
Online Appendix

A Proofs omitted in main text

In this section we present the proofs omitted in the main text for the analytical model.

Proof for Proposition 1

Case with Positive Wedge (θ (z − Γz) > 0)

By backward induction, we can solve for the decentralized transaction price using the profit
maximization problem in equation 4. The solution is pD∗ = 1 + V − z for V > 1. To solve
the intermediary case in the first period, we consider interior and corner solutions.

Interior solution

Suppose that supply equals demand at the interior solution. In that case, we can calculate
the purchase price as a function of the sales price.

Supply is given by integrating over the transaction cost k:

S(pS) =
k̄ − 1− V + pS + z

k̄
.

Let the intermediary post a decreasing menu of B sales prices {pI1, . . . , pIB} with pI1 > · · · >
pIB. Demand is

Q(p) =
θ̄ − p−1−V+z

z−Γz

θ̄
= 1− p− (1 + V − z)

(z − Γz) θ̄
,

and the quantity at the lowest price is QB ≡ Q(pIB). The corresponding supply constraint
implies the equilibrium purchase price

pS(QB) = 1 + V − z +
k̄ (1− pIB + V − z)

θ̄ (z − Γz)
.

By rearranging, we can express profits as follows, which allows for clean first order conditions:

Π =
(
pIB − pS(QB)− c

)
Q(pIB) +

B−1∑
b=1

(
pIb − pIb+1

)
Q(pIb).
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Taking first-order conditions, we solve for the optimal prices:

(b = B) : Q(pIB) +
(
pIB − pS(QB)− c

)
Q′(pIB)−Q(pIB−1)− pS ′(QB)Q

′(pIB)Q(p
I
B) = 0,

(16)

(b = 2, . . . , B − 1) : Q(pIb) + (pIb − pIb+1)Q
′(pIb)−Q(pIb−1) = 0 ⇐⇒ pIb =

pIb−1 + pIb+1

2
,

(17)

(b = 1) : Q(pI1) + (pI1 − pI2)Q
′(pI1) = 0 ⇐⇒ 2pI1 = 1 + V − z + θ̄(z − Γz) + pI2.

(18)

Define the step between adjacent tiers sb ≡ pIb − pIb+1. From the interior FOC,

pIb =
pIb−1 + pIb+1

2
⇐⇒ sb = sb−1,

so all steps are equal: sb ≡ s for b = 1, . . . , B − 1. Parameterize

pIb = A− b s (b = 1, . . . , B), pIB = A−B s.

From the top FOC,

2pI1 =
(
1 + V − z + θ̄(z − Γz)

)
+ pI2 =⇒ A = 1 + V − z + θ̄(z − Γz).

From the bottom FOC, we obtain

s =
θ̄ (z − Γz)

(
k̄ + θ̄(z − Γz)− c

)
2B k̄ + (B + 1) θ̄ (z − Γz)

.

Therefore, all tier prices are

pIb = 1 + V − z + θ̄(z − Γz) −
b θ̄ (z − Γz)

(
k̄ + θ̄(z − Γz)− c

)
2B k̄ + (B + 1) θ̄ (z − Γz)

, b = 1, . . . , B.

Corner solution

Now consider the corner in which the lowest inattention type is (weakly) served, θ̂ = 0. The
buyer with θ = 0 is indifferent at price p = 1 + V − z, so to sell to this type we must have

pIB ≤ 1 + V − z.

On the supply side, an owner can transact directly at the decentralized price pD∗ = 1+V −z,
so to procure any stock the intermediary must offer

pS ≥ pD∗ = 1 + V − z.
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Hence the per-unit margin at the corner satisfies

pIB − pS − c ≤ (1 + V − z)− (1 + V − z)− c = − c < 0 for c > 0,

so the corner is strictly dominated. Therefore, with any positive intermediation cost c > 0,
the profit-maximizing menu sets θ̂ > 0 (i.e., an interior solution).

Solution

Comparison shows that the profits from the interior solution dominate profits from the corner
solution. Thus, the interior price is optimal whenever feasible.

Case with Negative Wedge (θ(z − Γz) < 0)

The derivation follows the same exact steps as the case with a positive wedge. Decentralized
prices are given by:

pD∗ = 1− Γz θ̄ + V + (θ̄ − 1) z.

We can again rule out the corner solution by the same arguments. Supply for the inter-
mediary is given by:

QS(pS) =
−1 + k̄ + pS + Γz θ̄ − V + z − θ̄z

k̄
.

Demand is now given by:

Q(p) =
1− p+ V − z

θ̄(Γz − z)
.

The supply constraint implies:

pS(QB) = 1− Γz θ̄ + V − z + θ̄z −
k̄
(
− 1 + pIB + Γz θ̄ − V + z − θ̄z

)
θ̄ (Γz − z)

.

Profits and the first-order conditions are identical in form to the positive wedge case but
with different equilibrium quantities. Solving for A and s, we obtain:

A = 1 + V − z,

s =
θ̄
(
k̄ + θ̄(Γz − z)− c

)
(Γz − z)

2Bk̄ + Γz θ̄ +BΓz θ̄ − (1 +B)θ̄z
.

The intermediary equilibrium prices are then:

pI∗b = 1 + V − z −
b θ̄
(
k̄ + θ̄(Γz − z)− c

)
(Γz − z)

2Bk̄ + Γz θ̄ +BΓz θ̄ − (1 +B)θ̄z
, b = 1, . . . , B.
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Proof for Proposition 2

For the case with a positive wedge z > Γz,
∂pI∗b
∂θ̄

> 0, ∂pS∗

∂θ̄
> 0, ∂QI∗

∂θ̄
> 0, ∂pD∗

∂θ̄
= 0, and

∂QD∗

∂θ̄
= −∂QI∗

∂θ̄
.

For the case with a negative wedge z < Γz,
∂pI∗b
∂θ̄

< 0, ∂pS∗

∂θ̄
< 0, ∂QI∗

∂θ̄
> 0, ∂pD∗

∂θ̄
< 0, and

∂QD∗

∂θ̄
= −∂QI∗

∂θ̄
.

The proof follows straightforward differentiation. Prices are derived in Proposition 1. To
avoid cumbersome expressions, we present the results with B = 1 here. For θ(z − Γz) > 0:
∂pD∗

∂θ̄
= 0, ∂pI∗

∂θ̄
= 1

2

(
z − Γz +

ck̄(z−Γz)

(k̄+θ̄(z−Γz))2

)
, ∂pS∗

∂θ̄
= ck̄(z−Γz)

2(k̄+θ̄(z−Γz))2
, ∂QI∗

∂θ̄
= c(z−Γz)

2(k̄+θ̄(z−Γz))2
, and

∂QD∗

∂θ̄
= −∂QI∗

∂θ̄
. For the case of θ(z−Γz) < 0, ∂p

D∗

∂θ̄
= z−Γz,

∂pI∗

∂θ̄
= 1

2

(
Γz − ck̄(Γz−z)

(k̄+θ̄(Γz−z))2 + z
)
,

∂pS∗

∂θ̄
= ck̄(Γz−z)

2(k̄+θ̄(Γz−z))2 + z − Γz,
∂QI∗

∂θ̄
= c(Γz−z)

2(k̄+θ̄(Γz−z))2 , and
∂QD∗

∂θ̄
= −∂QI∗

∂θ̄
.

Proof for Proposition 3

In the case with an intermediary, owner surplus is given by OS =
∫ k̂
0
(pD∗ − k)f(k)dk +∫ k̄

k̂
pS∗f(k)dk, where k̂ is the owner indifferent between selling directly or to the intermediary.

To show OS > OSprivate trade, recall that pD∗ is the same in both situations. Therefore, it
is sufficient that pS∗ ≥ pD∗ − k for some k, which always holds. Consumer surplus without
intermediary is given by CSbase = Qbase∗ ∗ (1+V −z−pD∗). Using pI∗b (θ) to denote the price
a consumer with type θ pays at the intermediary, consumer surplus with an intermediary is
given by: CS(θ) = QI∗ ∗ (1 + V − z − pI∗b (θ) +QD∗ ∗ (1 + V − z − pD∗). It is lower because
pD∗ < pI∗(θ)b for all b and Q

B∗ ≤ QI∗ +QD∗.

Proof for Proposition 4

Note that this case is equivalent to the general case for each ⌊M⌋ ≤ M < ⌊M⌋+ 1 because
we can make the same substitutions. Thus, the first statement follows from the general case.
For the remaining statements, observe that we can rewrite ∆x = x(θ = 0′; z = 1) − x(θ =
θ′; z = 1), and plug in from the general case. Further, note that ∆x < 0 ⇔ ∂x

∂θ̄
> 0.

Proposition 2 shows that ∂pI∗

∂θ̄
> 0, which thus implies ∆pI∗ < 0. Similarly, straightforward

algebra shows that ∂pI∗

∂θ̄
> ∂pD∗

∂θ̄
, ∂pI∗

∂θ̄
> ∂pS∗

∂θ̄
, ∂pS∗

∂θ̄
≥ ∂pD∗

∂θ̄
, ∂QI∗

∂θ̄
≥ 0, and ∂QI∗

∂θ̄
≥ ∂QD∗

∂θ̄
,

which implies |∆pI∗| > |∆pD∗| and |∆pI∗| > |∆pS∗| and |∆pS∗| ≥ |∆pD∗|, ∆QI∗ ≤ 0, and
|∆QI∗| ≥ |∆QD∗|, which completes the proof.

