 2.176 (df = 
374) 

1.815 (df = 
257) 

1.972 (df = 
203) 

1.832 (df = 
131) 

1.414 (df = 
124) 

2.306 (df = 
114) 

1.926 (df = 
81) 

1.666 (df = 
73) 

1.633 (df = 
43) 

F Statistic 13.392*** (df = 
30; 374) 

7.013*** (df = 
30; 257) 

8.883*** (df = 
30; 203) 

6.724*** (df = 
30; 131) 

5.523*** (df = 
30; 124) 

4.578*** (df = 
30; 114) 

2.827*** (df = 
30; 81) 

4.556*** (df = 
30; 73) 

2.452*** (df = 
30; 43)  

Note: *p**p***p<0.01 
Table T7: Reproduced table 5 by genre 

The table above reproduces Table 5 separately for multiple genres. The weights for each movie are given by the inverse propensity score and the sample for each genre includes 
all movies that include that genre tag. Each movie can belong to multiple genres and we select all genres that are attached to more than 10% of our sample in the analysis.  
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Week 2 Revenue  
 Dependent variable:   
 Revenue (Week 2) 
 Drama Thriller Comedy Crime Action Romance Mystery Horror SciFi 

Lag Revenue × (1) (2) (3) (4) (5) (6) (7) (8) (9)  
Intercept -0.165 0.368*** 0.097 0.167 0.084 0.883 0.348** 0.420*** 0.762 

 (0.165) (0.103) (0.138) (0.204) (0.223) (1.131) (0.141) (0.161) (0.671)           
Weekly advertising 
spending 0.061*** 0.018*** 0.068*** 0.062*** 0.085*** 0.039*** 0.001 0.015** 0.208*** 

 (0.006) (0.004) (0.009) (0.007) (0.011) (0.008) (0.005) (0.008) (0.025)           
R 0.107 -0.257* 0.078 -0.155 0.234 -0.346 -0.338** -0.449** 0.134 

 (0.199) (0.139) (0.207) (0.237) (0.339) (0.307) (0.143) (0.182) (0.954)           
Budget 0.0003 -0.001*** -0.00002 -0.001* -0.001*** 0.0002 -0.001*** -0.0001 -0.003*** 

 (0.0002) (0.0002) (0.0004) (0.0004) (0.0003) (0.001) (0.0003) (0.0002) (0.001)           
Consumer review 
mean 0.186*** 0.062* 0.136*** 0.096 0.126* 0.099 0.051 0.014 -0.022 

 (0.049) (0.034) (0.035) (0.064) (0.068) (0.074) (0.038) (0.050) (0.206)           
Quality shock 𝑞𝑞� 0.341*** -0.003 0.006 0.043 -0.043 0.333*** -0.073 -0.092 0.403 

 (0.071) (0.065) (0.065) (0.095) (0.175) (0.109) (0.085) (0.086) (0.371)           
R × Consumer review 
mean -0.041 0.073* -0.046 0.046 -0.076 0.120 0.087** 0.132** -0.038 

 (0.060) (0.043) (0.066) (0.075) (0.104) (0.096) (0.043) (0.059) (0.294)           
R × Quality shock 𝑞𝑞� -0.500*** -0.030 0.075 -0.023 -0.007 -0.633*** 0.233* -0.127 -0.707 

 (0.093) (0.091) (0.119) (0.121) (0.232) (0.167) (0.121) (0.107) (0.429)            
Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 1,617 1,152 938 645 622 579 442 412 288 
R2 0.806 0.892 0.809 0.925 0.776 0.854 0.960 0.947 0.720 
Adjusted R2 0.803 0.890 0.804 0.922 0.768 0.848 0.958 0.944 0.696 
Residual Std. Error 4.933 (df = 1594) 4.195 (df = 1129) 5.025 (df = 915) 3.039 (df = 622) 10.020 (df = 599) 4.124 (df = 556) 2.634 (df = 419) 2.231 (df = 389) 11.344 (df = 265) 

F Statistic 288.229*** (df = 23; 
1594) 

