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WEB APPENDIX  
 

Derivation of Proof for the Existence of Preference Reversal for the Case α ≠ β 
 
The value function can be written as below: 
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where 0 1α β< ≤ < . Loss aversion is captured through 1λ > , while α  and β   capture 
the diminishing sensitivity of the value function in the gain and loss domains 
respectively. A consumer’s most preferred pricing format would be based upon the 
following optimization problem: 
arg max ( )( ) (n u

d
)p d p dβ αλ− + + +                                       (B1) 

Since /u np p k≡ , we can re-write this expression as: 
arg max ( )( ) ( )n n

d
p d kp dβ αλ− + + +  

The first order condition yields: 
1 1( ) ( ) ( ) 0n np d kp dβ αλ β α− −− + + + =  

This implies that the optimal allowance d* is the solution of the following non-linear 
equation: 
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Notice that unlike the solution obtained in equation (A5), this equation (B2) cannot be 
solved analytically to yield an expression for d*. But using arguments similar to the ones 
employed in solving the non-parametric form problem above, we can conclude that the 
preference reversal, if it occurs, would be at a value of k that yields d*=0. Let us denote 

this critical value of k as . By substituting d*=0 in equation (B2) we get: k
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Notice that if α =β , then =k
∧ 1

1αλ − , which = Q.   

A preference reversal would occur if 0< k
∧

<1, which in turn requires: 
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Simplifying the above expression yields: 

1

np
β αα

λβ

−⎡ ⎤
> ⎢ ⎥
⎣ ⎦

                                                                     (B4) 

Notice that this is not a very restrictive condition. The term inside the square brackets in 
equation (B4) is less than 1 and hence the RHS of equation (B4) is less than 1. In other 
words, except for the cases where np  is very small, even withα β≠ , we always get a 
preference reversal.  
Hence we can restate the proposition contained in the paper as below: 
 

Proposition 1: As long as condition (B4) is satisfied, for k< k
∧

, consumers prefer a pricing 

format that yields d>0, while for k≥ k
∧

, consumers prefer a pricing format that 
yields .  0d ≤

Proof:  As discussed above, 
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 is the critical point which separates 

the preference for H-H pricing from L-L pricing.  
We check for the second order condition. If indeed d* maximizes equation (B1) then it 
needs to satisfy the second order condition. The second derivative of equation (B1) 
yields: 
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. Therefore at d* it must be true that: 
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This implies: 
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Re-writing the above expression yields 
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This implies: 
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* 1 . 

Substitute equation (B2) in the equation above on the RHS: 
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and the simplification yields: 
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Note that since 0 1α β< ≤ < , so: 
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So, equation (B5) is true and hence the second order condition is satisfied as well. 
 