B Theory Model Extensions

In this section, we first present results for the omitted case of only intermediary trade. Then,
we derive the main model under the assumption of naive owners. Then, we briefly derive
results assuming that consumers are not inattentive to the attribute z but rather vary in
their willingness to pay for a higher level of the attribute. For all analyses presented in this
section, we assume that the firm’s bargaining power is set at B = 1 to simplify exposition.
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B.1 Equilibrium Definition

To define the equilibrium, we need to consider who is aware of inattention. Under standard
assumptions (i.e., rational beliefs), we cannot fully capture inattention because it would
assume awareness about one’s own inattention. To avoid the issue and capture the intuition
of inattention, we relax the assumption of common knowledge about the distribution of
inattention and let each player have a (potentially correct) belief about the distribution. We
then use a solution concept based on (O’Donoghue and Rabin, 1999)1 and require that all
players’ actions are perception-perfect strategies. Each player chooses the optimal action
given their preferences, their perceptions of what the other players’ current action will be,
and their perceptions of all players’ future actions. In a similar context, Haan and Hauck
(2014) and consider higher-level beliefs in games of present biased consumers, which is also
consistent with Fedyk (2021), who experimentally shows that individuals are naive about
their own and (to a lesser extent) other people’s level of present bias. Throughout the
model, we focus on the inattention of consumers and assume that the supply is fully aware
of the inattention of consumers, but we relax the assumption of full awareness of owners in
appendix B.5.
Formally, each player has an exogenously given deterministic belief about the distribution
of inattention in the population of buyers. Let ψj(g(θ)) ∈ {0, 1} denote probability that
player j assigns to the belief that buyers are distributed according to the density function
g(θ). Similarly, let ψj

′

j (g(θ)) ∈ {0, 1} denote the probability that player j beliefs player j′

assigns to the belief that buyers are distributed according to g(θ). For example, these beliefs
capture the following:

ψj(U [0, 1])) = 1 ⇔ I (j) believe θ ∼ U [0, 1].

ψj
′

j (U [0, 1]) = 1 ⇔ I (j) think that you (j′) believe that θ ∼ U [0, 1].

Each buyer is unaware of the inattention problem and beliefs all other buyers are equally
inattentive. Coming back to the t-shirt example, this implies that the inattentive consumer
who did not observe the stain also thinks everyone is treating the stained shirt as if it
is unstained. We let ψBθ′ (g(θ

′)) = ψS
Bθ′

(g(θ′)) = ψI
Bθ′

(g(θ′)) = 1, where g(θ′) denotes a
degenerate distribution at θ = θ′. The remaining beliefs and hyper beliefs are assumed to
be correct ψj(f(θ)) = 1∀j ̸= B and ψij(h(θ)) = ψi(h(θ))∀j ̸= B, where f(θ) denotes the true
distribution of inattention and h(θ) denotes any distribution of inattention. In the presented
game, we maintain that the intermediary is (i) fully attentive and (ii) fully aware of the other
players’ inattention. We focus on the case in which owners are fully attentive and consider
the case in which they are naive and wrongly believe there is no consumer inattention and
the case in which they correctly anticipate the level of inattention among consumers.

B.2 Omitted Lemma

Here we present the lemma describing the equilibrium outcome under full attention.

Lemma 1 In the absence of inattention in the population (θ̄ → 0), the equilibrium price in
the decentralized market and at the intermediary are equal (pI∗ = pD∗ = V ).

1O’Donoghue and Rabin introduce the concept in a single-player context. We generalize this concept to
the multi-player game, similar to Gans and Landry (2019) in the context of present bias.
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The purchase price, quantity of intermediary transactions, firm profit, owner surplus and
consumer surplus are given by:

pS∗ =

{
0, if k̄ < 2V − c

V − (c+ k̄)/2, otherwise
, QI∗ =

{
1
2
− c

2k̄
, if k̄ < 2V − c

1− V
k̄

otherwise
,

π∗ =

{
(k̄−c)2

4k̄
, if k̄ < 2V − c

(k̄−V )(k̄V−k̄c)
k̄2

otherwise
, OS∗ =

{
( c

2

k̄
+ 8V − 3k̄ − 2c)/8, if k̄ < 2V − c

V 2

2k̄
otherwise

,

and CS = 0

Proof. The proof follows from plugging in to proposition 1 and proposition 2.

B.3 Omitted Cases of the Game

First, we consider the case with the intermediary being visited first, and then the case with
only decentralized trade (i.e., without the first period in the full game) and then present the
case with only intermediary trade (i.e., without the second period in the full game).

B.4 Case with Decentralized Trade First

First, we consider the case where consumers start their search in the decentralized market
and only visit the intermediary as second stop.

Lemma 2 Suppose that consumers exhibit inattention and visit the decentralized market
before considering the intermediary. For a positive wedge (z − Γz > 0), private sellers set
a price only accepted by consumers with θ ≥ θ∗, where θ∗ > 0 for a sufficiently low V . For
a negative wedge (z − Γz < 0), private sellers set a price only accepted by consumers with
θ ≤ θ∗, where θ∗ < 1 for a sufficiently low V .

Proof. We can again solve this by backwards induction. In the final period, the firm
is setting its price, conditional on the consumers it faces and the quantity of vehicles it
purchased in the first period. In the previous period, individual sellers decide to enter or
not enter the market and set a price. In the earliest period, the intermediary offers current
vehicle owners a purchase price and individual owners decide to keep or sell the vehicle.
By the same arguments as previously, consumers beliefs about inattention are inaccurate
and they believe that the intermediary prices conditional on a homogenous θ, which implies
a price that extracts all surplus E[pIb |θ] = uB(θ). Therefore, a consumer will purchase in
the decentralized market whenever their utility, net of price, is positive. In the first stage,
the intermediary sets a purchase price, so there are potentially more buyers than sellers in
the first stage. We introduce a match parameter γ that denotes the probability of a buyer
meeting a seller in the first period. We assume that buyers are randomly paired with sellers.
There are therefore a proportion γ consumers who are matched and 1−γ consumers who are
not matched in the decentralized market. Focusing on the stage in which individual sellers
set prices, the prices are set to maximize

pD∗ = arg max
pD

E[πO(p
D)] = P (accept|pD)× pD + (1− P (accept|pD))× (1− z),

s.t. 0 ≤ P (accept|pD) ≤ 1,
(19)
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where the solution is given by an interior solution

pD∗ =


1
2

(
2 + V − 2z + θ̄(z − Γz)

)
, if z > Γz,

1
2

(
2 + V − 2z

)
, if z ≤ Γz.

, or the corner solution

pD∗ =

1 + V − z, if z > Γz,

1 + V − z + θ̄(z − Γz), if z ≤ Γz.

. For z > Γz, matched consumers purchase from the private seller whenever

θ > θ∗,

where for z > Γz we have θ∗ = 0 in the corner solution and θ∗ > 0 in the interior solution
(the latter arising when V is sufficiently small). When z < Γz, the inequality reverses and
consumers buy whenever θ < θ∗, with θ∗ = 1 in the corner solution and θ∗ < 1 in the interior
solution (again requiring a sufficiently small V ).

B.4.1 Case With Only Decentralized Trade

We now consider a market with only consumer-to-consumer transactions. In the first stage,
each product owner decides to meet a buyer in the decentralized market and incur a trans-
action cost of k or exit the game (and consume the product). In the second stage, each
participating owner meets one buyer at random and makes one take-it-or-leave-it offer. If
the buyer accepts the offer, she receives the product, and the seller receives the offered price.
Else, the game ends, and the seller keeps the product and consumes it. We use backward
induction to find the optimal price and the cutoff in k below which sellers enter the market
to solve the game. The sellers’ equilibrium price is given by the following maximization
problem:

pD∗ = argmax
pD

E[πO(p
D)] = P (accept|pD)× pD + (1− P (accept|pD))× (1− z),

s.t. 0 ≤ P (accept|pD) ≤ 1,

where P (accept|pD) =
∫ θ̄

1−z+V−pD
Γz−z

f(θ)dθ for Γz < z and P (accept|pD) =
∫ 1−z+V−pD

Γz−z
0 f(θ)dθ

for Γz > z. Owners with sufficiently low transaction costs are willing to enter the market
in period 1 and sell the product. We can find the transaction cost of the owner indifferent
between entering the decentralized market or not entering the market: k̂ = E[πO(p

D∗)]−uS.
The mass of owners that enter the market is given by: S(pD∗) = min

[
1,
∫ k̂
0
f(k)dk

]
and the

total mass of transactions consists of the number of sellers and the probability that their
offered price is accepted: Q(pD∗) = S(pD∗) × P (accept|pD∗). In equilibrium, all owners set
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the same price because the cost of entering the market is a sunk fixed cost in the second stage.
We see the following impact of inattention on the equilibrium outcomes in equilibrium.

Lemma 3 For sufficiently high potential gains of trade (θ̄ < V/(Γz − z)):

1. Prices do not react to inattention (∂p
D∗

∂θ̄
= 0)

2. The quantity of transactions is not affected by inattention.(∂Q
∗

∂θ̄
= 0)

Proof. The proof follows directly from the comparing the first order condition of the profit
maximization problem and the corner solution. Equilibrium price is given by pD∗ = 1+V −z,
for θ̄ ≤ V/z for Γz < z and pD∗ = 1− z + V/2 for Γz > z.

If a seller could identify inattentive consumers, he would practice first-degree price dis-
crimination and charge each consumer their willingness to pay, which is higher for more
inattentive consumers who are inattentive to the negative attribute. However, because he
cannot identify the consumer type, no surplus can be extracted from inattentive consumers
without losing out on some attentive consumers. The presence of those attentive consumers
protects inattentive consumers, particularly when the opportunity cost of not selling the
product is high. When the potential gains of trade are sufficiently high, the seller sets a
price that all consumers accept and the effect of inattention is fully muted2.

B.5 Naive Owners

We now consider the case of naive owners. In the main analysis, we have assumed that owners
are aware of the bias on the consumer side. To probe the importance of that assumption,
we now consider the case in which owners are unaware of this inattention problem. We now
solve the case with an intermediary and decentralized trade. We do so for the case of Γz = 0

Again, using backward induction, we start with the second period. Because sellers are
unaware of the buyers inattention, they naively believe that they are facing a homogeneous
group of consumers with reservation value uB = 1 − z + V . As a result, individual sellers
belief their profit maximization problem is given by

pD∗ = arg max
pD

E[πO(p
D)] = P (accept|pD)× pD + (1− P (accept|pD))× (1− z),

s.t. 0 ≤ P (accept|pD) ≤ 1,
(20)

where P (accept|pD) =

{
1, if 1− z + V > pD∗

0, otherwise
.