406.113*** (df = 23; 
1129) 

168.364*** (df = 
23; 915) 

332.727*** (df = 
23; 622) 

90.390*** (df = 
23; 599) 

141.352*** (df = 
23; 556) 

440.405*** (df = 
23; 419) 

303.169*** (df = 
23; 389) 

29.690*** (df = 
23; 265)  

Note: *p**p***p<0.01 

Table T8: Reproduced table 6 by genre 
The table above reproduces Table 6 separately for multiple genres. The weights for each movie are given by the inverse propensity score and the sample for each genre includes 
all movies that include that genre tag. Each movie can belong to multiple genres and we select all genres that are attached to more than 10% of our sample in the analysis.  



33 
 

Rated R propensity score  
 Dependent variable: R rating   
   
 (1) (2)  

Ad spending before release -0.00004** -0.0001*** 
 (0.00002) (0.00003)    

Budget -0.005 0.013 
 (0.005) (0.008)    

Critics’ count 0.012 0.005 
 (0.024) (0.039)    

Critics’ standard deviation 0.215*** 0.198** 
 (0.060) (0.080)    

Major studio 0.223 0.229 
 (0.407) (0.559)    

Foreign -0.409 -0.059 
 (0.378) (0.574)    

Critics’ mean 0.043*** 0.014 
 (0.013) (0.021)       

Constant -5.032*** 3.123 
 (1.170) (5.038)     

Year Fixed Effects Yes Yes 
Genre Fixed Effects Yes Yes 
Observations 249 249 
Log Likelihood -127.024 -74.261 
Akaike Inf. Crit. 270.048 236.522  
Note: *p**p***p<0.01 
 

Table T9: Logistic Regression of R-rating on movie characteristics  
Note: This analysis uses a propensity-score matched sample of observations within common support. The propensity 
score is estimated using subtitle data and age recommendations from Common Sense Media. 
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Revenue Week 1 Model Propensity Score matched data  

   Dependent variable: Log Revenue     
 (1) (2) (3) (4)  

R -3.760* -4.628** -2.373 -1.301 
 (2.137) (2.137) (2.487) (2.774)      

logBudget 0.161 0.190 0.379* 0.238 
 (0.186) (0.192) (0.218) (0.252)      

logAd spending before 
release 0.340*** 0.245** 0.360*** 0.343** 

 (0.115) (0.118) (0.129) (0.156)      
Critics’ count 0.073** 0.050 0.056 0.071* 

 (0.035) (0.035) (0.038) (0.042)      
Critics’_standard deviation -0.260*** -0.255*** -0.301*** -0.271*** 

 (0.075) (0.074) (0.082) (0.092)      
Critics’_mean 
 -0.056*** -0.053*** -0.042** -0.030 

 (0.018) (0.018) (0.019) (0.022) 
Major Studio  1.322*** 1.536*** 1.706*** 

  (0.505) (0.526) (0.589)      
Foreign  0.487 0.699 0.988* 

  (0.397) (0.460) (0.526)      
R × logBudget 0.609** 0.603** 0.424 0.571* 

 (0.241) (0.246) (0.274) (0.329)      
R× logAd spending before 
release  

0.154 0.214 0.042 0.020 

 (0.137) (0.142) (0.158) (0.190)      
R × Critics’ count -0.121*** -0.099** -0.092** -0.103** 

 (0.042) (0.042) (0.044) (0.050)      
R × Critics’ standard 
deviation   

0.114 0.120 0.163* 0.128 

R×  Critics’ mean  0.042* 0.040* 0.023 0.017 
 (0.021) (0.021) (0.023) (0.026) 

R × Major studio   -1.217** -1.436** -1.589** 
  (0.604) (0.624) (0.719)      

R × Foreign   -0.967* -1.257** -1.829** 
  (0.549) (0.624) (0.720)      
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Constant 17.372*** 18.257*** 16.366*** 15.816*** 
 (1.781) (1.792) (2.228) (2.545)       