As before, consumers expect that the sellers extract all surplus and set E[pD|θ] = 1 −
z + V + zθ. The buyer indifferent between buying the product or entering the decentralized

market is given by: θ̂ = pI−V−1+z
z

and demand for the intermediary is given by: D(pI) =∫ θ̄
θ̂
f(θ)dθ. The owner indifferent between selling to the intermediary or not is given by:

2Much of the literature has considered demand-side explanations for inattention observed in market
transactions, and one often cited intuition is that consumers pay more attention when the stakes are higher.
However, at least in this setting, higher stakes also reduce the incentive for sellers to distort their pricing to
take advantage of consumer inattention
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E[πO] − pS∗ = k, and total supply for the platform is given by: S(pI) =
∫ k̄
E[πO]−pI f(k)dk.

The firm’s profit-maximizing prices are the solutions to the following maximization problem:

pI∗ = argmax
pI

E[π] = D × (pI − pS − c)

s.t. 0 ≤ (pI) ≤ S(pI) ≤ 1

We can now give the following result, stating that awareness of inattention is rendered
irrelevant for individual owners because of the market segmentation.

Proposition 5 For V > 1, the equilibrium with naive owners is identical to that of sophis-
ticated product owners.

Proof. In the second stage, owners set a price that maximizes equation 20. The profit-
maximizing price is given by pD∗ = V + 1 − z. Because pD∗ and E[πO(p

D)] are identical
to the case of sophisticated owners, the intermediary faces the same profit maximization
problem as in the sophisticated case, and thus, the equilibrium outcomes are identical to the
case with sophisticated owners.

The result seems perhaps counterintuitive because one would expect that owners who
are aware of consumers’ inattention should be able to use this information in a competitive
market. In the previous equilibrium, sophisticated owners set a price of pD∗ = V + 1 − z
because they are aware that the consumers in the private market are relatively attentive, and
inattentive consumers have already purchased from the intermediary. In the case of naive
owners, they are unaware of consumer inattention, but the information would not affect their
behavior.

B.6 Heterogeneity in Preferences

This section aims to highlight the impact of consumer inattention and consider consumers
that are heterogeneous w.r.t to their actual willingness to pay for an attribute, as opposed
to heterogeneity stemming from inattention. An important difference is that consumers are
fully rational in this setting and anticipate the firm’s optimal pricing. Again, we consider
the following utility functions: uS = 1 − z and uB(ψ) = uS + V + zψ, where ψ captures
the willingness to pay for attribute z for buyers. To make the results comparable to the
inattention results, we consider the case of a positive z, and Probnabsellers that are only
heterogeneous regarding their cost of supplying the good, k. The solution concept is the
Perfect Bayesian Equilibrium (PBE).

B.6.1 Consumer Trade Only

First, consider the case without an intermediary. Again, as in the case of inattention, owners
with sufficiently low transaction cost sell to consumers with sufficiently high willingness to
pay for quality. We again start by backward induction and solve the owners pricing problem
first. The owners need to maximize their profit function, which is given by:

pD∗ = argmax
pD

E[πO] = P (accept|pD)× p+P (1− P (accept|pD))× uS,
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where P (accept|p) = min
[
1,
∫ ψ̄
p+V−z+ψz

z

f(ψ)dψ
]
.

The solution is then given by:

pD∗ =

{
1 + V − z, for z ≤ V

ψ̄
2+V−(2−ψ̄)z

2
, otherwise.

Owners choose to enter the market in the first period if their transaction cost is sufficiently
low. The solution is equivalent to the case with heterogeneity in inattention. The reason
is that the consumers are not acting upon any expected prices, which are distorted by
inattention.

B.6.2 Intermediary Trade Only

As before, the game consists only of the stage in which the intermediary buys and sells
the product, and there is no decentralized trade. Without the option of trading directly
with buyers, all owners are willing to sell the product as long as the intermediary offers a
purchase price equal to the consumption utility. Thus, pS∗ = 1− z The intermediary needs
to maximize their profit function, which is given by:

pD∗ = argmax
p

E[πO] = D(p)× (p− c− pS∗),

where D(p) = min
[
1,
∫ ψ̄
p+V−z+ψz

z

f(ψ)dψ
]
. The solution is then given by:

p =

{
1 + V − z for z ≤ V−c

2−ψ̄
2+c+V+ψ̄z

2
, otherwise.

The solution is equivalent to the case with heterogeneity in inattention. Again, the
reason is that the consumers are not acting upon any expected prices that are distorted by
inattention.

B.6.3 Intermediary and Private Trade

Now we consider the full case with an intermediary and decentralized trade. To solve the
model, we apply similar arguments as in the case of inattention. In the second period, owners
need to set a price. Then, taking this price as given, the intermediary maximizes profit in
the first period. We again solve this by using backward induction3. In the second stage, the
owners need to set a price that maximizes profit, taking ψ̂ as given

pD∗ = argmax
pD

E[πO] = P (accept|pD)× pD + (1− P (accept|pD))× uS,

where P (accept|p) = min

[
1,
∫ ψ̂
pD+z−V−1

z

f(ψ)dψ

]
. The solution is then given by: pD∗ =

1 + V − z. To solve the firm problem, we first note that the intermediary price needs to be
less or equal to the price in the decentralized market. Suppose the intermediary sets a price
higher than the price in the decentralized market. All (potential) consumers will wait until

3Again, we consider the case of V > 1 to facilitate the comparison of the two sets of results.
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the second period and purchase in the decentralized market, implying that the intermediary
profit is zero. Secondly, owners can never set a price below pD = 1+V − z. Suppose owners
set pD = 1+V − z− ϵ. Then profit, is given by πP = 1+V − z− ϵ. Alternatively, the profit
at pD = 1 + V − z is given by πP = 1 + V − z.

In equilibrium, the intermediary thus sets pI∗ = 1+V −z and chooses the level of supply
that maximizes profit. Owners supply to the intermediary if k > V + 1 − z − t. Thus,

total supply is given by S =
∫ k̂
V+1−z−t f(k)dk. The firm chooses the purchase price that

maximizes:
pS∗ = argmax

pS
E[πI ] = S(pS)× (1 + V − z − pS − c).

The solution is given by pS∗ = 1 + V − c− z − k̄
/
2

Lemma 4 Intermediary prices and prices in decentralized transactions are equal in equilib-
rium (pD∗ = pI∗). As the average willingness to pay increases, owner surplus and profit stays

constant. (∂OS
∂ψ̄

= ∂π
∂ψ̄

= 0). Consumer surplus increases. (∂OS
∂ψ̄

= zψ̄
2
> 0).

The result is consistent with what one would expect in a market where two suppliers (i.e.,
intermediary and owners) compete for consumers. By simple arguments of contradiction,
there is only one price in the market, and consumers gain all benefits from an increase in
the willingness to pay.

C Testing of ΓM

This section first outlines why ΓM is not identified in any econometric specifications we are
using in this paper. Secondly, we derive empirically testable predictions from the model that
allow for sharp tests between the case of consumers “rounding up” or “rounding down.”

C.1 Identification of ΓM

In the paper, we propose (broadly) two types of econometric specifications. We provide a
direct estimator for θ in equation 12. When allowing the perceived milage to also depend on
the value of ΓM , this equation is given by:

pricei = β0 +
K∑
k=1

αk(Mi − θ(Mi − ⌊Mi⌋ − ΓM)︸ ︷︷ ︸
Perceived Mileage

)k + ψXi + ui, (21)

To see why this is not identified, consider the case with k = 1. In this case, we can rewrite
the equations as pricei = β0 − ΓMα1θ +

∑1
k=1 α(Mi − θ(Mi − ⌊Mi⌋)k + ψXi + ui. where

the intercept absorbs the ΓM -term. The second type of estimator (see equation 13) we
used directly leveraged differences in outcomes around thresholds. The estimator assumes
a homogeneous θ, which implies that any variation in ΓM is a constant and does not affect
the estimated coefficients.
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C.2 Predictions for different values of ΓM

The theoretical model we have presented is sufficiently rich to predict different outcomes for
the case of different levels of ΓM . Because we are unable to directly estimate this value from
the data, we now present a rich set of predictions to test if the data is consistent with the
data. Because we want to derrive directional tests, it is sufficient to consider the case of
consumers always rounding up ΓM = 1 or consumers always rounding down ΓM = 0. We
now present a number of predictions that follow from the model described in the body of
the paper.

Proposition 6 If consumers exhibit inattention (i.e., θ̄ > 0):

1. Inattention Inattention in consumer transactions is lower than in intermediary transac-
tions if ΓM = 0, and higher if ΓM = 1.

2. Sales Price The discontinuity in intermediary sales prices is negative (∆pI∗).

3. Decentralized Market Price Whenever ΓM = 0, there is no discontinuity in decentralized
market prices (∆pD∗). Whenever ΓM = 1, there is a discontinuity and it is greater in absolute
terms than the discontinuity in intermediary sales prices.

4. Purchase Price The discontinuity in purchase price is negative. For ΓM = 0, it is smaller
in absolute terms than the discontinuity in sales prices. For ΓM = 1, it is greater than the
discontinuity in sales prices

5. Price Comparison The discontinuity in the dealership purchase price is (weakly) larger
in absolute terms than the discontinuity in decentralized market prices (|∆pS∗| ≥ |∆pI∗|).

6. Absolute Quantity The discontinuity in the quantity of intermediary transactions (∆QI∗)
is (weakly) negative for ΓM = 0 and (weakly) positive if ΓM = 1

7. Relative Quantity The discontinuity in the number of intermediary transactions (∆QI∗)is
(weakly) larger in absolute terms than the discontinuity in the number of consumer transac-
tions (∆QD∗) for ΓM = 0 and weakly smaller for ΓM = 1

Proof We have already derived the corresponding empirical results for all the predictions
above in the main text. All results are consistent with ΓM = 0. Note that this case is
equivalent to the general case for each ⌊M⌋ ≤M < ⌊M⌋+1 because we can make the same
substitutions. We first make the accurate substitutions. Utilities are given by: uS = vs−αM
and uB = vB−αM+α(M−⌊M⌋). Defining z = αM and Γz = α(⌊M⌋−ΓM), we can use the
previously derived results. The first statement comparing inattention between intermediary
and consume transactions follows directly from Proposition 1.
Case where ΓM = 0:
In this case, the inattention wedge is given by α(M − ⌊M⌋). This is positive for M ̸= ⌊M⌋,
and zero whenever M = ⌊M⌋. Thus, we can rewrite ∆x = x(θ = 0; z = 1,Γz = 0) − x(θ =
θ′; z = 1,Γz = 0), and plug in from the general case. Further, note that ∂x

∂θ̄
> 0 → ∆x < 0.

Proposition 2 shows that ∂pI∗

∂θ̄
> 0, which thus implies ∆pI∗ < 0. Similarly, straightforward

algebra shows that ∂pI∗

∂θ̄
> ∂pD∗

∂θ̄
, ∂p

I∗

∂θ̄
> ∂pS∗

∂θ̄
, ∂p

S∗

∂θ̄
≥ ∂pD∗

∂θ̄
, ∂Q

I∗

∂θ̄
≥ 0, and ∂QI∗

∂θ̄
≥ ∂QI∗

∂θ̄
,

Case where ΓM = 1:
In this case, the inattention wedge is given by α(M − ⌊M⌋ − 1). This is negative for all M ,
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and approaches zero whenever limM→⌊M+1⌋M . We can rewrite ∆x = x(θ = θ′; z = 1,Γz =
1) − x(θ = 0; z = 1,Γz = 1), and plug in from the general case. Similar to above, note

that ∂x
∂θ̄
> 0 → ∆x > 0. Proposition 2 shows that ∂pI∗

∂θ̄
< 0, which thus implies ∆pI∗ < 0.

Similarly, straightforward algebra shows that ∂pI∗

∂θ̄
< ∂pD∗

∂θ̄
, ∂p

I∗

∂θ̄
= ∂pS∗

∂θ̄
, ∂p

S∗

∂θ̄
≤ ∂pD∗

∂θ̄
, ∂Q

I∗

∂θ̄
≤ 0,

and ∂QI∗

∂θ̄
≤ ∂QI∗

∂θ̄
.

Inequalities
The above statements imply the following for the case of ΓM = 0: |∆pI∗| > |∆pD∗| and
|∆pI∗| ≤ |∆pS∗| and |∆pS∗| ≥ |∆pD∗|, ∆QI∗ ≤ 0, and |∆QI∗| ≥ |∆QD∗| and the following
for the case of ΓM = 1 : |∆pI∗| > |∆pD∗| and |∆pI∗| = |∆pS∗| and |∆pS∗| ≥ |∆pD∗|,
∆QI∗ ≤ 0, and |∆QI∗| ≥ |∆QD∗|
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D Empirical Extensions

In this section, we present additional empirical analyses to test the robustness of our results.
First, we present analyses that consider the impact of warranties. We then present placebo
tests that allow us to rule out that the discontinuities in our anlysis are occuring by chance
as well as a specification that identifies discontinuities without specifying the location of
the discontinuities. Then, we present analysis that allows for different specifications of the
functional form or differences in some of our choices regarding the selection of the sample.
Finally, we carefully consider the prevalence of rounded responses in the two markets and
find that rounding is common in consumer to consumer transactions only. Additionally,
we find that the estimated level of inattention in non-rounded observations in consumer to
consumer transactions is lower than previously estimated. Finally, we present results on the
heterogeneity of the level of inattention across models and odometer readings.

D.1 Warranties

Our identification strategy assumes that discontinuities at multiples of 10,000 miles arise
purely from inattention. A potential threat to this identification strategy is that vehicles have
warranties, potentially expiring at multiples of 10,000 miles4. Warranties have a maximum
time frame and odometer reading and are generally set at the brand level. For example,
a vehicle with a 5-year/60,000-mile warranty is under warranty as long as the vehicle is
less than 5 years old and has logged fewer than 60,000 miles. If there are discontinuities in
price at the end of the warranty 5, we could mistakenly attribute the discontinuity due to the
expiration of a warranty to inattention. We collect data on the length of standard warranties
by each brand and present two robustness checks to alleviate this concern. Approximately
80% of basic warranties end at 36,000 miles, and approximately 80% of drivetrain warranties
end at 60,000 miles6. This gives us confidence that only discontinuities at the 60,000-mile
mark are potentially affected by the end of warranties. To formally test if warranties have
an impact, we first leverage the fact that warranties have a time limit and reanalyze the data
using observations of vehicles that are -due to their age- not under either drivetrain or basic
warranty when they are being transacted. We present the results in the bottom panel of
Figure A3. Obviously, this introduces some data limitations (e.g., all warranties are between
4 and 10 years and the set of vehicles that are transacted around low odometer readings and
simultaneously sufficiently old is relatively small and not representative of the full sample.
However, this empirical exercise shows patterns similar to the results presented in Table 3
also holds for vehicles for which warranties have expired already.

A second analysis uses the set of vehicles for which the warranty time limit has not yet
lapsed and leverages the differences in mile thresholds for different makes. For example, Ford
has a 36,000-mile basic warranty and a 60,000-mile drivetrain warranty, whereas Volkswagen

4Most vehicles come with basic warranties that cover most defects and longer-lasting powertrain war-
ranties that are more limited.

5A forward-looking consumer should anticipate that the warranty expires, and as a result, the expected
value of the warranty decreases continuously over time. However, if consumers are inattentive to the warranty
length, we might observe such a discrete drop.

6The distribution of the warranty terms is presented in Figure A4 in the Online Appendix.
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has basic and powertrain warranties that both expire after 72,000 miles. We now estimate
the following model, similar to equation 13:

yi = β0 + ψ11 [milesi ≥ wB] + ψ21 [milesi ≥ wDT ] +

K∑
k=1

αkmiles
k
i +

14∑
j=1

βj1 [milesi ≥ j × (10, 000)] + γXi + ui. (22)

In the equation, 1 [milesi ≥ wB] is an indicator that equals one for vehicles with odometer
readings exceeding the basic warranty and 1 [milesi ≥ wDT ] is an indicator variable that
equals one for vehicles with odometer readings exceeding the drivetrain warranty. Thus, the
β coefficients now isolate the effect of the discontinuities while controlling for the (potential)
discontinuities due to the expiration of warranties. For this analysis, we need to impose the
assumption that the effect of the expiration of a warranty is homogeneous across different
lengths of warranties. For example, the negative effect of a warranty ending at 50,000 miles
should be equal to the effect of a warranty ending at 60,000 miles. Because many warranties
end at 36,000 miles, 50,000 miles, and 60,000 miles, there is not much variation in the data to
precisely identify the effect of warranties from the effect of inattention. However, the results
(presented in the top panel of Figure A3 follow the same pattern as the main analysis (Table
3) and is consistent with the earlier results, with the exception of the discontinuity at 60,000
miles, which is now positive for purchase and sales prices. Given that 78% of drivetrain
warranties end at 60,000 miles, this coefficient is identified from a small set of observations
for which the warranty does not end at 60,000 miles. The positive coefficient could be the
result of heterogeneous effects of the expiration of warranties7.

D.2 Location of Discontinuities

So far, we have tested discontinuities in various outcomes at multiples of 10,000 miles, mo-
tivated by the theoretical model of left-digit bias. We present placebo tests in the Online
Appendix D.4, and find our estimation strategy robust to the inclusion of placebo locations
of discontinuities. We now aim to directly identify the location of the discontinuities without
pre-specifying them occurring at multiples of 10,000 miles. To do so, we derive a flexible
model that allows for a highly flexible relationship between the odometer and the outcome
variables and test if discontinuities at 10,000 miles appear without pre-specifying them. We
create a complete set of indicator variables that define each 1,000-mile bucket above which
any vehicle falls. Then, using these buckets, we estimate the following “semi-lasso” model,
in which we allow penalization of the indicator variables while maintaining the full structure
of the fixed effects. To estimate the model and keep the computation feasible, we use a
two-step approach. First, we run a regression with the full set of fixed effects but omit the
odometer variables and store the residual. Then, using the residual as the outcome variable,
we estimate the non-linear model and estimate the αk and θ coefficients.

7If the average effect of warranties across all mileage policies is different from the effect of warranties
ending at 60,000, the estimated coefficient on 60,000 miles might be capturing that heterogeneity and might
not cleanly identify the effect of inattention.
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β̂ = argmin
β

∑
n

(
yi −

149∑
j=6

βj1[miles ≥ j × (1, 000)]− γXi

)2

+ λ|β| (23)

In the above model, yi is the residual, Xi the full set of fixed effects, and each βj term captures
the relationship between a specific 1,000 mile bucket and price. One obvious downside to
the lasso model is that the magnitude of the coefficients is difficult to interpret. Significant
coefficients are not necessarily indicative of discontinuities, but our theoretical model would
predict significantly negative coefficients at a multiple of 10,000 miles. Figure A5 presents
the results for the 148 coefficients. Reassuringly, none of the coefficients at multiples of
10,000 miles are shrunk to zero and generally stand out as more negative.

D.3 Left-Digit Bias

The results we present in this paper could potentially be due to psychological processes
different from left-digit bias. While we cannot fully rule out any of those alternative theories,
we want to test one implication that follows from left-digit bias. If consumers are left-digit
biased in the way we specified, we would expect the excess prices to increase continuously
within each 10,000 mile bucket. To test the variation between 10,000-mile thresholds, we
now estimate the following model.

yi = β0+
K∑
k=1

αkmiles
k
i+

9∑
j=1

βj1 [j × (1, 000) ≤ mod(milesi) < j · (1, 000) + 1, 000]+γXi+ui.

(24)
In the equation, mod(milesj) is the modulus, which gives a number between 0 mi and 9,999
mi. Similarly to the model used to test for discontinuities, we include the polynomial to
absorb the continuous portion of the depreciation and let the outcome variables be the
purchase price, the sales price, and the per-unit profit. This allows us to interpret the
results as the (weighted) average excess in purchase price, sales price, and profits for different
mileages8. The results presented in Figure A6 show two patterns. First, the coefficients for
all three outcome variables generally increase and are higher for vehicles with higher ending
digits. Second, there is a drop at the 5,000-mi mark for most vehicles. This is consistent with
consumers who are left-digit biased but also treat odometer readings differently, depending
on being above or below multiples of 5,000.