Year Fixed Effects No No No No 
Genre Fixed Effects No No No No 
Observations 175 175 175 175 
R2 0.607 0.629 0.673 0.711 
Adjusted R2 0.581 0.593 0.605 0.598 
Residual Std. Error 1.342 (df = 163) 1.322 (df = 159) 1.303 (df = 144) 1.314 (df = 125) 

F Statistic 22.914*** (df = 11; 
163) 

17.933*** (df = 15; 
159) 

9.873*** (df = 30; 
144) 

6.283*** (df = 49; 
125)  

Note: *p**p***p<0.01 
 

Table T10: Regression of opening week revenue on movie characteristics 
Note: This analysis uses a propensity-score matched sample of observations within common support. The propensity 
score is estimated using subtitle data and age recommendations from Common Sense Media. 

 
 
 
 

Week 2 Revenue Propensity Score matched data  
 Dependent variable: Revenue (Week 2-5)     

Lag Revenue × (1) (2) (3) (4)  
Intercept 0.466*** 0.471*** -0.350 -0.225 
 (0.054) (0.114) (0.309) (0.318)      
Weekly advertising spending  0.00002* 0.00001 0.00001 
  (0.00001) (0.00001) (0.00001)      
R 0.004 0.069 0.776* 0.660 
 (0.025) (0.114) (0.417) (0.422)      
Budget   -0.00004 -0.0003 
   (0.0004) (0.0005)      
Consumer review mean   0.221*** 0.173** 
   (0.073) (0.078)      
Quality shock 𝑞𝑞�  -0.161 0.077 0.090 
  (0.132) (0.174) (0.175)      
# of Consumer Reviews    0.147* 
    (0.089)      
R × Consumer review mean   -0.186* -0.144 
   (0.103) (0.108)      
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R × Quality shock 𝑞𝑞�  -0.059 -0.265 -0.251 
  (0.164) (0.214) (0.218)      
R × # of Consumer Reviews    -0.132 

    (0.094)       
Year Fixed Effects Yes Yes Yes Yes 
Genre Fixed Effects Yes Yes Yes Yes 
Observations 1,031 1,031 979 979 
R2 0.768 0.778 0.779 0.779 
Adjusted R2 0.764 0.769 0.768 0.769 

Residual Std. Error 4.544 (df = 
1014) 4.500 (df = 990) 4.598 (df = 935) 4.596 (df = 933) 

F Statistic 
197.519*** 
(df = 17; 

1014) 

84.595*** (df = 41; 
990) 

74.814*** (df = 44; 
935) 

71.687*** (df = 46; 
933) 

 
Note:  𝑞𝑞𝚤𝚤� = 𝑃𝑃𝑅𝑅𝑖𝑖𝑈𝑈 − 𝑃𝑃𝑅𝑅𝑖𝑖𝐶𝐶 , where 𝑃𝑃𝑅𝑅𝑖𝑖𝑈𝑈 is the percentile rank of the consumer score for movie i, 
and 𝑃𝑃𝑅𝑅𝑖𝑖𝐶𝐶  is the percentile rank of the critics.  Budget data is missing for 77 movies in the raw 
data. # of Reviews in 10,000s 

*p**p***p<0.01 

 
Table T11: Regression of revenue in weeks 2-5 on movie characteristics  

Note: This analysis uses a propensity-score matched sample of observations within common support. The propensity 
score is estimated using subtitle data and age recommendations from Common Sense Media. 

 
 
 
 

T5:  Discussion of alternative explanations  

Overall, our empirical analysis found the patterns in the data that are consistent with the 
proposed model. In this section, we discuss some alternative explanations of these results. Any 
alternative theory needs to be consistent with the following stylized empirical facts: 

1. Conditional on “inappropriateness,” a movie is more likely to receive an R-rating if it has 
fewer, more spread out, and higher ratings, or is produced by a foreign studio.  

2. In the opening week, revenues are higher for R-rated movies that have less (critic) 
information available, are not produced by large studios, and movies that have a lower 
budget. 

3. In the following weeks, a quality shock has a smaller impact on rated R movies. The effect of 
consumer rating on movie revenues is larger for rated R movies 

First, we consider if MPAA systematically discriminates against specific movies. Waguespack 
and Sorenson (2011) find that the MPAA is more likely to give more restrictive classifications to 
movies produced by smaller and less powerful studios. While this finding is consistent with our 
proposed signaling explanation, we might be simply providing evidence of this bias emanating 
from the MPAA. In other words, it might be that the same movies we hypothesize as using the 
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R-rating as a signal are simply being discriminated against. However, if this were the case, then 
the results on revenue that we hypothesize and find support for are harder to rationalize. If the 
bias is systematically against certain types of movies, then based on the observable 
characteristics, we would expect R-rated movies to perform similar to PG-13 movies at the box 
office, albeit with a lower intercept because of the excluded segment. If the MPAA uses 
unobservable movie characteristics, such as high-quality, in their decision, we would not be 
able to parse this effect from signaling. Particularly, if the MPAA has a bias towards giving 
movies of higher quality more restrictive age restrictions, we would not be able to falsify this 
alternative theory. On the other hand, if the MPAA follows a rule where movies of higher 
quality receive a less restrictive rating2, we would expect the results from the revenue equation 
to be opposite to what we observe. Overall, we are comfortable in saying that bias from MPAA 
ratings generally does not invalidate our results, unless the bias in MPAA ratings is in the same 
direction as the strategic signaling.  

We have largely considered quality on a vertical scale. However, under asymmetric information, 
consumers need to make an inference about fit as well. R-rated movies are, in general, more 
realistic, violent, and graphic. A consumer who prefers these attributes will correctly use the 
fact that R-rated movies are more consistent with her taste. Our econometric approach uses 
subtitle data to compare movies that are equally likely to receive an R-rating or PG-13 rating. 
However, consumers in the opening week do not know the actual level of “inappropriateness” 
and form beliefs based on all available information, including the MPAA rating. It could be 
hypothesized that the differences in beliefs about horizontal characteristics are driving the 
results. While this seems intuitive, it is not fully consistent with our findings.  

Why is potential horizontal differentiation induced by R-rating and PG-13 unlikely to explain our 
data? Let us suppose that R-rated movies target a different set of consumers. In the current 
Model, we assume that the two segments have different vertical preferences (i.e., different 
opportunity costs to consumption) while abstracting away from horizontal preferences. In the 
empirical application, we select movies that are similar in terms of "inappropriateness" and 
exclude extreme movies (i.e., movies with a very high or very low measure of the R-score). 
However, as pointed out by you, consumers might still make inferences about the underlying 
appropriateness of R-rated and PG movies. This would be expected because, on average, 
movies rated R are, by definition, higher on the latent R-score.  
However, note that R-rated movies we select for empirical analysis (viz., movies close to the 
cutoff) are, on average, less age-inappropriate than a moviegoer might expect. Similarly, PG-13 
movies close to the cutoff are, on average, more age-inappropriate than a typical PG-13 movie. 
To map these features onto a model, we briefly outline a very simple model of horizontal 
differences.  
Imagine two consumer segments wherein consumers in Segment 1 have a horizontal 
preference for more violent movies3, while consumers in Segment 2 prefer movies that are less 

                                                           
2 This seems more intuitive if the MPAA follows some kind of quality vs. rating trade-off rule. For a movie at the 
margin between PG-13 and R, higher quality might break the indifference because there is a larger benefit, 
outweighing the cost of “inappropriateness”.   
3 We are using “violence” as a shorthand for any inappropriate content.  
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violent. To represent this, suppose their utility functions are given by 𝑢𝑢1(𝑣𝑣), and 𝑢𝑢2(𝑣𝑣), where 
𝑑𝑑𝑢𝑢1(𝑣𝑣)
𝑑𝑑𝑑𝑑