D.4 Placebo Tests

This section considers the robustness of the analysis above by using placebo tests. We re-
estimate tables (3), (4). and (5), which estimate discrete drops at each multiple of 10,000
miles. Appropriately estimating both the continuous and discrete changes depends on fitting
a sufficiently high polynomial of the odometer reading. We now add discontinuities at every
10,000 kilometer cutoff to test if this is estimated accurately. Because the United States

8Note, again, that the intercept here is not identified, and the price differences are relative to the price
for vehicles between vehicles with moduli between 0 mi and 1,000 mi.
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discloses odometer readings in miles, a consumer never observes the mileage in kilometers. As
a result, we expect the coefficients on each 10,000-kilometer cutoff to be largely insignificant.
We present the results in figures (A7), (A8), and (A9). The first figure presents the results
for the various prices the dealership pays or receives. We have estimated 3×23 coefficients for
kilometer cutoffs. Except for the sales price at 40,000km and the profit at 240,000km cutoff,
no coefficient is significant at the p = 0.05 level. Purely by chance, we would expect 3.45
coefficients at the 5% level, In figure (A8), we observe five coefficients significant at the 5%
level, which is slightly higher than what is expected purely by chance (2.3). Finally, in figure
(A9) we observe two coefficients significant at the 5% level, compared to an expected number
of 1.15. Given that some kilometer cutoffs are within a few 100 miles of a corresponding
10,000-mile cutoff, the results of the placebo test are generally reassuring.

D.5 Accidents

Intermediaries play a role in reducing adverse selection and asymmetric information (Biglaiser
et al., 2020). There are likely interesting interactions between this adverse information and
inattention, but they are beyond the focus of this paper. However, we now present two sets
of analyses. First, we collect data from the Texas DMV that records each accident with
damages above $1.000, for which a police report was filed. These accidents are categorized
according to their damage of severity to each vehicle on a scale of 0 to 7. The vast majority of
vehicles with damage ratings above 4 never get sold afterwards, so we focus on vehicles with
damages between 0 and 4. First, we correlate the prices and profits to the vehicle damage for
vehicles that have been in an accident before the first transaction, and present the results in
table A1. First, we observe that the penalty in sales price due to a previous accident is sig-
nificantly larger in decentralized transactions. Secondly, we find that dealerships earn higher
levels of profit on vehicles with more severe accidental damage. The results are difficult to
interpret, because the choice of channel is an endogenous outcome, chosen after a potential
accident. Our preferred interpretation of the difference between the “accident penalty” in
the two markets is selection. Consistent with previous work (Biglaiser et al., 2020), the
intermediary might only accept vehicles of higher observed (and potentially unobserved by
the consumer) quality, leaving worse vehicles to be transacted in the decentralized market.
The results about intermediary profit could reflect two potential explanations, which we are
unable to untangle. First, it could be that the intermediary invests more to “refurbish”
vehicles with more severe accidental damage (e.g. changing tires , removing scratches, or
cleaning the vehicle more thoroughly). Because we do not observe these investments, we
might falsely attribute them to profit. Secondly, similar to the main result in our paper,
some consumers might be inattentive to damages that are difficult to identify and the deal-
ership might be extracting more surplus from these vehicles. However, if the intermediary
would treat damages exactly like vehicles right below multiples of 10,000 miles, we would
also expect them to sell a higher quantity of damaged vehicles, which we do not observe.

As a second analysis, we now split our sample into vehicles that previously had an
accident or did not have an accident and re-estimate the inattention parameter. The results
are presented in A2. The results show that in intermediary transactions, the estimated level
of left-digit bias is similar between vehicles that were involved in no accidents (θ = 0.401)
and those that were previously in an accident (θ = 0.442). Due to the relative scarcity of
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accidents, the estimate for vehicles that have been in an accident are quite noisy. For vehicles
that transact in private transactions, there is a sizable difference between the two estimates.
Vehicles that had no accident have an estimated parameter of (θ = 0.308), while vehicles that
were in an accident have a coefficient of (θ = 0.031). There is no clear interpretation of these
results, but it is reassuring that the result about inattention being higher in intermediary
transactions holds across the sample of transactions with previous accidents as well.

D.6 Left-Digit Bias for Price

As a first step, we re-estimate the LDB coefficients from Table 6 while also permitting bias
in the price dimension. This is implemented through a hedonic price regression framework.
Because sellers may themselves act strategically when setting prices around salient thresh-
olds, the resulting estimates should be viewed as a robustness exercise that coarsely aims
to “control” for price-related LDB rather than as precise estimates of the underlying struc-
tural bias parameters with respect to the price. We illustrate the logic with a toy example.
Suppose price is two digits, p = ⌊p⌋10 + r10 with remainder r10 ∈ {0, . . . , 9}. If consumers
are inattentive to the second digit, perceived price is p̂ = ⌊p⌋10 + (1− θP )r10. Equating this
with the hedonic value α + g(M) + ε gives α + g(M) + ε = p− θP r10, or

p = α + g(M) + θP r10 + ε,

so θP is directly estimated as the coefficient on the remainder.
In the empirical model, both price and mileage are subject to inattention. Define the

mileage remainder RM =M − ⌊M⌋10k and the price remainders P (1000), P (100), P (10), P (1) at
each place value. Then the estimating equation is

pi = α +
K∑
k=1

βk
(
Mi−θMRM,i

)k
+ θP,1000P

(1000)
i +θP,100P

(100)
i + θP,10P

(10)
i +θP,1P

(1)
i + FEi+εi,

where θM captures inattention to mileage digits and θP,· capture inattention to price digits.
The results are presented in Table A3. Accounting for pricing, LDB does not affect the
estimates of our LDB coefficients on mileage. Not surprisingly, consumers are highly attentive
to the variation at the $1,000s level, but exhibit progressively higher levels of left-digit bias
for digits to the right. While the hedonic regression in general comes with some strong
assumptions about firms not being strategic, the regression would be particularly problematic
if intermediaries set prices, knowing that some consumers are left-digit biased with respect
to all attributes. As a thought exercise, we extend the baseline model to allow consumers to
exhibit correlated LDB in both the price and the mileage of vehicless.

Again, let vehicle i have true price Pi, mileageMi, and quality Vi. The consumer perceives
both attributes with potential left-digit bias:

P̃i = Pi − θP · (Pi − ⌊Pi⌋) , (25)

M̃i =Mi − θM · (Mi − ⌊Mi⌋) , (26)

where ⌊Pi⌋ and ⌊Mi⌋ denote the nearest round-number thresholds (e.g., $20,000 for prices
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or 40,000 miles for mileage). The parameters θP , θM ∈ [0, 1] capture the degree of left-digit
bias for price and mileage respectively.

The consumer’s utility from purchasing vehicle i is given by:

Uij = Vi − αP̃i − γM̃i + εij, (27)

where α > 0 measures the marginal disutility of perceived price, γ > 0 measures the marginal
disutility of perceived mileage, and εij is an idiosyncratic preference shock.

Finally, we allow for the possibility that left-digit bias in price and mileage are correlated
across consumers, so that: (

θP

θM

)
∼ F (µ,Σ) , (28)

where µ is the mean vector and Σ is a covariance matrix. This formulation captures the idea
that some consumers may be generally more susceptible to left-digit bias across multiple
attributes. An implication of this sett is thatup is that, since vehicles right below round
mileage thresholds are particularly attractive to consumers with high values of LDB across
both dimensions, the firm might be more likely to price those vehicles at prices right below
round thresholds. Moreover, if the firm increases their prices for those vehicles, this might
exagerate the effect of left-digit bias we have estimated. While solving this firm problem is
interesting, we do not aim to provide a solution here. However, in order to probe whether
our results might be driven by LDB on the price coefficient, we test whether we see this
specific firm behavior of bundling favorable mileages with favorable prices. To do so, we
examine how consumer attention to left digits in price and odometer readings may interact
and estimate correlations using a modulus-based specification.a The analysis proceeds in five
steps:

1. Variable construction. For each transaction, we compute two modulus variables:

modulus price = sales price modMp, odometer modulus = odometer reading modMo,

where the baseline choices are Mp = 1000 (price) and Mo = 10,000 (odometer). We
further define a rounded odometer bin

odometer modulus round =

⌊
odometer modulus

1000

⌋
× 1000,

which takes values in increments of 1,000 miles.

2. Price bins. We partition the price modulus into 10 bins of width 100 (e.g. [900, 1000),
[800, 900), . . . , [0, 100)).

3. Model estimation. For each price bin b ∈ {1, . . . , 10}, we run a linear probability
model:

1{modulus price ∈ b} =
∑
k

γb,k · 1{odometer modulus round = k}+ ε,
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where k indexes odometer modulus intervals of 1,000 miles. This gives us 10 regressions
(one for each price bin).

4. Coefficient extraction. From each regression, we collect the coefficients γb,k and
their standard errors. These measure the relative association between being in price
bin b and having an odometer modulus in interval k.

5. Visualization. We plot γb,k with 95% confidence intervals for each bin b, with odome-
ter bins k distinguished by color. The resulting figure shows the correlation structure
between (i) being near a left-digit threshold in price and (ii) being near a left-digit
threshold in mileage.

This procedure is applied separately for private transactions and dealer transactions, and
for two different price modulus definitions (Mp = 1,000 andMp = 10,000). The resulting four
plots provide a robustness check for the presence of joint left-digit effects in both markets
and across modulus scales. The results are presented in figures A10, A11, A12, and A13.
Across all specifications, we find that prices below round thresholds are much more common
than other prices in dealership transactions. However, this is largely orthogonal to favorable
mileages. For example, from figure A10, we see that regardless of the odometer modulus,
about 25% of all transactions have prices that end in values between $900 and $999. We see
similar effects for private transactions, with the main difference being that prices are much
more likely to end in round numbers, as opposed to below them.