> 0 and  𝑑𝑑𝑢𝑢
2(𝑣𝑣)
𝑑𝑑𝑑𝑑

< 0. Suppose movies are distributed on some distribution of 
violence 𝑣𝑣~𝐹𝐹(𝑣𝑣), with a lower bound 𝐹𝐹�𝑣𝑣� = 0 and an upper bound 𝐹𝐹(𝑣̅𝑣) = 1. Movies with 
inappropriateness above some 𝑣𝑣∗ receive a rating of R, whereas movies below receive a rating 
of PG-13. Without additional information, the expected level of violence in movies rated R is 
given by 𝐸𝐸[𝑣𝑣|𝑅𝑅] = ∫ 𝑣𝑣 𝑓𝑓(𝑣𝑣) 𝑑𝑑𝑑𝑑𝑣𝑣�

𝑣𝑣∗  and the expected level of violence in movies rated PG is given 

by 𝐸𝐸[𝑣𝑣|𝑃𝑃𝑃𝑃] = ∫ 𝑣𝑣 𝑓𝑓(𝑣𝑣) 𝑑𝑑𝑑𝑑𝑣𝑣∗

𝑣𝑣 . Because consumers in Segment 1 prefer more violent movies, 

their expected utility from a product rated R is higher than for a product rated PG-13 
(𝑢𝑢1(𝐸𝐸[𝑣𝑣|𝑅𝑅]) > 𝑢𝑢1(𝐸𝐸[𝑣𝑣|𝑃𝑃𝑃𝑃]). Similarly, consumers in segment 2 prefer movies rated PG 
because the expected violence is lower (𝑢𝑢2(𝐸𝐸[𝑣𝑣|𝑅𝑅]) < 𝑢𝑢2(𝐸𝐸[𝑣𝑣|𝑃𝑃𝑃𝑃])).  
This simple horizontal setup can explain a number of results. First, because consumers in 
Segment 1 make inferences about violence from the age rating, a movie rated R will receive 
higher demand (from this segment). Suppose also that, in turn, the critics' (or consumer) rating 
of quality is their experienced utility, based on the horizontal differentiation. This horizontal 
setup could then potentially explain differences in perceived quality of movies between movies 
rated R and PG, depending on the horizontal fit. 
Empirically, such a horizontal differentiation argument would also imply that (ceteris paribus) 

more violent R-rated movies give consumers higher levels of utility (𝑑𝑑𝑔𝑔
1(𝑣𝑣)
𝑑𝑑𝑑𝑑

> 0). While we are 
unable to test this relationship causally, we can use the estimated (latent) 𝑣𝑣 in our empirical 
application to run the following regression: 
𝑞𝑞𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑅𝑅𝑖𝑖 + 𝛽𝛽2 𝑣𝑣𝑖𝑖 +  𝛽𝛽3𝑅𝑅𝑖𝑖 × 𝑣𝑣𝑖𝑖 + 𝜖𝜖𝑖𝑖                                                   (R.1) 
In the regression, 𝑞𝑞𝑖𝑖 is the mean of consumer reviews, 𝑅𝑅𝑖𝑖  is the binary indicator for a movie 
being rated 𝑅𝑅, and 𝑣𝑣𝑖𝑖  is the predicted latent R-score. Because only consumers in Segment 1 