D.7 Information Sources

Consumers often rely on third-party price recommendations to understand the value of a
particular vehicle. We are not formally incorporating this external information into our
model, but we now want to present some descriptive evidence about recommended prices
for vehicles and how they might interact with left-digit bias. We collected data from a large
price recommendation website that provides suggested used-vehicle values under various
odometer readings, vehicle conditions, and geographic areas. Specifically, we systematically
queried the recommended private-party and trade-in prices for a broad selection of makes,
models, and model years across multiple ZIP codes in the United States at different points
in time between 2018 and 2023. For each vehicle, we varied the odometer reading from
10,000 up to 150,000 or 200,000 miles in increments of 100 miles—and recorded the resulting
recommended prices, along with the date, location, and condition indicators (e.g., ‘Very
Good,’ ‘Good’).

Our final sample consists of 190 unique model/zipcode/query date combinations, and
we collect the recommended price for each of the four conditions, ranging from “Fair” to
“Excellent”, separately for each odometer between 10,000 and 150,000, in increments of 100.
A small number of odometer readings (1,192) return errors and therefore we have a final
sample of 1,064,760 observations.

The collected data has some aspects that are consistent across different zip codes, vehicle
models, times, and conditions. For older vehicles (where there presumably is little data
available at low odometer readings), the recommended price is constant with respect to
odometer until some point, after which the value begins decreasing weakly as a function of
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odometer. All vehicles in our sample show this decreasing function starting at some point
before 40,000 miles. Newer models exhibit a weakly decreasing trend starting immediately
at 10,000 miles on the odometer. Subsequently, up to exactly 70,000 miles, all vehicles
decrease by a relatively constant, vehicle-specific amount every 500 miles. Between 70,000
and 100,000 miles, the decreases occur at multiples of 1,000. Beyond 100,000 (up to 150,000),
the decreases happen at multiples of 2,000.

With respect to information affecting left-digit bias in our results, we do not observe
larger decreases at multiples of 10,000 compared to the closest non-10,000 discontinuity. We
first plot the recommended prices for one example vehicle (figure A14) to illustrate these
patterns. Interestingly, the recommended price for most vehicles is nearly a linear function
of odometer after the initial horizontal segment, with the granularity of odometer-based price
updates varying by mileage range.

We then estimate discontinuities in this sample for private price recommendations. The
results, shown in table A4, confirm that price discontinuities do occur at multiples of 10,000.

Next, we use the data for each odometer reading to estimate the inattention parameter.
If consumers followed the recommended price exactly, the inattention parameter estimated
here would perfectly match that from real-world market prices. While our sample of recom-
mendations is smaller than actual transactions, we have the advantage of “holding constant”
all other vehicle attributes when isolating variation in odometer. Accordingly, we re-estimate
equation 12, include a fixed effect for each model, and obtain an inattention parameter in
table A5 that is quite low (0.015). We also allow for inattention at 1,000-mile increments;
unsurprisingly, that estimate is larger (0.66). Because there are ten times as many 1,000-mile
thresholds than 10,000-mile thresholds, the coefficients are also more precisely estimated.

D.8 Alternative Specifications

In the main analysis, we restricted our data set to a number of dimensions. In this section,
we present some results to show the robustness of our results to specific assumptions or
specifications.

D.8.1 Functional Form of Price Effects

To relax the assumption of linear effects, we re-estimate columns (1) and (2) of Table 4 using
log of prices. Because profits can take negative values, we cannot use a log specification for
column (3). We present the results in Table A6 and find that they are robust and qualitatively
very similar to the results presented in the main paper.

D.8.2 Sample Selection

One of the key restrictions we applied to the data was to remove vehicles that were purchased
and subsequently sold by different vehicles. These vehicles likely were transacted through an
auction or directly sold to a different dealership. One concern is, of course, that restricting
the sample on that dimension might lead to missing data problems if certain vehicles are
more likely to be moved via auction.

21



We now present results that include vehicles that were purchased and subsequently sold
by a different dealership. Because we do not observe the outcomes from potential wholesale
auctions, we are unable to attribute profits to a specific dealership. However, we are able
to test the overall implications from our paper. We reestimate the inattention coefficients
presented in Table 2 and the coefficients in Table 3. The results are presented in Table A7
and Table A8, and the results are generally consistent with the results presented in the main
text. The discontinuities are generally slightly larger (in absolute terms). Additionally, the
estimated level of inattention is slightly higher compared to the restricted sample. Addition-
ally, we consider vehicles that were bundled with a trade-in and without in the main sample.
Heterogeneity along this dimension could be driven by selection effects (e.g. consumers that
have a trade-in might be older) or might be driven by the fact that the transaction becomes
more complicated. Presumably, consumers that provide a trade-in might be more likely to
transact at the dealership (e.g. due to significant tax savings), and might be quite different
from consumers that do not trade-in a vehicle. As an additional analysis, we present table
A11, in which we separately estimate inattention coefficients for consumers that bundle their
transaction with a trade-in. The results show that vehicles without a trade-in are associated
with higher levels of inattention.

D.8.3 Rounding

Possibly, consumers are rounding the odometer readings when filling out the title form. This
introduces measurement error that might be correlated with inattention. For example, a
more attentive consumer may also be more likely to observe the odometer carefully and
report the exact odometer reading on the title form. We plot the frequency of “round”
numbers that are multiples of 100, 250, or 1,000 in Figure A15. Assuming that vehicles
precise odometer is random, one could expect that about 1% of vehicles have odometer
readings that are multiples of 100, about 0.25% have multiples of 250, and about 0.1%
have odometer readings that are multiples of 1,000. For vehicles transacted in dealership
transactions, the frequency of observing such round numbers is relatively close to what we
would expect if the odometer is reported accurately. However, for vehicles transacted in the
decentralized market, rounding is highly prevalent and increases drastically for vehicles with
higher odometer readings. For example, in the “bucket” of vehicles between 100,000 miles
and 110,000 miles, over 10% of vehicles have odometer readings that are multiples of 1,000
and over 20% of vehicles have odometer readings that are multiples of 100.

Clearly, rounding is prevalent in the decentralized market, and to deal with this issue, we
remove numbers that are (presumably) rounded. We re-estimate the inattention parameters
reported in Table 2 and remove all vehicles that end in a multiple of 1,000, a multiple of 250,
or a multiple of 100. By removing these observations, we retain a sample that is presumably
precisely reported. However, because more inattentive consumers are potentially more likely
to round numbers, the remaining sample may also be comprised of more inattentive con-
sumers. We present the results in Table A9 and they are virtually identical with the results
from the full sample for vehicles sold at dealerships. Specifically, the estimated inattention
coefficient is θ = 0.400 or θ = 0.399 in all specifications, including the full sample. The
results for decentralized transactions show that removing rounded values drastically affects
the reported coefficients. For the full sample, we estimate θ = 0.28, while the estimates in
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the samples without rounded values are between θ = 0.201 and θ = 0.213. These results are
consistent with the theory proposed in the paper and also with the fact that more attentive
consumers are less likely to report rounded odometer readings.

D.9 Product Level Heterogeneity

In our empirical analysis, we have largely ignored the heterogeneity of θ within each channel.
As a robustness check, we now aim to describe product attributes that might affect the level
of observed heterogeneity, both in the decentralized and centralized market.

For the analysis, we estimate a separate inattention parameter, price level, and deprecia-
tion for each model / 10,000 mile-bucket combination. We do this separately for dealership
and decentralized transactions. For each value j = {10, 000; 20, 000; ...; 150, 000}, we restrict
the sample to observations in (j − 5, 000; j + 5, 000). The estimated model, which we run
separately for each car model and value of j is given by:

pi = γ0 + γ1milesi + γ21 [milesi ≥ j] + um̃,

We estimate the inattention parameter θMod,j, where j = {10, 000; 20, 000; ...; 150, 000}
and Mod denotes the model. Thus, we have an estimate for each model around each 10,000
mile cutoff, where P 0

Mod,j = E[p|milesi = j − 5, 000] = γ̂0 + (j − 5, 000)γ̂1. The average

depreciation is given by αMod,j =
γ̂1+

γ2
10,000

E[p|milesi=j−5,000]
.

Using the estimated inattention parameter, we now run the following fixed effects regres-
sion to estimate partial correlations between inattention, depreciation, price level, and the
specific thresholds9:

θMod,j = β0 + β1P
0
Mod,j + β2αMod,j + γMMod,j + ψXMod + ϵMod,j,

where P 0
Mod,j and αMod,j are price and depreciation as described above,MMod,j is an indicator

variable for each 10,000-mile threshold, and XMod is a fixed effect for each model.
The identification of coefficients, therefore, comes from the variation in odometer, price,

and depreciation within car models. Table A10 presents the results. We first present the
regression for vehicles in dealership transactions and then present the regression for decen-
tralized transactions. W We find that the price coefficient and the depreciation coefficient
are significant and positive. Similarly, the positive coefficients on higher odometer thresh-
olds are positive and significant. This result implies that consumers pay less attention to
vehicles with higher levels of depreciation and higher prices, which is seemingly inconsistent
with models of rational inattention. Additionally, consumers treat specific ranges of odome-
ter readings differently, with higher levels of inattention for vehicles with higher odometer
readings, regardless of the depreciation or price of those vehicles. For transactions in the
decentralized market, there is little observed heterogeneity.

9We exclude observations with inattention parameter greater than 1 or less than 0.
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E Omitted Details of Estimation

E.1 Inventory & Competition

To estimate the level of inventory, we consider the number of vehicles of a specific model
on the lot for a specific dealership at the time of sale. Because we do not directly observe
if a vehicle is on the lot, we need to back out which vehicles are on the lot at any time t.
To do so, we consider all vehicles in our sample that were purchased and subsequently sold
by a dealership. Then, we assume the vehicle is “on the lot” between those two dates. One
obvious issue with this approach is that the measure of vehicles on the lot cannot account
for vehicles the dealership purchased before our observation window or sold after the end of
the observation window. To account for this, we exclude vehicles that were sold within 1
year of the start data and end date of our observational window. While this still leaves us
with a sufficient number of observations, we are confident that it minimizes potential bias for
the following two reasons. First, the median time of vehicles on the lot is 29 days, which is
significantly less than one year. Secondly, when plotting the inventory (either for individual
dealerships or at the aggregate level), the level of inventory appears to reach a “steady state”
within a few months.

F Survey Details

This appendix documents the Prolific survey conducted to measure consumers’ vehicle search
and consideration behavior. The survey was fielded in July 2025 on Prolific to a sample of
1,500 U.S. respondents aged 18–83 who had either purchased a vehicle or actively searched
for one within the past five years. Respondents completed a short questionnaire and were
paid standard Prolific rates.

The survey included screening questions about recent vehicle search or purchase activity,
questions about whether respondents considered purchasing from a dealership or from an-
other private individual, and questions about the channel in which respondents began their
search. Respondents reported whether their most recent transaction occurred in the private
market, at a dealership, or involved both channels.

Across respondents who reported purchasing in the private market, a larger share indi-
cated that they also considered dealerships than the share of dealership buyers who indicated
that they considered private-market options. In addition, the percentage of respondents who
reported starting their search in a different channel than the one in which they ultimately
purchased was higher among private-market buyers than among dealership buyers.

Table A13 presents results from a linear probability model regressing the indicator the op-
posite channel on an indicator in the private market. The results show that respondents who
purchased in the private market were significantly more likely to have considered dealerships
than dealership buyers were to have considered the private market.

Table A14 restricts the sample to respondents who reported considering the opposite
channel and tests for differences in search origination. We regress an indicator for starting
the search in the eventual purchase channel on the private purchase indicator. The results
indicate that private market buyers are less likely to have started their search in the private
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channel compared to dealership buyers starting at a dealership. This suggests that private
market transactions are more likely to be the result of consumers switching channels during
the search process.
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Tables

Table A1: Correlation between vehicle accident severity and intermediary sales price, pur-
chase price, profit, and decentralized sales price.

Dependent Variables: Purchase Price Sales Price Profit Sales Price (Decentralized)
Model: (1) (2) (3) (4)

Variables
Vehicle Damage: 0 -132.2 -63.02 69.14 -691.5∗∗∗

(82.08) (46.90) (75.69) (153.2)
Vehicle Damage: 1 -189.3∗∗∗ -122.5∗∗∗ 66.83∗∗∗ -452.1∗∗∗

(24.92) (12.17) (24.51) (25.86)
Vehicle Damage: 2 -285.6∗∗∗ -180.0∗∗∗ 105.7∗∗∗ -939.6∗∗∗

(25.49) (13.63) (24.34) (24.65)
Vehicle Damage: 3 -458.5∗∗∗ -296.0∗∗∗ 162.5∗∗∗ -1,497.7∗∗∗

(34.01) (18.82) (32.47) (30.98)
Vehicle Damage: 4 -493.4∗∗∗ -323.1∗∗∗ 170.3∗∗ -1,926.2∗∗∗

(69.29) (36.45) (66.18) (45.55)

Fixed Effects Yes Yes Yes Yes

Fit Statistics
Observations 3,217,182 3,217,182 3,217,182 1,588,659
R2 0.78260 0.93261 0.14473 0.87583
Within R2 0.05979 0.19416 0.00056 0.07668

Clustered (VIN abr) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A2: Estimate of the Inattention Parameters by Dealer and Private Transactions,
separately for vehicles with recorded accidents.

Transaction Type and Accident Status

Dealer - No Accident Dealer - Accident Private - No Accident Private - Accident

(1) (2) (3) (4)

Inattention (θ) 0.401∗∗∗ 0.442∗∗∗ 0.308∗∗∗ 0.031
(0.015) (0.071) (0.045) (0.189)

Observations 2,353,823 129,598 1,023,019 115,178
7th Polynomial Yes Yes Yes Yes
Fixed Effects Yes Yes Yes Yes

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: We omitted polynomial coefficients in the table. The sample includes vehicles
between 25,000 miles and 125,000 miles. The inattention coefficient (θ) is estimated
separately for dealership and private transactions, and further split by whether the vehicle
has a recorded accident.

Table A3: Estimate of the Inattention Parameters

Dealership Decentralized

Inattention (θ) 0.401 0.271
(0.015) (0.043)

θPrice (1000s) 0.0175 0.0496
(0.0006) (0.0016)

θPrice (100) 0.245 0.380
(0.0060) (0.0143)

θPrice (10s) 1.000 1.000
(0.0575) (0.1508)

θPrice (1s) 1.000 1.000
(0.5949) (2.067)

Observations 2,483,421 1,138,197
7th order polynomial Yes Yes
Fixed Effects Yes Yes

Notes: We omitted polynomial coefficients from the table. The sample includes vehicles
between 25,000 miles and 125,000 miles. Standard errors are in parentheses.
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Table A4: Discontinuities in sample of vehicles price recommendations.

Dependent Variable: Value
Model: (1)

Variables
20K miles 37.90∗∗∗

(5.428)
30K miles -48.91∗∗∗

(6.607)
40K miles -82.48∗∗∗

(5.708)
50K miles -22.68∗∗∗

(3.477)
60K miles -7.701∗∗∗

(1.670)
70K miles 16.29∗∗∗

(1.890)
80K miles -6.962∗∗

(3.269)
90K miles 1.205

(3.001)
100K miles 47.50∗∗∗

(3.193)
110K miles 6.865∗∗∗

(2.387)
120K miles 7.839∗∗∗

(2.367)
130K miles -7.244∗∗∗

(2.136)
140K miles -53.02∗∗∗

(3.332)

Fixed-effects
Vehicle id Yes
ConditionType Yes

Fit statistics
Observations 1,063,568
R2 0.95087
Within R2 0.47617

Clustered (Vehicle id) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A5: Estimate of the Inattention Parameters at Different Odometer Moduli, based on
price Recommendations.

θ1,000 θ10,000
Estimate 0.663∗∗∗ 0.015
Standard Error (0.157) (0.016)
Observations 1,063,568
Number of Vehicles 190

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A6: Log prices in Estimation of Pricing Discontinuities.

log(purchase price) log(sales price)

10K miles -0.003 -0.005∗∗∗

(0.002) (0.0008)
20K miles -0.002 -0.003∗∗∗

(0.001) (0.0006)
30K miles -0.005∗∗∗ -0.006∗∗∗

(0.001) (0.0005)
40K miles -0.007∗∗∗ -0.007∗∗∗

(0.001) (0.0006)
50K miles -0.007∗∗∗ -0.007∗∗∗

(0.001) (0.0006)
60K miles -0.010∗∗∗ -0.010∗∗∗

(0.001) (0.0006)
70K miles -0.010∗∗∗ -0.01∗∗∗

(0.001) (0.0007)
80K miles -0.01∗∗∗ -0.01∗∗∗

(0.002) (0.0009)
90K miles -0.02∗∗∗ -0.02∗∗∗

(0.002) (0.001)
100K miles -0.02∗∗∗ -0.02∗∗∗

(0.002) (0.001)
110K miles -0.006∗ -0.005∗∗

(0.003) (0.002)
120K miles -0.01∗∗∗ -0.02∗∗∗

(0.004) (0.003)
130K miles -0.003 -0.009∗∗

(0.006) (0.004)
140K miles -0.02∗∗ -0.01∗∗

(0.008) (0.006)

Observations 3,219,973 3,219,973
R2 0.83289 0.92959
Within R2 0.12193 0.26375

Fixed Effects x x

This table re-estimates table 4 using log prices as dependent variable. Note that we do not
include Dealership Profit because it includes negative numbers.
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Table A7: Estimate of the Inattention Parameters.

Sample

Dealership Dealership

(1) (2)

Inattention (θ) 0.43∗∗∗ 0.44∗∗∗

(0.014) (0.015)

Observations 3,420,993 3,420,993
7th order polynomial Yes Yes
Uniformly Weighted No Yes
Fixed Effects Yes Yes

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Columns (2) is estimated using weighted nonlinear least squares, giving each
odometer reading equal weight. We omitted polynomial coefficients in the table. The
sample includes vehicles between 25,000 miles and 125,000 miles. The sample contains all
dealership transactions, including vehicles that were sold by a different dealership from the
one that purchased it.
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Table A8: Estimated discrete change in prices at 10,000 mile thresholds.

Dependent Variables: Purchase Price Sales Price Profit
Model: (1) (2) (3)

Variables
10K miles -106.0∗ -215.8∗∗∗ -115.3∗∗

(60.35) (27.98) (58.59)
20K miles -125.2∗∗∗ -99.84∗∗∗ 31.12

(35.55) (35.27) (46.56)
30K miles -94.70∗∗∗ -116.7∗∗∗ -24.24

(32.02) (13.29) (30.76)
40K miles -140.4∗∗∗ -168.6∗∗∗ -32.49

(30.10) (12.84) (27.88)
50K miles -111.4∗∗∗ -157.2∗∗∗ -39.59

(27.56) (11.43) (26.90)
60K miles -150.3∗∗∗ -208.2∗∗∗ -55.09∗∗

(25.88) (12.42) (24.70)
70K miles -138.0∗∗∗ -247.4∗∗∗ -117.1∗∗∗

(25.97) (12.43) (25.39)
80K miles -99.42∗∗∗ -191.1∗∗∗ -95.00∗∗∗

(27.65) (13.57) (26.19)
90K miles -159.5∗∗∗ -286.4∗∗∗ -117.4∗∗∗

(28.98) (15.63) (27.13)
100K miles -10.46 -211.4∗∗∗ -197.4∗∗∗

(33.06) (18.24) (31.82)
110K miles 8.193 -38.42∗ -61.11∗

(36.84) (22.79) (34.04)
120K miles -55.00 -191.8∗∗∗ -138.8∗∗∗

(39.39) (25.71) (39.14)
130K miles -44.77 -170.0∗∗∗ -106.1∗∗

(48.60) (31.73) (44.85)
140K miles -194.6∗∗∗ -259.1∗∗∗ -90.03

(64.32) (43.33) (58.88)

Fixed Effects Yes Yes Yes

Fit statistics
Observations 4,458,189 4,458,189 4,458,189
R2 0.76682 0.91307 0.16496
Within R2 0.05242 0.17108 0.00076

Clustered (VIN abr) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: We omitted polynomial parameters and intercepts in table. The outcome variables are (1)
the purchase price, (2) the sales price, and (3) the difference between sales price and purchase
price. A high order polynomial captures the continuous change in price as a function of the
odometer reading. The estimated coefficients estimate the discrete change in the outcome variable
at the respective 10,000 mile mark. The sample contains all dealership transactions, including
vehicles that were sold by a different dealership from the one that purchased it.
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Table A9: Estimate of the Inattention Parameters.