consume R-rated movies, this allows for a direct test of 𝑑𝑑𝑔𝑔
1(𝑣𝑣)
𝑑𝑑𝑑𝑑

> 0, which would imply a 
positive coefficient for 𝛽𝛽3. It is difficult to interpret 𝛽𝛽2 because these reviews potentially come 
from consumers in both segments. We present the results from this regression in column one 
of Table T12 and find that 𝛽𝛽3 is negative and statistically significant- this goes against the 
prediction from the above horizontal Model. 
We re-estimate the Model with the mean of the critic's review. Here (column 2 in Table T12), 
we again find that the coefficients of 𝛽𝛽2 and 𝛽𝛽3 are not significantly positive, which implies that 
there is no positive correlation between movie's level of inappropriateness and critic's reviews. 
Thus, none of the main predictions about different quality, the return to alternative signals, or 
the returns to 3rd party information can be rationalized in this very simple setup without 
appealing to some additional factors, such as difference in the consumers' sensitivity to quality 
(or variation in opportunity cost) between the two segments.  
A similar alternative to the vertical quality could be that watching R-rated movies is “cool” for 
some people, because of some peer effects. Because the signal affects the perception of the 
movie, the rating could be a product attribute that alters the quality of the movie instead of 
signaling quality. Strategic movie studios would use the R-rating whenever the return to being 
“cool” exceeds the loss from locking out one segment. During the opening weekend, the return 
to being a “cool” movie is likely largest when the other attributes are unknown. So far, the 
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predictions from this alternative theory overlap perfectly with the proposed theory. However, 
with this alternative theory the R-rating does not convey any information but merely serves as 
another –always known – attribute. In the weeks after opening, this theory does not predict the 
effect of the quality shock to differ between rated R and PG-13 movies, as predicted by the 
information uncertainty reducing signaling theory. Furthermore, as quality gets revealed, 
“coolness” becomes a less prominent attribute and high-quality movies should see lower 
returns to being “cool” than low quality movies4. While we cannot falsify this alternative theory 
completely, it cannot account for all the observed empirical facts and does not invalidate the 
proposed signaling theory. 

 Dependent variable:   
 Consumer Review Mean Critics Review Mean 
 (1) (2)  
𝑅𝑅 0.390*** 11.563*** 
 (0.095)       (3.188) 
   
𝑣𝑣 0.081 -3.175 
 (0.128)  (4.302) 
   

𝑅𝑅 × 𝑣𝑣 -0.317* -5.689 
 (0.168) (5.656) 
   

Constant 3.092*** 55.462*** 
 (0.032) (1.081) 
   
    

Observations 1,325  1,325 

𝑅𝑅2 0.043  0.033 

Adjusted 𝑅𝑅2 0.041  0.030 

Residual Std. Error 0.447 (df = 1321)  15.001 (df = 1321) 

F Statistic 19.817*** (df = 3; 1321)  14.871*** (df = 3; 1321 
 

Note: *p<0.1, **p<0.05, p***<0.01 
  

Table T12: Regression of quality proxies on R-rating and level of inappropriateness  

                                                           
4 Because of diminishing returns to quality, the effect of the “coolness” from the R-rating should diminish for 
higher quality movies.  
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Note:  𝑅𝑅  is the binary indicator for a movie being rated R, and 𝑣𝑣 is the predicted latent R-score. The regression 
estimates the effect of 𝑣𝑣 on the average consumer and critic review, to identify horizontal preferences for higher 
or lower 𝑣𝑣 within PG-13 or R rated movies. Movies rated R receive higher ratings, but increases in 𝑣𝑣 have no effect 
in the PG-13 segment and a (marginally significant) negative effect on movies rated R.    

 

T6: Omitted details of estimation of propensity score 

To reduce the dimensionality of the text, we apply several transformations to the text corpus. First, we 

transform all the text to lowercase letters, remove whitespace, remove punctuation, and remove 

numbers. Next, we remove stop words using a predefined list of 174 words (Lewis et al. 2004). These 

words include articles (“the,” “an”), conjunctions (“and,” “or”), short function words (“over,” “and,” 

“your”), and other short, uninformative words. These words are important for context, but they convey 

little meaning in isolation. Similarly, rare words are likely to have little diagnostic value. So, we limit the 

dataset to words that appear in at least 15% of the documents.5  The final step involves the stemming of 

the words (Porter 1980). A standard algorithm replaces words with their roots; for example, the words 

“argue,” “argued,” “argues,” and “arguing” are all reduced to the stem “argu.” Each of these steps 

lowers the computational burden and facilitates interpretability. The raw data has 543,641 unique 

terms. After removing whitespace, punctuation, numbers, and stop words, we have 170,671 unique 

terms. Stemming reduces the number of unique terms to 127,836. Finally, excluding elements that 

appear in fewer than 15% of the documents leads to 1,715 unique terms.  

Although we could, in principle, use any number of n-grams, we use a simple “bag of words” (n=1) to 

represent the subtitle documents for two reasons. First, the bag of words is simple enough to give the 

model interpretability and to capture our measure of “inappropriateness” quite well. Second, the 

dimensionality of the representation increases exponentially in the order of n of the phrases tracked, 

increasing computational complexity without any significant gains (Gentzkow et al., 2019). However, 

many words, such as the f-word, are highly informative in the bag of words representation. Given that 

our proposed models using n=1 are sufficiently accurate, the interpretability gained, and the 

computational simplicity from not using n-grams of order 𝑛𝑛 > 1 outweighs any loss.  

Finally, we transform the document from raw frequencies to “term frequency-inverse document 

frequencies.” For a word 𝑗𝑗 in document 𝑖𝑖, term frequency 𝑡𝑡𝑡𝑡(𝐷𝐷, 𝑖𝑖, 𝑗𝑗) is the count 𝑐𝑐𝑖𝑖𝑖𝑖 of occurrences of 𝑗𝑗 

in 𝑖𝑖. The inverse document frequency is defined as:  

                                                           
5 Rare words typically contain the names of the cast members and directors. 
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𝑖𝑖𝑖𝑖𝑖𝑖(𝐷𝐷, 𝑗𝑗) = log2
|𝐷𝐷|

|{𝑑𝑑∣𝑡𝑡𝑗𝑗∈𝑑𝑑}|
 ,      (11)  

where, 𝐷𝐷 is the total count of documents, and |{𝑑𝑑 ∣ 𝑡𝑡𝑗𝑗 ∈ 𝑑𝑑} is the count of documents in which term 𝑗𝑗 

appeared. The term frequency-inverse document frequency is given by:  

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐷𝐷, 𝑖𝑖, 𝑗𝑗)  = 𝑡𝑡𝑓𝑓𝑖𝑖𝑖𝑖  ×  𝑖𝑖𝑖𝑖𝑓𝑓𝑗𝑗       (12) 

and is calculated for every term in the matrix.  

Next, we describe the four models used in more detail, first outlining the estimation strategy for each 

model. To avoid overfitting, we follow cross-validation, break the data into five random, disjoint subsets, 

and estimate the model, excluding one subset. After estimating the model five times, each time 

excluding a different subset, we have an estimate of the probability of a movie being rated R.  

First, a natural starting point to predict the R rating is logistic regression. Following Tibshirani (1996), we 

use a lasso logistic regression, where the coefficient is defined to be the solution to:  𝛽̂𝛽 =

argmin � 𝑙𝑙( 𝛽𝛽) + 𝜆𝜆∑ �𝛽𝛽𝑗𝑗�
𝜌𝜌
𝑗𝑗=1 �,                                   (13) 

where, 𝑙𝑙(𝛽𝛽) is the standard logistic term and 𝜆𝜆∑ �𝛽𝛽𝑗𝑗�
𝜌𝜌
𝑗𝑗=1  is the penalty term.  

Because 𝜆𝜆 cannot be optimally defined a priori (Gentzkow et al., 2019), we use 10-fold cross-validation 

and select the largest value of 𝜆𝜆 with the mean error of no more than one standard error away from the 

minimum. This approach leads to a slightly larger 𝜆𝜆 than the approach of minimizing the mean error and 

allows for more shrinkage and a simpler model. The cross-validation splits the sample into ten disjoint 

subsets and then fits the full regularization path each time, excluding each subset in turn. As previously 

described, we estimate the model five times for each subset and estimate a separate value for 𝜆𝜆 for 

each model. In Table 3a, we list the words with the largest coefficient of 𝛽𝛽� ; many of these words 

indicated sexual content, violence, or inappropriate language6. 