Removed multiples of:
1000 mi 250 mi 100 mi 1000 mi 250 mi 100 mi

Dealership Dealership Dealership Decentralized Decentralized Decentralized

(1) (2) (3) (4) (5) (6)

Inattention (θ) 0.40∗∗∗ 0.400∗∗∗ 0.399∗∗∗ 0.201∗∗∗ 0.201∗∗∗ 0.213∗∗∗

(0.015) (0.015) (0.015) (0.045) (0.048) (0.048)

Observations 2,476,892 2,465,650 2,449,144 1,011,119 985,594 931,682
7th Polynomial Yes Yes Yes Yes Yes Yes
Fixed Effects Yes Yes Yes Yes Yes Yes

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: We omitted polynomial coefficients in the table. The sample includes vehicles
between 25,000 miles and 125,000 miles. The sample removes multiples of 100, 250, or 1000
mi from the dataset when estimating the inattention coefficient.
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Table A10: Heterogeneity of inattention in dealership and decentralized transactions.

Dependent Variable: Inattention Parameter (θ)
Dealership Decentralized

Price 0.0305∗ -0.0112
(0.0177) (0.0173)

Depreciation (α) 0.0915∗∗ 0.0180
(0.0417) (0.0164)

20K miles 0.0070 0.0389
(0.0285) (0.0333)

30K miles 0.0185 0.0030
(0.0279) (0.0372)

40K miles 0.0073 0.0163
(0.0300) (0.0410)

50K miles 0.0531∗ -0.0107
(0.0319) (0.0451)

60K miles 0.0552∗ -0.0003
(0.0319) (0.0446)

70K miles 0.0922∗∗∗ -0.0184
(0.0346) (0.0481)

80K miles 0.0854∗∗ 0.0131
(0.0399) (0.0509)

90K miles 0.1404∗∗∗ -0.0367
(0.0419) (0.0470)

100K miles 0.1467∗∗∗ 0.0328
(0.0431) (0.0529)

110K miles 0.0672 0.0662
(0.0485) (0.0522)

120K miles 0.1803∗∗∗ -0.0078
(0.0474) (0.0551)

130K miles 0.2109∗∗∗ 0.0396
(0.0537) (0.0556)

140K miles 0.1488∗∗∗ 0.0597
(0.0563) (0.0554)

Fixed-effects
Model Yes Yes

Fit statistics
Observations 2,210 1,797
R2 0.35842 0.43346
Within R2 0.04225 0.01752

Clustered (Model) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: The columns estimate the partial relationship between price, depreciation, specific
cutoffs, and inattention. Column 1 shows that in dealership transactions, inattention is
largely higher for vehicles of higher mileage, independent of the specific price or
depreciation rate of vehicles. Column 2 shows that there is limited observed heterogeneity
of inattention in the decentralized market.
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Table A11: Estimate of the Inattention Parameters

with Trade-In no Trade-In with Trade-In no Trade-In

Inattention (θ) 0.35*** 0.43*** 0.36*** 0.45***
(0.03) (0.02) (0.03) (0.02)

Observations 844,560 1,638,861 844,560 1,638,861
7th order polynomial Yes Yes Yes Yes
Uniformly Weighted No No Yes Yes
Fixed Effects Yes Yes Yes Yes

Notes: Columns (3) and (4) are estimated using weighted nonlinear least squares, giving
each odometer reading equal weight. We omitted polynomial coefficients in the table. The
sample includes vehicles between 25,000 miles and 125,000 miles. +p<0.1, *p<0.05,
**p<0.01, *** p<0.001. The standard errors are estimated using a bootstrap with 2,000
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Table A12: Replication of Table 4, restricted to vehicles without active warranty.

Dependent Variables: Purchase Price Sales Price Profit
Model: (1) (2) (3)

Variables
10K miles -95.11 -1,086.0∗∗∗ -910.1

(1,132.2) (380.0) (1,140.3)
20K miles -161.4 -106.9 -17.55

(395.3) (149.7) (334.0)
30K miles -194.1 -109.7 209.8

(205.6) (75.22) (227.2)
40K miles -146.1 -132.1∗∗∗ -7.456

(146.3) (44.04) (159.3)
50K miles -241.7∗∗ -141.9∗∗∗ 39.69

(95.45) (31.83) (92.17)
60K miles -110.3 -176.8∗∗∗ -44.89

(71.53) (24.32) (78.61)
70K miles -46.80 -210.0∗∗∗ -124.6∗∗

(59.87) (20.00) (60.04)
80K miles -100.4∗ -139.1∗∗∗ -56.52

(51.48) (18.65) (54.28)
90K miles -129.0∗∗∗ -221.4∗∗∗ -123.8∗∗

(48.26) (17.54) (52.24)
100K miles -113.0∗ -253.1∗∗∗ -119.8∗∗

(58.01) (20.22) (57.77)
110K miles 1.445 -48.95∗∗ -16.52

(55.78) (23.63) (61.13)
120K miles -45.22 -151.9∗∗∗ -135.1∗∗

(60.22) (28.24) (62.40)
130K miles -55.30 -84.78∗∗ -53.91

(74.18) (34.89) (71.39)
140K miles -109.1 -161.1∗∗∗ -1.246

(98.79) (52.04) (107.2)

Fixed-effects
Full Set Yes Yes Yes

Fit statistics
Observations 625,224 625,224 625,224
R2 0.67096 0.93504 0.25679
Within R2 0.07261 0.38289 0.00054

Clustered (VIN abr) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A13: Survey Results

Dependent Variable: Considered Opposite Channel
Model: (1)

Variables
Constant 0.4868∗∗∗

(0.0170)
Purchased Privately 0.1958∗∗∗

(0.0334)

Fit statistics
Observations 1,127
R2 0.02967
Adjusted R2 0.02881

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A14: Survey Results

Dependent Variable: Started Search in Same Channel
Model: (1)

Variables
Constant 0.7463∗∗∗

(0.0209)
Purchased Privately 0.0637∗

(0.0365)

Fit statistics
Observations 606
R2 0.00502
Adjusted R2 0.00338

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Includes sample of buyers that considered both channels
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Figures

Figure A1: Texas Vehicle Title Form
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Figure A2: Proportion of vehicles sold through intermediary
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Note: Each dot represents the percentage of transactions via intermediary (compared to
consumer transactions) for vehicles within a 1,000 mi band.
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Figure A3: Warranties

Full Sample with Discontinuities at End of Warranty
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Note: The top panel estimates the discontinuity at the end of warranty terms. The bottom
panel estimates discontinuities while restricting the dataset to vehicles without active war-
ranties, due to their age.
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Figure A4: Distribution of Warranty Terms
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Figure A5: Estimation of discontinuities without exogenously defined breakpoints
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Note: Above presents the estimated coefficients from a lasso regression. Each dot represents
the average increase in price as mileage increases by 1,000 miles.
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Figure A6: Excess purchase price, sales price, profits, by modulus of odometer
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Note: Each coefficient represents the difference in outcome for vehicles within a specific
modulus of mileage, relative to vehicles in the modulus of 0 mi to 999 mi.
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Figure A7: Placebo test reproducing Table 3 with 10,000 km discontinuities
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Figure A8: Placebo test reproducing Table 4 with 10,000 km discontinuities
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Figure A9: Placebo test reproducing Table 5 with 10,000 km discontinuities
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Figure A10: Correlation between Odometer Modulus and Price Modulus (0 to 999) for
Dealership Transactions
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Note: Each “price bucket” is a separate regression and we present coefficients for each
odometer modulus factor.
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Figure A11: Correlation between Odometer Modulus and Price Modulus (0 to 9,999) for
Dealership Transactions
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Note: Each “price bucket” is a separate regression and we present coefficients for each
odometer modulus factor.
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Figure A12: Correlation between Odometer Modulus and Price Modulus (0 to 999) for
Private Transactions
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Note: Each “price bucket” is a separate regression and we present coefficients for each
odometer modulus factor.
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Figure A13: Correlation between Odometer Modulus and Price Modulus (0 to 9,999) for
Private Transactions
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Note: Each “price bucket” is a separate regression and we present coefficients for each
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Figure A14
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Figure A15: Proportion of vehicles with odometer readings as multiples of round numbers
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Note: Each bar represents the proportion of vehicles in a 10,000 mile “bucket” that has
odometer readings that are multiples of 100, 250, or 1,000.
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Figure A16: Histograms of Key Variables

0

5000

10000

15000

0 50000 100000 150000
Odometer Reading

F
re

qu
en

cy

Decentralized Transactions

0e+00

5e+04

1e+05

0 10000 20000 30000 40000 50000
Sales Price

F
re

qu
en

cy

Decentralized Transactions

0

10000

20000

30000

40000

0 50000 100000 150000
Odometer Reading

F
re

qu
en

cy

Dealership Transactions

0

50000

100000

150000

0 20000 40000 60000
Sales Price

F
re

qu
en

cy

Dealership Transactions

0

50000

100000

150000

0 20000 40000 60000
Purchase Price

F
re

qu
en

cy

Dealership Transactions

0e+00

1e+05

2e+05

3e+05

−10000 −5000 0 5000 10000
Operating Profit

F
re

qu
en

cy

Dealership Transactions

52



Figure A17: Robustness of Purchase Price Coefficients in Table 3
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Figure A18: Robustness of Sales Price Coefficients in Table 3
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Figure A19: Robustness of Profit Coefficients in Table 3

Discontinuities in Profit for Odometer Polynomials of __ order
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Figure A20: Density of Outcomes for observations immediately above and below 10,000 mile
thresholds
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Note: Estimated Density of the residual of regressing outcome variables on full set of fixed
effects (dealership, customer zip code, vehicle make/model/trim/year, and week, odometer
polynomial) .

56



Figure A21: Discontinuities of residual of outcome variables in Table 3
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Note: Estimated residuals of regressing outcome variables on full set of fixed effects (dealer-
ship, customer zip code, vehicle make/model/trim/year, and week).
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