Second, we estimate a logistic regression with an elastic net penalty term. This model is similar to the 

lasso, but the penalty term is more flexible: 

𝛽𝛽� = argmin � 𝑙𝑙( 𝛽𝛽) + 𝜆𝜆2 ∑ 𝛽𝛽𝑗𝑗
2𝜌𝜌

𝑗𝑗=1 + 𝜆𝜆
1
∑ �𝛽𝛽𝑗𝑗�
𝜌𝜌
𝑗𝑗=1 �.    (14) 

                                                           
6 For example, the word bed has a high coefficient. This seems to indicate that visual cues that make movies more 
likely to receive an R-rating will also be represented in the words spoken. 
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We again use 10-fold cross-validation to select the largest value of 𝜆𝜆 that has a mean error of no more 

than one standard error away from the minimum. We find the words with the highest 𝛽𝛽�  display a 

considerable overlap with the words from the lasso selection model (see Table 3b). We pick the values 

for 𝜆𝜆1 and 𝜆𝜆2 so that they sum up to one and give the highest prediction accuracy while not being too 

similar to the lasso model. 

The next model we estimate is a random forest (Breiman 2001). This method is an efficient algorithm for 

high-dimensional classification problems and does not rely on the functional form assumed in the 

logistic regression. The principle of random forest is to grow a large number of regression trees from 

independent subsets of variables. For each tree, randomness is induced when selecting the variables on 

which to split. We use 1,000 trees for each random forest model. The number of variables randomly 

sampled at each split is set to be  
𝐽𝐽
3
, where 𝐽𝐽 is the number of variables in the model. We use the 

probability of trees that classified an observation as R to obtain a probability estimate from the random 

forest classification. In Fig. T6, we plot the mean node purity increase by splits on word 𝑗𝑗, as measured 

by the decrease in the sum of squares. We find that most words make intuitive sense and capture 

inappropriateness  

The final model we estimate is a support vector regression (SVR) (Joachims 1998). SVR is appealing when 

working with text data for several reasons. First, its ability to learn is independent of the dimensionality 

of the feature space, which makes it appealing for high-dimensional data. Second, the SVR is not as 

aggressive in eliminating covariates with low informational count—particularly compared with the 

logistic regression. Third, unlike the other models, the SVR does not impose that the estimated 

probabilities must lie between 0 and 1. We find that 3.3% of the observations have values below zero, 

and 4.5% are above one. Although truncating the values at zero and one would not change the accuracy, 

we keep these values to preserve the contained information about the rank order of movies. To 

estimate the SVR, we use a Radial basis function kernel.  

 

Tables T13A and T13B: Words with the highest coefficient in the Lasso Model (A) and the Elastic Net 
model (B) 

 
Lasso Model 1 Model 2 Model 3 Model 4 Model 5 

1 want want want want want 
2 curse word 1 curse word 1 sure curse word 1 curse word 1 
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3 whi christ curse word 1 like ask 
4 christ curse word 3 christ whi christ 
5 kill kill peopl christ kill 
6 ill bed bodi kill peopl 
7 god photograph coupl address god 
8 death death curse word 3 outsid cigarett 
9 didnt curse word 4 laid death understand 

10 murder none murder god bed 
11 photograph glad kill ill death 
12 bed pain god curse word 4 goddamn 
13 ani curse word 2 bed murder curse word 3 
14 curse word 2 killer wife curse word 3 itd 
15 close bleed death bed privat 

 
    

 
  

Elastic 
Net Model 1 Model 2 Model 3 Model 4 Model 5 

1 want want want want want 
2 whi christ sure like like 
3 curse word 1 curse word 1 like curse word 1 ask 
4 christ sure curse word 1 christ curse word 1 
5 kill curse word 2 christ curse word 2 christ 
6 curse word 2 curse word 3 curse word 3 kill god 
7 ani kill peopl curse word 6 understand 
8 ill bed bodi address kill 
9 god anyway curse word 2 death curse word 2 

10 bed pleas laid curse word 3 leav 
11 death much bed bed peopl 
12 photograph glad coupl outsid cigarett 
13 murder curse word 6 later murder bed 
14 curse word 3 close murder itd death 
15 curse word 4 outsid itd anyway itd 

 

Figure T6: Words with the highest importance  
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Note: The importance numbers are generated via random forest models  

 

 


	The reasonable estimation of the R-level is critical for our identification strategy and thus deserves additional scrutiny and robustness checks. We will proceed to check the ratings from the different models for internal consistency and use expert re...

